A new determination of α with cold rubidium atoms

P. CladéM. CadoretE. De Mirandes

S. Guellati-Khélifa C. Schwob F. Nez L. Julien F. Biraben

Laboratoire Kastler Brossel (ENS, CNRS, UPMC) Institut National de Métrologie (CNAM)

CONSERVATORE NATIONAL DESARIS FLMÉTTERS

CODATA 2002 P. Mohr and B. Taylor, RMP, 77, n°1, p. 1, january 2005 G. Gabrielse et al, PRL, **97**, 030802, 2006

Principle of our experiment : measurement of the recoil velocity

 $\sigma_{\rm vr} = \sigma_{\rm v} / (2N)$

measurement of the final velocity class

J.L. Hall, Ch.J. Bordé, K. Uehara, PRL 37 (1976) 1339

Bloch oscillations

> Only one hyperfin level involved : coherent acceleration, $2\hbar k$ per cycle

Acceleration Bloch oscillations in the fundamental energy band M. Ben Dahan et al , PRL, 76 (1996) 4508.

G. Ferrari et al , PRL, 97 (2006) 060402. 4000 oscillations in 7 s!

Experimental sequence deceleration acceleration MOT detection +molasses selection blow away measurement π -pulse beam π -pulse $(\delta_{sel} \text{ fixed})$ $(\delta_{\text{meas}} \text{ tunable})$ We measure (Doppler effect) : $\Delta V = \frac{\hbar (\delta_{sel} - \delta_{meas})}{(k_1 + k_2)}$ Acceleration in both opposite directions : $v_r = \frac{\Delta V^{up} - \Delta V^{down}}{2(N^{up} + N^{down})}$ $v_r = \frac{\hbar k_B}{m}$ m $\frac{\hbar}{m} = \frac{(\delta_{sel} - \delta_{meas})^{up} - (\delta_{sel} - \delta_{meas})^{down}}{2(N^{up} + N^{down})(k_1 + k_2)k_B}$

Results

Transfer efficiency > 99.95% per oscillation (2 recoils)

about 450 Bloch oscillations up and down \rightarrow 1800 recoils measurements performed in April 2005

Cladé et al, PRL, 96 (2006) 033001

Error budget

Source	Correction	Uncertainty
	(α ⁻¹)(ppb)	(α ⁻¹)(ppb)
✓ Laser frequencies	0	0.8
✓Beams alignment	- 2	2
✓ Wave front curvature and Gouy phase	- 8.2	4
✓ 2nd order Zeeman effect	6.6	2
 Quadratic magnetic force 	- 1.3	0.4
✓ Gravity gradient	- 0.18	0.02
Light shift (one photon transition)	0	0.2
Light shift (two photon transition)	- 0.5	0.2
Light shift (Bloch oscillations)	0.46	0.4
Index of refraction (cold atomic cloud) \mathbf{I}	< 0.1	0.3
✓Index of refraction (background vapor)	- 0.37	0.3
Global systematic effects	- 5.49	5.0
Statistical uncertainty		4.4
TOTAL		6.7

Cladé et al (submitted to PRA) $\alpha^{-1} = 137.03599884(91)$

Interferometric measurement of the recoil velocity

A. Wicht, J.M. Hensley, E. Sarajlic and S.Chu, Phys. Scr. T102, 82 (2002)

Preliminary tests

 $T_R=3.4 \text{ ms} = \pi$ -pulse duration

 $\pi/2$ -pulse duration = 0.3 ms

 Δ_{Raman} = 250 GHz and Δ_{Bloch} = 40 GHz

Up to 480 oscillations !

typically : 350 oscillations

Further improvements

Statistical uncertainty

$$\sigma_{v_r} = \frac{\sigma_v}{2N}$$

Oscillations de Bloch (at the present time N ~ 480)

The number of Bloch oscillations is limited by the atomic longitudinal motion (500 oscillations & 12 ms , 6 cm).

Velocity measurement (at the present time $\sigma_v \sim 10^{-4} v_r$ in 10 minutes)

- a new vacuum cell and a 2D-MOT to increase the initial number of atoms.
- an actively stabilized anti-vibration plateforme to reduce vibrations.

Systematic effects

- a µ-metal shielding to reduce residual magnetic fields
- a Shack-Hartmann wave front analyser to control the beams curvature

Towards a redefinition of the kilogram

The kilogram is the only SI base unit defined in terms of a material artefact It is not invariable at a level of 10⁻⁸

« Redefinition of kilogram : a decision whose time has come » I. M. Mills et al., Metrologia **42**, 71-80 (2005)

One possible way :

• Fix the Planck constant h and relate mass and time units $E = hv = mc^2$

Realization of the kg using the watt balance which allows to compare :

- a mechanical power (displacement of a mass in the gravity field) Mg_V

Need to be tested !

