





# **Atomic Clock Ensemble in Space**

L. Cacciapuoti ESA-ESTEC SCI-SA

International Workshop on Advances in Precision Tests and Experimental Gravitation in Space Firenze, 28-30 September 2006







### The ACES Payload

### ASTRIUM



Volume: 1172x867x1246 mm<sup>3</sup> Total mass: 227 kg Power: 450 W





# PHARAO: A Cold-Atom Clock in µ-gravity







ΔŒ

Total volume: 990x336x444 mm<sup>3</sup> Mass: 44 kg







### PHARAO Oscillator and Synthesis Chain







# **PHARAO Optical System**

- Dimensions: 530x350x150 mm<sup>3</sup>
- Mass: 20.054 kg
- Cooling beams: 6 x 17 mW
- Repumper used for cooling, selection, and detection
- Detection system
  - Standing wave (F=4)
  - Pushing beam (F=4)
  - Pumping beam (F=3)
  - Standing wave (F=4)







## **PHARAO Ramsey Fringes**















# SHM Physics Package















### **SHM** Parameters

### **Measured Parameters**

- Temperature stabilization of the microwave cavity: <1mK</li>
- Active oscillation: power level of -104 dBm (specified: -105 dBm)
- Measurement of the atomic quality factor via the cavity pulling effect: 1.5.10<sup>9</sup> (specified: 1.5.10<sup>9</sup>)
- Cavity quality factor: (35487 ±164) Hz
- Measurement of the spin-exchange tuning point: 8741 Hz
- Characterization of the maser signal vs Bfield
- Magnetic shielding factor: 2.10<sup>5</sup>







### **Allan Deviation: Preliminary Results**







# The ACES Clock Signal

#### Short term servo loop

Locks PHARAO local oscillator to SHM ensuring a better short and midterm stability

#### Long term servo loop

Corrects for SHM drifts providing the ACES clock signal with the long-term stability and accuracy PHARAO





Stability of the ACES clock signal:

- 3.10<sup>-15</sup> at 300 s (ISS pass)
- 3.10<sup>-16</sup> at 1 day
- 1.10<sup>-16</sup> at 10 days

Accuracy: ~1.10<sup>-16</sup>





### **FCDP Engineering Model**











### Short-term Servo Loop Test













# **ACES Microwave Link**



#### • Two-way link:

- Removal of the troposphere time delay (8.3-103 ns)
- Removal of 1<sup>st</sup> order Doppler effect
- Removal of instrumental delays and common mode effects

#### • Additional down-link in the S-band:

- Determination of the ionosphere TEC
- Correction of the ionosphere time delay (0.3-40 ns in S-band, 6-810 ps in Ku-band)
- Phase PN code modulation: Removal of  $2\pi$  phase ambiguit
- High chip rate (100 MChip/s) on the code:
  - Higher resolution
  - Multipath suppression
- Carrier and code phase measurements (1 per second)
- Data link: 2 kBits/s on the S-band down-link to obtain clock comparison results in real time
- Up to 4 simultaneous space-to-ground clock comparisons





### **ACES MWL Performances**



- Time stability: 0.3 ps at 300 s, 6 ps at 1 day, 23 ps at 10 days of integration time
- Accuracy: absolute calibration at the 100 ps level
- Clock comparisons: 10<sup>-17</sup> regime after 1 day of integration time





# MWL Code/Carrier Phase Measurement

#### Code phase measurements

- Long-term stability ensured by the built-in test translator, removing thermally induced drifts
- Short-term stability (~300 s) depending on noise performances and reproducibility of each DLL receiver channel after proper calibration
- Four to five times improvement wrt 20 MChip/s commercial products demonstrated

#### Carrier phase measurements

- Ultimate phase stability for short integration time obtained with carrier phase measurement.
- TDEV evaluated from Ku-band Tx and IF local oscillator of Ku Band Rx: 2.3.10<sup>-13</sup> s up to 300 s



• ...still margin for improvement







### **MWL** Antennas

Radom

Hom

**Ku-band antenna** MWL FS antennas S-band antenna



Helix



- Horn antenna for the Ku-band
- Helix antenna for the S-band





# **ACES Operational Scenario**

- Mission duration: 1.5 years up to 3 years
- ISS orbit parameters:
  - Altitude: ~ 400 km
  - Inclination: ~ 51.6°
  - Period: 90 min
- Link according to orbit characteristics:
  - Link duration: up to 400 seconds
  - Useful ISS passes: at least one per day
- MWL ground terminals
  - Located at ground clock sites
  - Distributed worldwide





