Precision

Atomic Optics at the IQ

Perspectives in

applied & fundamental sciences

AG Wolfgang Ertmer Institut für Quantenoptik, Hannover Leibniz Universität Hannover

Gravity Matter-Wave Explorer des ato

C. Bordé (P. Bouyer, N. D

A. Aspect, T. Damour, J. He . Kars C. No

L'optique et l'int atomique un dévelop au cours qui pe lutilisation our des mesur dans

orks (1999/2000)

ESA. SCIP.000110

Atom

Space

ion à: a.u-psud.fr/hyper

clock (2001)

From microwaves to optical frequencies 10¹⁰ Hz ® 10¹⁵Hz Mg frequency standard Leibniz Universität Hannover $\frac{\Delta n}{m} \approx 10^{\infty}$ Instability 8-10⁻¹⁴ Q = 2.3*10¹²

Sterr et al., Appl. Phys. B 54, 341 (1992)

J. Keupp, et al., High-resolution atom interferometry in the optical domain, E.J. Physics D, Highlight Paper (2002)

H, Ca, Mg, Sr, Ag, Yb, Hg,

. . .

What will be the "best" atom
What will be the "best" clock
Criteria ?
What to be tested ?
Diversity of Clocks

measurement of St

$\frac{\Delta \boldsymbol{n}}{\boldsymbol{n}} \approx 10^{\boldsymbol{\infty}}$

Table 1 | Systematic corrections and uncertainties for the Sr optical lattice clock

Effect	Correction (Hz)	Uncertainty (Hz)	
		Achieved	Attainable
First order Doppler*	0	3 × 10 ⁻²	<10^-3
Second order Doppler	0	2×10^{-6}	<2 × 10 ⁻⁶
Recoil shift	0		-
First order Zeeman	0	10	10-3
Collision shift	0.6	2.4	10-4+
Blackbody shift:	2.4	0.1	3×10^{-3}
Probe laser light shift	0.1	0.01	10-3
Scalar light shift	-3.85	4	10-3
Vector light shift	0	10-3	10-3
Tensor light shift	0	10-3	10-3
Fourth order light shift¶	0	10-3	10-3
Cs clock offset	-45	3	
Frequency measurement	0	9	
Systematic total	-45.7		
Total uncortaintu ku M. Takamoto et al Nature. 435. 321 (2005)		15	4 × 10 ⁻³

Systematics

- Narrow to ultra-narrow transition
- **V** "Magic" wave length dipole trap (${}^{1}S_{0} \rightarrow {}^{3}P_{0}$: 465 nm)
- Higher order effects ?
- Reasonable abundance of fermionic and bosonic isotopes ^{24,25,26}Mg
- Low black-body shift (10⁻¹⁶)
- Simple electronic structure- easy to model
- Semi-conductor laser + Frequency Doubling
- Fast and efficient laser cooling

Cooling strategies

Coherent 2-Photon Cooling

C2PC ctd.

C2PC ctd.

- C2PC a simple extension of Doppler cooling
- Accessible temperatures ~200 µK
 - Fast cooling scheme: 1-2 ms

2PC ctd

- Technical heating of UV-MOT influences also C2PC
- Bridges temperature gap for Quench cooling

- Quench Cooling –only efficient for cold atoms below the Doppler temperature
- Laser Cooling in dipole traps operated at magic wavelength

N. Rehbein et al., "Quenching metastable magnesium" sub. to Phys. Rev. A

T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, PTB;

T. E. Mehlstäubler, E. M. Rasel, W. Ertmer, IQ, Leibniz Universität Hannover, "Doppler cooling and trapping on forbidden transitions", Phys. Rev. Lett. 87, p. 123002, 2001.

T.E. Mehlstäubler, J. Keupp, A. Doulliet, N. Rehbein, E.M.Rasel and W. Ertmer, J.O.B 5, p.183 (2003)

Fields of Interest:

- Inertial standards/references
- Earth Observation
- Measurement of relativistic effects & gravity \bullet
- **Pioneer anomaly** ۲
- Testing the Weak Equivalence Principle ۲
- **Drag-free sensors** \bullet

perhaps in gravitational wave detectors?

Leibniz

sensing Rotation

	Wettzell	Stanford	CASI
	(light)	(thermal Cs- atoms)	(cold Rb-atoms)
length [cm]	400	200	15
area	16m ²	26mm ²	25mm ²
sensitivity [rad.s ⁻¹ Hz ^{-1/2}]	9x10 ⁻¹¹	6x10 ⁻¹⁰	2x10 ⁻⁹

Comparison

- different application for interferometer using atoms:
- small device —> portable sensor
- inertial sensitivity in 3 dimensions [B. Canuel, F. Leduc, A. Clairon, Ch.Bordé and A. Landragin, Phys.Rev.Lett. **97**, 010402 (2006)]

Cold Atom Sagnac Interferometer

Dual interferometer

T. Müller, T. Wendrich, M. Gilowski, C. Jentsch, E.M.Rasel and W. Ertmer, " "Versatile compact sources for high resolution dual atom interferometry" in prep. for Phys. Rev. A

for degenerate matter

C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, J. Arlt, W. Ertmer; Phys Rev A **73**, 013410, (2006)

- Extended Time of Evolution
- Perturbation-free Evolution
- No need to compensate gravity / to levitate the atoms

EXTENDED PARAMETER RANGE

Free Fall: up to 9 sec

Duration > 1 BEC-Experiment

3 flights per day

Implementation

Test of a robust BEC Facilities Dimensions < $0.6 \oslash x 1.5 m$ < 234 kg

Height 110 m

Status

molasses T~15 µK

- ~3-10⁶ atoms on the Chip magnetic trap
- l lifetime 2.5 s
- evaporation works
- first drops this year
- interferometry
- mesoscopic trap
- \rightarrow talk by A. Peters

2 atomic species of 10⁸ atoms Dual Atomic Accelerometer combined with a drag free proof mass (Pathfinder or ONERA type / optical read out) HYPER orbit erspectives Accelerational Sensitivity with 10⁸ ats: Space 10⁻¹² g/vHz @ Expansion Time 3 s

EC-µg Team m **D**

Kai Bongs Wiebke Brinkmann Hansjörg Dittus **Wolfgang Ertmer Theodor Hänsch Thorben Könemann** Claus Lämmerzahl Wojciech Lewozko **Ronald Mairose Gerrit Nandi Achim Peters Peter Prengel** Ernst M. Rasel **Jakob Reichel** Wolfgang Schleich **Malte Schmidt Tilo Schuldt Klaus Sengstock Thilo Steinmetz Christian Stenzel** Anika Vogel **Reinhold Walser Tim van Zoest**

Leibniz Universität Hannover

Optical Clock based on Magnesium

Present team C. Moldenhauer J. Friebe

M. Riedmann

Former team members A. Douillet J. Keupp T. Mehlstäubler ® SYRTE (Paris) N. Rehbein H. Stöhr **Cooperation with**

H. Schnatz

B. Lipphardt

G. Grosche

Inertial Quantum Probes

Present team

M. Gilovski

T. Müller

T. Wendrich

Former team members

C. Jentsch

Cooperation with SYRTE & Univ. Florence

Quantum Matter

Present team

T.v. Zoest (QUANTUS)

M. Zaiser (ATLAS)

Cooperation with

ZARM-Bremen

Humbolt Universität Berlin

MPQ/ENS

Universität Hamburg

Universität Ulm

SYRTE Paris

ΙΟΤΑ

Univ. Florence

ENOUGH SPACE FOR EXCITING EXPERIMENTS

