Phase noise due to vibrations in Mach-Zehnder atom interferometers

Université Paul Sabatier and CNRS, Toulouse

Marion JacqueyMatthias BüchnerAlain MiffreGérard TrénecJacques Vigué

Funding from ANR, MENRT, CNRS, Université P. Sabatier, IRSAMC, Région Midi-Pyrénées, BNM/LNE

Mach-Zehnder atom interferometers operating at thermal energies

The mirrors and beam-splitters of the Mach-Zehnder optical interferometers are replaced by elastic diffraction on gratings. In the Bragg regime, diffraction of order p can be used.

Atom interference fringes with ⁷Li

diffraction order p = 1counting time = 0.1 s/point fringe visibility $V = 84.5 \pm 1\%$ mean output flux $I_0 = 23700$ c/s

diffraction order p = 2counting time = 0.1 s/point fringe visibility $V = 54 \pm 1\%$ mean output flux $I_0 = 8150$ c/s diffraction order p = 3counting time = 0.1 s/point fringe visibility $V = 26 \pm 1\%$ mean output flux $I_0 = 4870$ c/s Interests of thermal atom interferometers the two atomic beams are spatially separated:

- \rightarrow one can apply a perturbation on one beam only
- \rightarrow interferometric measurements of this perturbation

examples of such perturbations

an electric field \rightarrow atom electric polarizability a low-pressure gas \rightarrow index of refraction for an atom wave The de Broglie wavelength $\lambda_{dB} = h / (m v)$ is very small

 \rightarrow very sensitive measurements

The accuracy on a phase measurement increases with the flux I_0 and the fringe visibility V

$$\Delta \Phi_{\rm min} \propto 1 / \sqrt{(I_0 V^2)}$$

Fringe visibility as a function of the diffraction order p

our data points with our lithium interferometer

5

the data points of Siu Au Lee with a neon interferometer (PRL 75 p 2638 (1995))

Decrease of the fringe visibility:

- either an intensity mismatch
- or a phase averaging effect.

-- an intensity mismatch between the interfering beams

$$V = V_{\text{max}} \exp(-\langle \Delta \phi^2 \rangle/2)$$

Inertial sensitivity of atom interferometers applications by S. Chu (measurement of g), by M. Kasevich (gradient of g and gyrometer), by G. Tino (measurement of G).

This sensitivity is due to a phase term dependent on the grating positions

$$\phi = p k_G [x_1 + x_3 - 2 x_2]$$

p is the diffraction order.

If the gratings are moving with respect to a Galilean frame, $x_i \rightarrow x_i(t_i)$ where t_i is the time at which a given atom crosses grating G_i

$$\phi = p k_G [x_1(t_1) + x_3(t_3) - 2 x_2(t_2)]$$

 \rightarrow phase noise $\Delta \phi_p$ with $\Delta \phi_p = p \Delta \phi_1$

$$V = V_{max} \exp(-p^2 < \Delta \phi_1^2 > /2)$$

→ Gaussian dependence of the visibility with the diffraction order p.

Fit of the data with $V = V_{max} \exp(-p^2 < \Delta \phi_1^2 > /2)$

Expansion of the inertial phase term in powers of the atom time of flight T = L/u

L intergrating distance; u atom velocity

 $\phi = p k_G [x_1(t-T) + x_3(t+T) - 2 x_2(t)]$ $\phi = \phi_{\text{bending}} + \phi_{\text{Sagnac}} + \phi_{\text{acceleration}}$

 $T^{0} \qquad \phi_{\text{bending}} = p \ k_{G} \left[x_{1}(t) + x_{3}(t) - 2 \ x_{2}(t) \right]$ $T^{1} \qquad \phi_{\text{Sagnac}} = p \ k_{G} \left(v_{3x} - v_{1x} \right) T$ $T^{2} \qquad \phi_{\text{acceleration}} = p \ k_{G} \left(a_{1x} + a_{3x} \right) T^{2}/2$

Estimation of the phase noise from laboratory seismic noise

Model calculation of the rail supporting the three mirrors

 \rightarrow rail treated as a beam of constant section with a neutral line X(z,t)