- to an electrical power

$$UI \propto R_K K_J^2 = \frac{4}{h}$$

This realization is based on the validity of the relations :

 $K_J = \frac{2e}{2}$

$$R_{K} = \frac{h}{e^{2}} = \frac{\mu_{0}c}{2\alpha}$$
 and

Von Klitzing constant

Josephson constant

Another possibility

 Fix the Avogadro constant (or the atomic mass unit) Mills et al. (2005)

At the present time, N_A is measured through the molar volume of a Si sphere

Morever

The watt balance gives h/Mmacro

Recoil measurements give h/Matom

Recent proposal

• Fix both h and N_A !

Redefinition of kilogram, ampere, kelvin, mole : ... »
 Mills et al. Metrologia 43, 227-246 (2006)
 (on going debate in the community of metrologists)

Conclusion

Highly precise frequency measurements allow very accurate determinations of fundamental constants leading to a lot of rich developments...

both together can give a competitive value of N_A

Refractive index

Recoil transmitted by one Bloch oscillation : 2~k or 2n~k ? Doppler effect for the Raman transitions : 2kv or 2nkv ?

$$(n-1) = \pi \rho \frac{\Gamma}{\Delta} \left(\frac{\lambda}{2\pi}\right)^3$$

ρ: densityΓ: natural widthΔ: detuning

 $\Delta \mathbf{k} = \frac{\mathbf{n}\sigma}{2} \frac{\Gamma/2}{\Delta}$

For the cold atoms Initial atomic density : 10^{11} atoms/cm³ Raman beams : $\Delta = 1050$ GHz : $(n-1)=4.10^{-10}$ (selection) $(n-1)<10^{-12}$ (measure) Bloch beams : $\Delta = 40$ GHz: $(n-1)=2.10^{-10}$ (selected atoms)

For the background vapor density: 8.10^8 atoms/cm³ (n-1) ~ 4.10^{-10}

Index of refraction

 $dL/dt = 0 \iff v_{medium} = v_{atom}$ no effect

Refractive index

➢ Phase of the light (1) at the position of the atom i (x_i) : $Φ_1(x_i)$ ➢ Two photon transition : $Φ = Φ_1 - Φ_2$

> Assum:

- ✓ without dispersive media : $\Phi(x) = 2 k x$
- ✓ inside the medium : $d\Phi(x)/dx = 2 \text{ nk}$
- ✓ uniform medium (N atoms), x_m of the center of the medium : $x_m = \sum_i x_i / N$
- ✓ at the position x_m of the center of the medium effect of refractive index cancel from 1st and 2nd beam

$$\Phi(\mathbf{x}) = 2(n-1)k(\mathbf{x} - \mathbf{x}_m) + 2k\mathbf{x}$$

One Bloch oscillation :

- atom
- atom
- atom

$$\hbar \frac{d\Phi(x_i)}{dx_i} = 2 n\hbar k + 2(1-n) \frac{\hbar k}{N} \approx 2 n\hbar k$$
- medium

$$\hbar \frac{d\Phi(x_i)}{dx_j} = 2(1-n) \frac{\hbar k}{N}$$

Raman transition : Doppler effect

$$\frac{d\Phi(\mathbf{x}(t),t)}{dt} \rightarrow \omega' = \omega - 2kv + 2(n-1)k(v-v_0)$$

Systematic effects

≻Lasers frequencies : FP cavity → uncertainty 300kHz → $u_r(\alpha) = 8 \times 10^{-10}$

Beams misalignment : Optical fibers to couple Raman/Bloch beams into the cell

Systematic effects

> What is the momentum transferred to the atoms by laser beams ?

Gaussian beam : Plane waves superposition :

$$k_{//}^{2} = \frac{\omega^{2}}{c^{2}} - k_{\perp}^{2} < \frac{\omega^{2}}{c^{2}}$$

Momentum transferred = gradient of the phase

 $E(r,z) = E(r)e^{i\phi(r,z)}$ $p \to p + \hbar k_{eff}$ avec $k_{eff}(r,z) = \partial_z \phi(r,z)$

 k_{eff} can be measured with a wave front analyzer (R, w)

Possible realization of Avogadro constant (ccsd-00084607)

$$N_{A} = \frac{M_{u}}{m_{u}} = \frac{1}{h} \frac{h}{A_{r}(X)m_{u}} A_{r}(X) M_{u} = \frac{1}{h} \frac{h}{m(X)} A_{r}(X) M_{u}$$

$$N_{A}^{(1)} = \left\{ \frac{K_{J}^{2}R_{K}g^{(w)}}{4} \right\} \left\{ \frac{h}{m(^{87}Rb)g^{(a)}} \right\} \left\{ \frac{g^{(a)}}{g^{(w)}} \right\} A_{r}(^{87}Rb)M_{u}$$
Watt balance Bloch oscillations (stationary) Relative gravimeters

$$N_{A}^{(2)} = \left\{ \frac{K_{J}^{2}R_{K}}{4} \right\} \left\{ \frac{h}{m(^{87}Rb)} \right\} A_{r}(^{87}Rb)M_{u}$$

Watt balance h/m experiments

Reduction of constant systematic shifts

Reduction of systematic shifts

-20

-30