### Common view comparisons

- Up to 4 simultaneous comparisons of ground clocks
- Uncertainty below 1 ps per ISS pass (~ 300 s)

### Non-common view comparisons

- ACES clocks as fly wheel
- Uncertainty below 2 ps over 1000 s and 20 ps over 1 day





## **ACES Mission Objectives I**

| ACES Mission<br>Objectives                     | ACES performances                                                                                                                                                                                                                                                             | Scientific background and recent results                                                                                                                                                                                                                                                       |                             |                       |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|
| Test of a new generation of space clocks       |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                             |                       |
| Cold atoms in micro-gravity                    | Study of cold atom physics in microgravity                                                                                                                                                                                                                                    | Essential for the development of atomic quant<br>sensors for space applications (optical close<br>atom interferometers, atom lasers)                                                                                                                                                           |                             |                       |
| Test of the<br>space cold atom<br>clock PHARAO | Frequency instability: $< 3.10^{-16}$ at 1 day<br>Inaccuracy: $~ 10^{-16}$<br>Short term frequency instability evaluated<br>by direct comparison to SHM.<br>Long term instability and systematic<br>frequency shifts measured by comparison<br>to ultra-stable ground clocks. | PHARAO will be one of the most accurate<br>frequency standards ever built. Recent progress<br>of clocks in the optical domain is making<br>available frequency standards with performances<br>comparable to or better than PHARAO,<br>increasing the scientific return of the ACES<br>mission. |                             |                       |
| Test of the                                    | Frequency instability: < 2.1·10 <sup>-15</sup> at 1000 s<br>< 1.5·10 <sup>-15</sup> at 10000 s<br>Medium term frequency instability                                                                                                                                           | Performances of state-of-the-art masers                                                                                                                                                                                                                                                        |                             | masers                |
| space hydrogen<br>maser SHM                    | evaluated by direct comparison to ultra-<br>stable ground clocks.<br>Long term instability determined by on-<br>board comparison to PHARAO in FCDP.                                                                                                                           | Maser                                                                                                                                                                                                                                                                                          | $\sigma_{y}(1000 	ext{ s})$ | $\sigma_y$ (10000 s)  |
|                                                |                                                                                                                                                                                                                                                                               | GALILEO                                                                                                                                                                                                                                                                                        | 3.2·10 <sup>-14</sup>       | 1.0.10-14             |
|                                                |                                                                                                                                                                                                                                                                               | EFOS C                                                                                                                                                                                                                                                                                         | 2.0·10 <sup>-15</sup>       | 2.0.10 <sup>-15</sup> |





# **ACES Mission Objectives II**

| ACES Mission<br>Objectives                      | ACES performances                                                                                                     | Scientific background and recent results                                                                                                    |                             | ent results                |                                 |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|---------------------------------|
|                                                 | Stable time and frequen                                                                                               | cy transfer                                                                                                                                 |                             |                            |                                 |
| Test of the time<br>and frequency<br>link MWL   | Time transfer stability: < 0.3 ps at 300 s<br>< 7 ps at 1day<br>< 23 ps at 10 days                                    |                                                                                                                                             |                             | transfer link<br>VL.       |                                 |
| Time and                                        | Time and<br>frequency<br>comparisonsCommon view comparisons with an<br>uncertainty level below 1 ps per ISS pass.<br> | Existing<br>T&F links                                                                                                                       | Time<br>stability<br>(1day) | Time<br>accuracy<br>(1day) | Frequency<br>accuracy<br>(1day) |
| frequency<br>comparisons                        |                                                                                                                       | GPS-DB                                                                                                                                      | 2 ns                        | 3-10 ns                    | 4·10 <sup>-14</sup>             |
| between ground                                  |                                                                                                                       | GPS-CV                                                                                                                                      | 1 ns                        | 1-5 ns                     | 2·10 <sup>-14</sup>             |
| clocks                                          |                                                                                                                       | GPS-CP                                                                                                                                      | 0.1 ns                      | 1-3 ns                     | 2·10 <sup>-15</sup>             |
|                                                 |                                                                                                                       | TWSTFT                                                                                                                                      | 0.1-0.2 ns                  | 1 ns                       | 2-4·10 <sup>-15</sup>           |
| Absolute<br>synchronization<br>of ground clocks | Absolute synchronization of ground clock time scales with an uncertainty of 100 ps.                                   | These performances will allow time and frequency transfer at an unprecedented level of                                                      |                             |                            |                                 |
| Contribution to<br>atomic time<br>scales        | Comparison of primary frequency standards with accuracy at the 10 <sup>-16</sup> level.                               | stability and accuracy. The development of such<br>links is mandatory for space experiments based<br>on high stability frequency standards. |                             |                            | ments based                     |





