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Mach-Zehnder atom interferometers 
operating at thermal energies                         

The mirrors and beam-splitters of the Mach-Zehnder optical
interferometers are replaced by elastic diffraction on gratings.
In the Bragg regime, diffraction of order p can be used.
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Atom interference fringes with 7Li

diffraction order p = 1
counting time = 0.1 s/point 
fringe visibility  V = 84.5 ± 1% 
mean output flux  I0 = 23700 c/s
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diffraction order p = 2
counting time = 0.1 s/point
fringe visibility  V = 54 ± 1%
mean output flux  I0 = 8150 c/s

diffraction order p = 3
counting time = 0.1 s/point
fringe visibility  V = 26 ± 1%
mean output flux  I0 = 4870 c/s



Interests of thermal atom interferometers
the two atomic beams are spatially separated:

one can apply a perturbation on one beam only
interferometric measurements of this perturbation 
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examples of such perturbations
an electric field atom electric polarizability
a low-pressure gas index of refraction for an atom wave



The de Broglie wavelength λdB = h / (m v) is very small

very sensitive measurements 

The accuracy on a phase measurement increases  

with the flux I0 and the fringe visibility V

∆Φmin ∝ 1 / √(I0 V2)



Fringe visibility as a function of the diffraction order p

our data points with our 
lithium interferometer

the data points of Siu Au Lee
with a neon interferometer
(PRL 75 p 2638 (1995))

Decrease of the fringe visibility:
- either an intensity mismatch 
- or a phase averaging effect.



-- an intensity mismatch between the interfering beams

ρ

Visibility V as a function of the 
beam intensity ratio ρ for 
two-beam interference fringes.

-- a phase averaging effect

a phase noise ∆φ with a Gaussian distribution

V = Vmax exp(- <∆φ2>/2)



Inertial sensitivity of atom interferometers
applications by S. Chu (measurement of g),  by M. Kasevich
(gradient of g and gyrometer), by G. Tino (measurement of G) .

This sensitivity is due  to a phase term dependent on the grating 
positions

φ = p kG [x1 + x3 – 2 x2]
p is the diffraction order. 
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If the gratings are moving with respect to a Galilean frame, 
xi xi(ti)

where ti is the time at which a given atom crosses grating Gi

φ = p kG [x1(t1) + x3 (t3) – 2 x2 (t2)]

phase noise ∆φp with ∆φp = p ∆φ1

V = Vmax exp(- p2 <∆φ1
2>/2)

Gaussian dependence of the visibility with the 
diffraction order p.



Fit of the data with
V = Vmax exp(- p2 <∆φ1

2>/2)

our data points
Vmax = 98 ± 1 %
<∆φ1

2> = 0.286 ± 0.008 rad2

Siu Au Lee’s data points
Vmax = 85 ± 2 %
<∆φ1

2> = 0.650 ± 0.074 rad2



Expansion of the inertial phase term 
in powers of the atom time of flight T =L/u

L intergrating distance; u atom velocity

φ = p kG [x1(t-T) + x3 (t+T) – 2 x2 (t)]
φ = φbending + φSagnac + φacceleration

T0 φbending = p kG [x1(t) + x3 (t) – 2 x2 (t)]
 Τ1 φSagnac = p kG (v3x –v1x) T 
 T2 φacceleration = p kG (a1x + a3x) T2/2 



Estimation of the phase noise from laboratory
seismic noise 
Model calculation of the rail supporting the three mirrors

rail treated as a beam of constant section with a neutral line X(z,t)

x

z

X(z,t)z=-L z=+L

elasticity theory 

ρ: density of the beam material, A: area of the beam cross-section, 
E: Young’s modulus of the material, Iy = ∫ x2 dx dy



The forces and torques at the two ends ε = ± 1 of the beam are related 
to the derivatives of X(z,t):  

We assume that Myε = 0 and that the forces are the sum of 
an elastic term and a damping term

xε(t) is the position of the support at the end ε at time t.

2 low frequency resonances (oscillation of the rail almost like a solid) 
a series of high frequency resonances (flexion of the rail)



The rail of our interferometer:

- very stiff rail with a first flexion resonance at ν =460 Hz
- simple suspension on rubber blocks with resonances in 
the 40 - 60 Hz range.



calculated phase noise spectrum |φ(ν)|2
in rad2/Hz for diffraction order p=1

low frequency 
suspension resonances

first flexion resonance

approximate spectrum of the 
seismic noise of the support
|xε(ν)|2 (in 10-10 m2/Hz)

calculated Sagnac only 
phase noise spectrum
|φSagnac(ν)|2 in rad2/Hz 

calculated phase noise <∆φ1
2> = 0.16 rad2  

(measured value from visibility data  <∆φ1
2> = 0.286 ± 0.008 rad2)



Fringe visibility in Mach-Zehnder atom interferometers 
as a function of publication date



Conclusion
• the existence of an important phase noise due to vibrations in our

atom interferometer.
• a large reduction of the fringe visibility.  
• With a very stiff rail, the dominant noise term is due to Sagnac 

effect. Need for a better rail suspension, with low resonance
frequencies.

• With a reduced phase noise, atom interference fringes with a high
visibility should be observed:

a) with higher diffraction orders p  larger separation of the atomic
beams

b) with slower atomic beams the time of flight T=L/u increases
when the velocity u decreases (Sagnac phase term ∝ T and
acceleration phase term ∝ T2). 

All my thanks!  



x

pλdB/2

φ = p kG (x1 + x3- 2x2)

Main advantage: this non dispersive phase is useful to 
observe interference fringes
Main problem: a high stability of the grating positions is 
needed  (for example: in our experiment, a 1 radians phase 
shift corresponds to a variation of x1 or  x3 of 53 nm)



Phase shift induced by the electric field

Io = 100 000 c/s  
V = 62 %
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Phase shift and visibility reduction due to the electric field
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S// = 8,00 ± 0,06

Φm/V0² = (1,3870 ± 0,0010) × 10-4 rad.V-2



Lithium electric polarizability values

164.111 ± 0.002

164.2 ± 0.1

169.946

164.2 ± 1.1

163.98 ± 3.4

Result
atomic units

Kassimi and Thakkar,  
extrapolated value from
MP2,MP3 et MP4 calculations
(1994)*

Drake et al., Hylleraas
calculation (1996) #

Kassimi and Thakkar,  Hartree-
Fock calculation (1994)*

24.33 ± 0.16Our experiment (2005)

24.3 ± 0.5B. Bederson et al. (experiment
1974)

Result
10-30 m3

Experiment or calculation

* Phys.Rev. A 50, 2948 (1994)         # Phys.Rev. A 54, 2824 (1996)


	Lithium electric polarizability values

