

MICROSCOPE status, mission definition and recent instrument development

P. Touboul

pierre.touboul@onera.fr

"The ratio of the masses of two bodies is defined in two ways which differ from each other fundamentally,..., as the reciprocal ratio of the accelerations which the same motive force imparts to them (inert mass),..., as the ratio of the forces which act upon them in the same gravitational field (gravitational mass). The equality of these two masses, so differently defined, is a fact which is confirmed by experiments...

The possibility of explaining the numerical equality of inertia and gravitation by the unity of their nature, gives to the general theory of relativity, according to my conviction, such a superiority over the conception of classical mechanics..."

A. EINSTEIN The Meaning of Relativity, Princeton,

THE MICROSCOPE MISSION

SELECTED IN CNES NATIONAL SCIENTIFIC PROGRAM with ESA COOPERATION

CNES SMALL SATELLITE MISSION

ESA THRUSTERS

MISSION PROPOSED BY ONERA (Pi) & OCA (Co-Pi) with ZARM (Co-I)

Jan – April 2006 : Preliminary Design Review of the Instrument, the Satellite, the Mission (End of Phase B)

Launch expected in 09-10 depending on Feeps.

Thanks

to Gilles Métris and his team (OCA), to Hans Dittus and his team (ZARM), to Jean Bernard Dubois and his team (CNES), to Davide Nicolini and his team (ESA) to GREX for scientific supports, exchanges and emulations

Activities supports and Funding from CNES and Institutes

"The ratio of the masses of two bodies is defined in two ways which differ from each other fundamentally,..., as the reciprocal ratio of the accelerations which the same motive force imparts to them (inert mass),..., as the ratio of the forces which act upon them in the same gravitational field (gravitational mass). The equality of these two masses, so differently defined, is a fact which is confirmed by experiments...

Courtesy CNES

Equivalence Principle

- Quantum Theory, Standard Model Electromagnetism, Strong & Weak Nuclear Force
- Geometric Theory of Gravitation, GR
- → Super Symmetry requires new particles...
- → Super String Theory, Branes... requires new field...
- \Rightarrow Galaxy rotation \rightarrow Dark matter ? 25%
- \Rightarrow Universe Expansion acceleration \rightarrow Dark Energy ? 70%

Domain of validity for current theories to be always confirmed more accurately

Many proposed space experiments:

- Lorentz Invariance test :PHARAO, LATOR,...
- Post-Newtonian Parameters accurate determination : GPB, PHARAO,...
- Determination and observation of relativistic effects : GPB, LISA, ASTROD, ...
- Stability of 'Constants'

PIERRE TOUBOUL - GRE)

$$\delta = \frac{m_{g2}}{m_{I2}} - \frac{m_{g1}}{m_{I1}}$$

Equivalence Principle Tests (by UFF test) directly verify a fundamental basis of our present Gravity knowledge & may confirm dilaton existence

The possibility of explaining the numerical equality of inertia and gravitation by the unity of their nature, gives to the general theory of relativity, according to my conviction, such a superiority over the conception of classical mechanics..."

A. EINSTEIN The Meaning of Relativity, Princeton,

A Mission concept relying on best current technologies and models

MICROSCOPE

GOCE FM tests in lab. (Jul 06)

Noise FM03 Axis Z

GOCE ESA mission :

• 6 Electrostatic accelerometers for the full tensor gravity gradiometer Tests on horizontally controlled table

A Mission concept relying on best current technologies and models

MICROSCOPE

ø

A family of space accelerometers

PIERRE TOUBOUL - GREX , Florence - sept 06 - 8

A Mission concept relying on best current technologies and models

CNES micro satellite

ONERA Accelerometer ZARM drop tower

NICROSCOPE

MICROSCOP

OCA Space Geodesy & Astrometry

A Mission concept relying on best current technologies and models

CNES micro satellite

OPE

ESA FEEP

ONERA Accelerometer ZARM drop tower

CROSCOPE

March

April

SCOPE

February

MICROSCOPE Test Principle

- Earth : Gravity Source
- Two pairs of masses

made of different composition in free fall

- Test: Pt/Ti
- Reference : Pt/Pt
- Maintained on the same orbit (<10⁻¹¹m) by electrostatic forces
 - → Test measurement
- •Low noise:

PIERRE TOUBOU

- Long duration integration (>20 orbits)
 & numerous measures
- Drag compensated satellite
- Very clean thermal environment
- •EP violation signal well defined
 - •Phase: attitude wrt position in orbit
 - •Frequency: $f_{orb} + f_{spin}$

The Orbit

Pointing

•Inertial or rotating satellite : 2 spin freq. : $(\pi + 1/2) f_{orb} \& (\pi + 3/2) f_{orb}$ •Finely controlled requiring Attitude Estimator from SST & Instrument data, up to a few 0.1 µrad : sensitive to S/C thermal behavior

HELIOSYNCHRONOUS

- Thermal stability
- Maxi power with less solar panels (stiff S/C : high frequency modes)
- No eclipse during measurement phase