## **ACES Mission Objectives III**

| ACES Mission<br>Objectives                               | ACES performances                                                                                                                                                                                          | Scientific background and recent results                                                                                                                                                  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fundamental physics tests                                |                                                                                                                                                                                                            |                                                                                                                                                                                           |  |  |
| Measurement of<br>the gravitational<br>red shift         | Absolute measurement of the gravitational red-shift at an uncertainty level < $50 \cdot 10^{-6}$ after 300 s and < $2 \cdot 10^{-6}$ after 10 days.                                                        | Space-to-ground clock comparison at the 10 <sup>-16</sup> level, will yield a factor 30 improvement on previous measurements (GPA experiment).                                            |  |  |
| Search for time<br>drifts of<br>fundamental<br>constants | Time variations of the fine structure constant $\alpha$ at a precision level of $\alpha^{-1} \cdot d\alpha / dt < 1 \cdot 10^{-16}$ year <sup>-1</sup>                                                     | Crossed comparisons of clocks based on different atomic elements to impose strong constraints on the time drifts of $\alpha$ , $m_{\odot}/\Lambda_{QCD}$ , and $m_{\Box}/\Lambda_{QCD}$ . |  |  |
| Search for<br>violations of<br>special relativity        | Search for anisotropies of the speed of light<br>at the level $\delta c / c \sim 10^{-10}$ .<br>Measurements relying on the time stability<br>of SHM, PHARAO, MWL, and ground<br>clocks over one ISS pass. | ACES results will improve previous tests based<br>on GPS satellites by at least one order of<br>magnitude.                                                                                |  |  |





### **Relativistic Frequency Transfer**







## **ACES Mission Objectives III**

| ACES Mission<br>Objectives                               | ACES performances                                                                                                                                                                                          | Scientific background and recent results                                                                                                                                                           |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Fundamental physics tests                                |                                                                                                                                                                                                            |                                                                                                                                                                                                    |  |  |
| Measurement of<br>the gravitational<br>red shift         | Absolute measurement of the gravitational red-shift at an uncertainty level < $50 \cdot 10^{-6}$ after 300 s and < $2 \cdot 10^{-6}$ after 10 days.                                                        | Space-to-ground clock comparison at the 10 <sup>-16</sup> level, will yield a factor 30 improvement on previous measurements (GPA experiment).                                                     |  |  |
| Search for time<br>drifts of<br>fundamental<br>constants | Time variations of the fine structure constant $\alpha$ at a precision level of $\alpha^{-1} \cdot d\alpha / dt < 1 \cdot 10^{-16}$ year <sup>-1</sup>                                                     | Crossed comparisons of clocks based on different atomic elements to impose strong constraints on the time drifts of $\alpha$ , $m_{_{\ominus}} / \Lambda_{QCD}$ , and $m_{_{U}} / \Lambda_{QCD}$ . |  |  |
| Search for<br>violations of<br>special relativity        | Search for anisotropies of the speed of light<br>at the level $\delta c / c \sim 10^{-10}$ .<br>Measurements relying on the time stability<br>of SHM, PHARAO, MWL, and ground<br>clocks over one ISS pass. | ACES results will improve previous tests based<br>on GPS satellites by at least one order of<br>magnitude.                                                                                         |  |  |





### **Time Variations of Fundamental Constants I**

Frequency of hyperfine transitions:

Frequency of electronic transitions:  $\nu_{\rm elec}^{(i)}$ 

$$\nu_{\rm hfs}^{(i)} \simeq R_{\infty}c \times \mathcal{A}_{\rm hfs}^{(i)} \times g^{(i)} \left(\frac{m_e}{m_p}\right) \ \alpha^2 \ F_{\rm hfs}^{(i)}(\alpha)$$
$$\nu_{\rm elec}^{(i)} \simeq R_{\infty}c \times \mathcal{A}_{\rm elec}^{(i)} \times F_{\rm elec}^{(i)}(\alpha)$$