ρ: density of the beam material, A: area of the beam cross-section, E: Young's modulus of the material, $I_v = \int x^2 dx dy$ The forces and torques at the two ends $\varepsilon = \pm 1$ of the beam are related to the derivatives of X(z, $\gamma = 23 V$

$$F_{x\epsilon} = -\epsilon E I_y \frac{\partial^3 X}{\partial z^3} (z = \epsilon L)$$

$$M_{y\epsilon} = \epsilon E I_y \frac{\partial^2 X}{\partial z^2} (z = \epsilon L)$$

We assume that $M_{y\epsilon} = 0$ and that the forces are the sum of an elastic term and a damping term

$$F_{x\epsilon} = -K_{\epsilon} \left[X(\epsilon L, t) - x_{\epsilon}(t) \right] - \mu_{\epsilon} \frac{\partial \left[X(\epsilon L, t) - x_{\epsilon}(t) \right]}{\partial t}$$

 $x_{\varepsilon}(t)$ is the position of the support at the end ε at time t.

2 low frequency resonances (oscillation of the rail almost like a solid) a series of high frequency resonances (flexion of the rail)

The rail of our interferometer:

- very stiff rail with a first flexion resonance at v = 460 Hz - simple suspension on rubber blocks with resonances in the 40 - 60 Hz range. calculated phase noise spectrum $|\phi(v)|^2$ in rad²/Hz for diffraction order p=1

low frequency suspension resonances

first flexion resonance

calculated Sagnac only phase noise spectrum $|\phi_{Sagnac}(v)|^2$ in rad²/Hz

approximate spectrum of the seismic noise of the support $|\mathbf{x}_{\varepsilon}(\mathbf{v})|^2$ (in 10⁻¹⁰ m²/Hz)

calculated phase noise $\langle \Delta \phi_1^2 \rangle = 0.16 \text{ rad}^2$ (measured value from visibility data $\langle \Delta \phi_1^2 \rangle = 0.286 \pm 0.008 \text{ rad}^2$)

Fringe visibility in Mach-Zehnder atom interferometers as a function of publication date

Conclusion

- the existence of an important phase noise due to vibrations in our atom interferometer.
- a large reduction of the fringe visibility.
- With a very stiff rail, the dominant noise term is due to Sagnac effect. Need for a better rail suspension, with low resonance frequencies.
- With a reduced phase noise, atom interference fringes with a high visibility should be observed:
- a) with higher diffraction orders p → larger separation of the atomic beams
- b) with slower atomic beams \rightarrow the time of flight T=L/u increases when the velocity u decreases (Sagnac phase term \propto T and acceleration phase term \propto T²).

All my thanks!

$\phi = p k_G (x_1 + x_3 - 2x_2)$

Main advantage: this non dispersive phase is useful to observe interference fringes

Main problem: a high stability of the grating positions is needed (for example: in our experiment, a 1 radians phase shift corresponds to a variation of x_1 or x_3 of 53 nm)

Phase shift induced by the electric field

Phase shift and visibility reduction due to the electric field

$$\begin{cases} \Phi_{\rm m}/V_0^2 = (1,3870 \pm 0,0010) \times 10^{-4} \text{ rad.} V^{-2} \\ S_{//} = 8,00 \pm 0,06 \end{cases}$$

Lithium electric polarizability values

Experiment or calculation	Result 10⁻³⁰ m³	Result atomic units
B. Bederson et al. (experiment 1974)	24.3 ± 0.5	163.98 ± 3.4
Our experiment (2005)	24.33 ± 0.16	164.2 ± 1.1
Kassimi and Thakkar, Hartree- Fock calculation (1994)*		169.946
Kassimi and Thakkar, extrapolated value from MP2,MP3 et MP4 calculations (1994)*		164.2 ± 0.1
Drake et al., Hylleraas calculation (1996) #		164.111 ± 0.002

* Phys.Rev. A **50**, 2948 (1994)

[#]Phys.Rev. A 54, 2824 (1996)