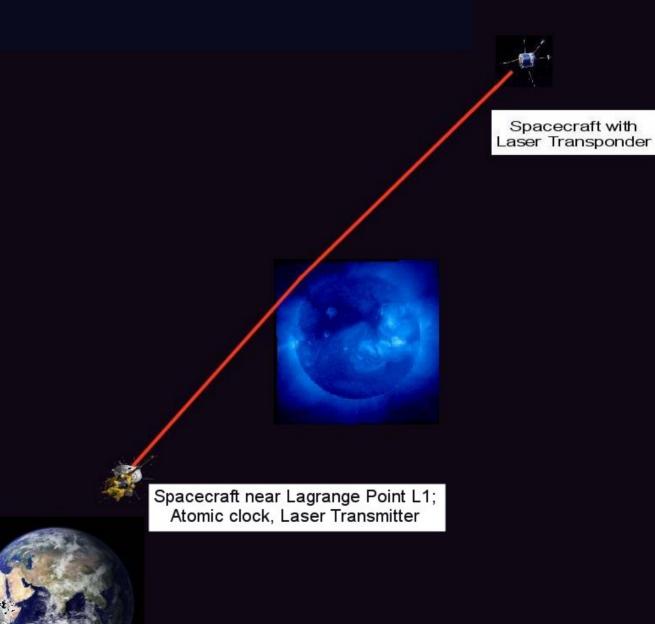
Workshop on Advances in Precision Tests and Experimental Gravitation in Space: Firenze, Italy, September 28-30, 2006

REQUIREMENTS FOR MEASURING THE GRAVITATIONAL TIME DELAY BETWEEN DRAG-FREE SPACECRAFT

P.L. Bender,¹ N. Ashby,² J.W. Armstrong,³ B. Bertotti,⁴ J.E. Faller,¹ J.H. Gundlach,⁵ L.W. Hollberg,² L. Iess,⁶ S.R. Jefferts,² W.M. Klipstein,³ R.D. Reasenberg,⁷ S. Vitale,⁸ W.J. Weber⁸

¹JILA, University of Colorado and NIST, Boulder, CO USA
 ²Time and Frequency Division, NIST, Boulder, CO, USA
 ³Jet Propulsion Laboratory, Pasadena, CA, USA
 ⁴Università di Pavia, Italy
 ⁵University of Washington, Seattle, WA, USA
 ⁶Università di Roma "La Sapienza," Italy
 ⁷Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
 ⁸Università di Trento/INFN Trento, Italy



Shapiro Gravitational Time Delay

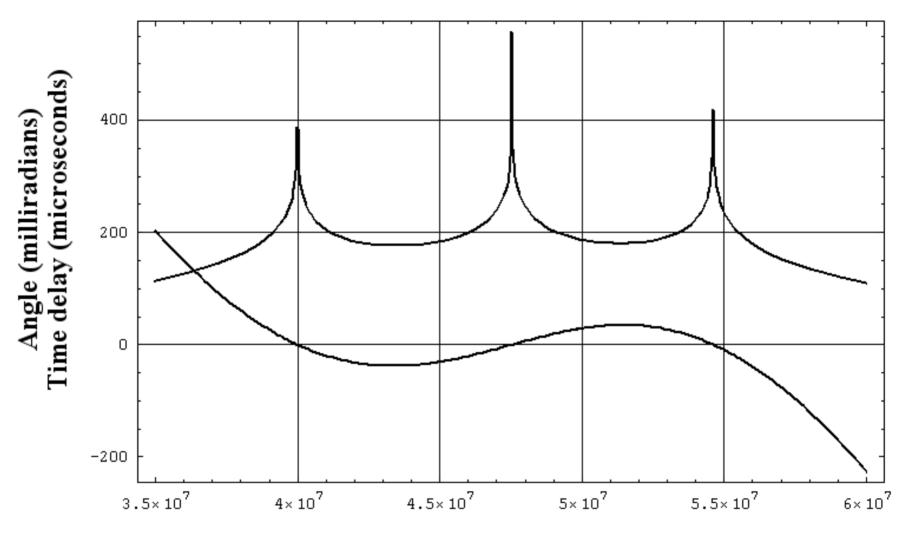
1. The one-way extra time delay from a spacecraft to the point P nearest to the Sun along the line of sight, to first order, is:

$$\Delta \tau = \frac{GM}{C^3} \left\{ (1+\gamma) \ln \left[\frac{r+\sqrt{r^2-b^2}}{b} \right] + \frac{\sqrt{r-b}}{\sqrt{r+b}} \right\}$$

- 2. Here: r = distance from spacecraft to P b = distance from P to the center of the Sun $\gamma = PPN$ "space curvature" parameter M = mass of the Sun
- 3. For $r_1 = 1$ AU, $r_2 = 1.2$ AU, b = 1.4 solar radii, the total round-trip travel time is about 2200 s and the extra gravitational time delay is about 250 microseconds.
- 4. The present accuracy for γ is 2.3 × 10⁻⁵, from the Cassini Mission measurement:
 B. Bertotti, L. Iess and P. Tortora, Nature 425, 374-376 (2003).

Proposed Mission Design

- 1. Measurements from "near" spacecraft orbiting the L-1 point, 1.5×10^6 km from Earth.
- 2. Two-way measurements to "far" spacecraft on same orbit as proposed for the LATOR mission: 1.5 year period.
- 3. Three conjunctions with the Sun: about 15, 18, and 21 months after launch.
- 4. Rate of change of b is 0.7 solar radii/day for 1st and 3rd conjunction and 0.2 solar radii/day for the 2nd conjunction.
- 5. Most accurate time delay measurements are over 20 day periods around 1st and 3rd conjunction.
- 6. Nearly continuous measurements for at least 40 days are required for accurate orbit determination.