### Ratios between atomic frequencies:

$$\frac{\nu_{\rm elec}^{(ii)}}{\nu_{\rm elec}^{(i)}} \propto \frac{F_{\rm elec}^{(ii)}(\alpha)}{F_{\rm elec}^{(i)}(\alpha)} \qquad \qquad \frac{\nu_{\rm hfs}^{(ii)}}{\nu_{\rm elec}^{(i)}} \propto g^{(ii)} \frac{m_e}{m_p} \alpha^2 \frac{F_{\rm hfs}^{(ii)}(\alpha)}{F_{\rm elec}^{(i)}(\alpha)} \qquad \qquad \frac{\nu_{\rm hfs}^{(ii)}}{\nu_{\rm hfs}^{(i)}} \propto \frac{g^{(ii)}}{g^{(i)}} \frac{F_{\rm hfs}^{(ii)}(\alpha)}{F_{\rm hfs}^{(i)}(\alpha)}$$

### Sensitivity to time variations of fundamental constants:

$$\delta \ln \left(\frac{\nu_{\rm hfs}^{(i)}}{R_{\infty}c}\right) \simeq \frac{\delta g^{(i)}}{g^{(i)}} + \frac{\delta (m_e/m_p)}{(m_e/m_p)} + \left(2 + \alpha \frac{\partial}{\partial \alpha} \ln F_{\rm hfs}^{(i)}(\alpha)\right) \times \frac{\delta \alpha}{\alpha}$$
$$\delta \ln \left(\frac{\nu_{\rm elec}^{(i)}}{R_{\infty}c}\right) \simeq \left(\alpha \frac{\partial}{\partial \alpha} \ln F_{\rm elec}^{(i)}(\alpha)\right) \times \frac{\delta \alpha}{\alpha}$$





# Time Variations of Fundamental Constants II

 $g^{(i)}$  and  $m_p$  are not "fundamental" constants; they depend on

- QCD mass scale  $\Lambda_{\rm QCD}$
- Quark mass  $m_q = (m_u + m_d)/2$

therefore comparisons of atomic frequency will test the time stability of the three fundamental constants  $\alpha$ ,  $\frac{m_q}{\Lambda_{\rm QCD}}$ ,  $\frac{m_e}{\Lambda_{\rm QCD}}$ 

In general  $\delta \ln \left(\frac{\nu^{(i)}}{R_{\infty}c}\right) \simeq K_{\alpha}^{(i)} \times \frac{\delta \alpha}{\alpha} + K_{q}^{(i)} \times \frac{\delta (m_q/\Lambda_{\rm QCD})}{(m_q/\Lambda_{\rm QCD})} + K_{e}^{(i)} \times \frac{\delta (m_e/\Lambda_{\rm QCD})}{(m_e/\Lambda_{\rm QCD})}$ 

 $K_{\alpha}^{(i)} \neq 0, K_{q}^{(i)} \neq 0, K_{e}^{(i)} \simeq 1$ 

 $K^{(i)}_{\alpha} \neq 0, K^{(i)}_q \simeq 0, K^{(i)}_e \simeq 0$ 

$$K^{(i)}_{\alpha}\simeq 0, K^{(i)}_q\simeq 0, K^{(i)}_e\simeq 1/2$$

hyperfine transitions

electronic transition

vibrational transitions in molecules

V.V. Flambaum, arxiv:physics/0302015 V.V. Flambaum *et al.*, Phys. Rev. D **69**, 115006 (2004)





### Time Variations of Fundamental Constants III



- Worldwide access to the ACES frequency standard
- Common view comparisons up to 4 different clocks based on different atomic transitions to constrain time variations of  $\alpha$ ,  $m_q/\Lambda_{\rm QCD}$ ,  $m_e/\Lambda_{\rm QCD}$
- Non common view comparisons of distant clocks
- Redundancy possible with more than 4 atomic clocks
- Frequency comparisons at the 10<sup>-16</sup> level possible





## **ACES Mission Objectives III**

| ACES Mission<br>Objectives                                | ACES performances                                                                                                                                                                                          | Scientific background and recent results                                                                                                                                                       |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fundamental physics tests                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                |  |
| <i>Measurement of<br/>the gravitational<br/>red shift</i> | Absolute measurement of the gravitational red-shift at an uncertainty level < $50 \cdot 10^{-6}$ after 300 s and < $2 \cdot 10^{-6}$ after 10 days.                                                        | Space-to-ground clock comparison at the 10 <sup>-16</sup> level, will yield a factor 30 improvement on previous measurements (GPA experiment).                                                 |  |
| Search for time<br>drifts of<br>fundamental<br>constants  | Time variations of the fine structure constant $\alpha$ at a precision level of $\alpha^{-1} \cdot d\alpha / dt < 1 \cdot 10^{-16}$ year <sup>-1</sup>                                                     | Crossed comparisons of clocks based on different atomic elements to impose strong constraints on the time drifts of $\alpha$ , $m_{\oplus} / \Lambda_{QCD}$ , and $m_{_{U}} / \Lambda_{QCD}$ . |  |
| Search for<br>violations of<br>special relativity         | Search for anisotropies of the speed of light<br>at the level $\delta c / c \sim 10^{-10}$ .<br>Measurements relying on the time stability<br>of SHM, PHARAO, MWL, and ground<br>clocks over one ISS pass. | ACES results will improve previous tests based<br>on GPS satellites by at least one order of<br>magnitude.                                                                                     |  |





# **Clock Tests of Special Relativity**

- Kinematic test theories (RMS framework): Preferred reference frame (CMB) in which light is assumed to propagate isotropically
- Dynamic test theories (SME framework): Lorentz transformations violating terms in the Hamiltonian of the system



Measurement principle:

- Exchange of microwave signals between ACES clocks and ground clocks along the ISS orbit
- Difference of measured reception and emission times provides the one-way travel time of the signal plus some unknown constant offset (desynchronization, path asymmetries, propagation delays,...)
- Difference of the up and down travel times sensitive to a non zero value of  $\frac{\partial c}{c}$

P. Wolf, PRA **51**, 5016 (1995)





# **Pioneering Aspects of ACES**

- Technology demonstrator for cold atom based missions
- First µg experiments with cold atoms
- Validation in space of complex laser systems, UHV equipment, ultrastable RF electronics...
- Validation of a new generation of atomic clocks
- Demonstration of stable and accurate time and frequency transfer
- Long-distance clock-to-clock comparisons
- Precursor of optical clocks: towards the 10<sup>-18</sup> stability and accuracy regime



from E. Rasel et al.

These results will arrive in time to prepare the next generation of atomic quantum sensors for space





## Atomic Quantum Sensors in Space

| Atomic Glocks                                              | Atom Interferometers                               | Degenerate Currentum Gases                        |
|------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|
| Fundamental Physics                                        | Fundamental Physics                                | Fundamental Possios                               |
| <ul> <li>Standard Model Extension</li> </ul>               | Weak Equivalence Principle                         | <ul> <li>Thermodynamics of the phase</li> </ul>   |
| tests                                                      | tests                                              | transition at ultra-low                           |
| <ul> <li>Universality of the</li> </ul>                    | <ul> <li>Measurement of fundamental</li> </ul>     | temperatures                                      |
| gravitational red-shift                                    | constants                                          | <ul> <li>Collective excitations in the</li> </ul> |
| <ul> <li>Time variations of</li> </ul>                     | <ul> <li>Time variations of fundamental</li> </ul> | weak trapping regime                              |
| fundamental constants                                      | constants                                          | <ul> <li>BEC coherence properties in</li> </ul>   |
| Gravitational red-shift                                    | <ul> <li>Measurement of the gravito-</li> </ul>    | microgravity                                      |
| <ul> <li>Shapiro time delay and 1/c<sup>3</sup></li> </ul> | magnetic effect                                    | • Role of interactions in BLC:                    |
| effects                                                    | <ul> <li>Tests of the Newton's law at</li> </ul>   | dipolar forces and short range                    |
| <ul> <li>Gravitational waves detection</li> </ul>          | short distances                                    | interactions                                      |
| Applications                                               | <ul> <li>Gravitational waves detection</li> </ul>  | • Dynamics of Bose mixtures in                    |
| • Atomic time scales (TAI)                                 | Applications                                       | microgravity                                      |
| <ul> <li>Time &amp; Frequency metrology</li> </ul>         | Inertial navigation                                | Approximentors 🧼 🦿                                |
| • Deep space navigation                                    | • Earth observation and                            | • Atomic sources for atom                         |
| • Doppler tracking                                         | monitoring                                         | Interferometry                                    |
| • Synchronization of DSNA                                  | • Geology and vuicanology                          | • High-resolution                                 |
| • VLBI                                                     | • Gravity and gravity-gradient                     | interferometric measurements                      |
| • Time & Frequency transfer                                |                                                    | with dilute concrent matter                       |
| • Gravity mapping                                          | • Planetary exploration                            | waves                                             |
| <ul> <li>Planetary exploration</li> </ul>                  |                                                    |                                                   |