Time after launch (seconds)

Required Technology Improvement

- 1. Spaceborne clock with $1 \times 10^{-13}/\sqrt{\text{Hz}}$ frequency stability down to 0.4 microhertz.
- 2. Drag-free spacecraft with less than $1.3 \times 10^{-13} \text{ m/s}^2/\sqrt{\text{Hz}}$ spurious acceleration near 0.4 microhertz.
- 3. Round-trip transfer of timing information between distant spacecraft with 0.5 picosecond accuracy.
- 4. Accurate time delay measurements for lines of sight down to 0.1 degree from the limb of the Sun.
- 5. High accuracy orbit determination from spacecraft to spacecraft distance measurements plus ground tracking.

Spacecraft Clock Noise

- 1. 1×10^{-13} / $\sqrt{\text{Hz}}$ fractional frequency stability down to 0.4 microhertz is assumed.
- 2. For a single time delay measurement over about 2200 seconds, the clock jitter will limit the accuracy to about 3 ps. However, averaging over six hours will strongly reduce this timing error.
- 3. The main limitation is the variations in the clock frequency over the whole measurement time.
- 4. Little of the uncertainty in γ comes from clock noise at frequencies above 3 microhertz.
- 5. If accurate time transfer from the ground to the L-1 spacecraft can be added, it may be possible to reduce the error due to the L-1 clock.

Idealized Gravitational Time Delay Mission

- 1. Only white frequency noise in the L-1 clock is assumed.
- 2. The time delay is approximated by $g(t) = -B[\ln|Rt|-M], t_1 < t < t_2.$

3.
$$B = 3.8 \times 10^{-5} \text{ s}$$

 $R = 0.7 \text{ solar radii/day}$
 $M = <\ln|Rt|>$
 $t_1 = 2 \text{ days}, t_2 = 10 \text{ days}$

4.
$$(S/N)^2 = \frac{2}{n^2(f)} \int_0^\infty [g(f)]^2 df$$

- 5. Only about 5% of the integral of $[g(f)]^2$ comes from frequencies below 0.4 microhertz.
- 6. The uncertainty in γ from the assumed clock noise is 0.7×10^{-8} .

Drag-Free Spacecraft

- 1. The required performance builds on that planned for the LISA gravitational wave mission: $\sqrt{S_a} < a_{LISA}$ from 0.1 mHz to 1 Hz, with $a_{LISA} = 3 \times 10^{-15}$ m/s²/ \sqrt{Hz} . S_a is the power spectral density of the acceleration noise.
- 2. Requirements for extension from 0.1 to 0.01 mHz with $\sqrt{S_a} < a_{LISA} \times [0.1 \text{ mHz/f}]^{0.5}$ have been discussed: P. L. Bender, Proc. 6th Int. LISA Symp., June 2006, submitted.
- 3. Further extension to 4×10^{-7} Hz with $\sqrt{S_a} < a_{LISA} \times \sqrt{10} \times [0.01 \text{ mHz/f}]$ appears to be feasible.
- 4. The main challenge is the rapidly changing spacecraft temperature during the 20 day main observing period for the 1st and 3rd conjunction.
- 5. Without active temperature control, the temperature inside the far spacecraft would change by about 8 K during the 20 day period.

Round-Trip Transfer of Timing Information

- 1. The required accuracy is sub-picosecond, so timing of short laser pulses would be difficult.
- 2. An alternate approach is to use a cw laser, put 30 to 60 GHz sidetones on it, and use the phase of the beat frequency between the sidetones for the timing information.
- 3. For a 60 GHz beat frequency, with 16.7 ps period, a 5 deg phase error for a one-way measurement corresponds to a 0.23 ps timing error.
- 4. The main challenge is systematic measurement errors that drift with time. For the 1st and 3rd conjunction, the gravitational time delay increases by 6.4 $\times 10^{-5}$ s from 10 to 2 days before conjunction, and then decreases by the same amount afterwards.
- 5. A worst case drift of 0.23 ps in the round-trip timing error before conjunction and an opposite drift afterwards would give an error contribution of 0.7×10^{-8} for γ .

Signal Acquisition and Measurement Near the Sun

- 1. Two days from conjunction, the line of sight is 0.1 deg from the solar limb. Acquiring the signal at this time requires good knowledge of the spacecraft attitude.
- 2. Separate transmit and receive telescopes are planned, in order to reduce problems with scattered light from the transmitted beam.
- 3. Telescope diameters of 100 to 200 nm appear to be adequate with 0.5 W of laser power.
- 4. Doppler shifts of about 5 GHz for the carrier have to be allowed for by offsetting the local oscillator carrier by about this amount.
- 5. The Doppler shifts for the two sidebands will be the same to within about 2 MHz. Thus the beat of each received sideband with respect to its local oscillator sideband can be observed with the same photo-detector.

High-Accuracy Orbit Determination

- 1. The problem of determining the orbits for both spacecraft with sufficient accuracy has not yet been investigated.
- 2. Good performance of the drag-free system is required even down to 2×10^{-7} Hz.
- 3. Measurements of changes in the spacecraft-spacecraft distance will be supplemented by microwave tracking from Earth.
- 4. The main issue is errors that drift in one direction before conjunction and then in the opposite direction afterward.
- 5. The sensitivity to out-of-place errors in the orbits is a possible concern.

Conclusions

- 1. A mission to determine the gravitational time delay between dragfree spacecraft appears to be feasible.
- 2. However, the orbit determination part of the problem has not yet been investigated.
- 3. An error budget for determining γ might have equal entries of 1×10^{-8} each for the clock noise, the drag-free systems performance, the timing transfer process, and orbit determination.
- 4. Thus an accuracy of 2×10^{-8} for γ appears to be a reasonable goal for this kind of mission.