QUASI-CIRCULAR & POLAR

• Eccentricity < 5.10⁻³

To limit Earth gravity gradient (Egg) @ f_{EP}

• Known better than 5. 10⁻⁵

To correct measurements from Egg effects

Satellite altitude

• 730 or 790 km : Larger signal Less radiation (electronics) Higher f_{orb} (to 1400 km : No eclipse, Less thermal disturbance)

•Position to be known from 7 m, 14 m to 100m (for Earth gravity gradient corrections)

Electric Propulsion System : Baseline Configuration for the drag-free control

4 Electric Propulsion Subsystem Assembly, Cluster of 3 FEEP thrusters Cesium FEEP

=> Specific constraints & Electrostatic Discharge risk

- EPS total mass = 41 kg
- Average power ~100 W (@ 30 μN)
- *Maximum power* = 4 x 53 *W* = 212 *W*

EPS:	ESA
EPSA: PPCU: NA: PMD: LOM:	ALTA (prime) Galileo Avionica AAS Proel Astrium SAS Contraves Space

Drag free system specs : 3.10^{-10} ms⁻²Hz^{-1/2} along 3 axes 10^{-12} ms⁻² @ f_{FP}

Alternate Solutions

Indium FEEP :

Interest:

- low interaction with water vapor
- tested

Drawbacks:

limited thrust (50 μ N) \Rightarrow clusters

⇒ weight and power very high for microsatellite

back-up with double solar panels

Proportional cold gas thruster :

Interest :

• relatively simple \Rightarrow reliability

 reduced power consumption 50 W (reduced solar panel area : x 0.6)
 <u>Drawbacks:</u> small lsp ⇒ mass increase : + 20kg

Instrument Description

 2 identical instruments cores, Sensor Units (SU) =
 2 Electrostatic Differential Accelerometers Each = 2 Inertial sensors with two concentric masses

2 identical Front End Electronics Units (FEEU)

- Low noise/ High stability Analog Electronics
- 2 X 6 electrostatic channels + measurements

2 Interface Control Unit (ICU) stacked

- Digital Logics and Electronics 1 DSP + 2 FPGA
- Power Control Unit with very stable secondary voltages (+/-45V, +/-15V,+5V, + 3.3V)

ONERA

Control laws, S/C data bus interfaces

360 x 348 x 180 mm³ x 20kg

274×171×90 mm³ x 3.5kg x 2

255 x 200 x 110 mm³ x 7kg

Sensor Head Technology

SIO₂ material
Optical grinding
Ultrasonic machining
Gold coating by RF diode sputtering
Clean room integration
High vacuum housing and magnetic shielding
micrometer, arc second accuracies

MICROSCO

Sensor Unit

Challenging new technology :

- Cylindrical Shapes (mass, electrodes)
- Accuracy of mass and electrode cylinder geometries
- -2 concentric sensors & Relative positioning and centering
- -Ultra-vacuum technology for connectors and gaskets
- Blocking mechanism
- -Integration procedures

Instrument Development

Vibration tests for design assessment Integration process development

Lab model : Electronics

- Analog sensing and control
- 300 V to 800 V for 1g levitation

Lab model : Sensor core

• 1 test-mass in silica (15g)

Electrostatic control loop for coupling and stiffness assessment

2006

SU Prototype, production

Integration procedures

- > 5µm diameter gold wires, implementation.
- Silica parts, positioning and alignment.
- Blocking forces, adequate.

Vibrations

- > Resonances identified at specific vibration frequencies (\approx 700 Hz)
- Blocking mechanism compatible with the up- dated vibration levels

MICROSCO

Blocking mechanism tank successfully tested with over- pressure of 100bars

Front End Electronics Unit

FEEU: accurate analog electronics functions

- test mass position sensing
- actuations
- reference voltages generation
- HK data measurement

Budget :

- Volume : 274×171×89.50 mm³
- Mass (EM) : 3.045 kg
- Power : 6.4 W

6 capacitive position sensors 5×10⁻¹⁹ F/Hz^{1/2}

6 pairs of Drive Voltage Amplifiers 2×10⁻⁷ V/Hz^{1/2}

-Re solution - H dat -Di wit drift

-Reference voltage sources (Vp, Vd) - Housekeeping data

-Digital interface with ICU (FPGA, drivers)_R A

Performance drivers (1/3)

$$\vec{\Gamma}_{app,k} \approx \frac{\vec{F}_{ng}}{M_{l}} + \frac{M_{g}}{M_{l}} \cdot \vec{g}(O_{sat}) - \frac{m_{gk}}{m_{k}} \cdot \vec{g}(O_{sat}) + ([T] - [In]) \cdot \overrightarrow{O_{k}O_{sat}} \qquad \text{sensor}$$

$$\vec{\Gamma}_{app,d} = 1/2 \cdot (\vec{\Gamma}_{app,1} - \vec{\Gamma}_{app,2}) \qquad \text{Differential sensor}$$

$$\text{Gravity gradient} \qquad \vec{\Gamma}_{app,d} \approx 1/2 \cdot (\delta \cdot \vec{g}(O_{sat}) + ([T] - [In]) \cdot \vec{\Delta})$$

$$\text{Instrument model} \qquad \vec{\Gamma}_{meask} \approx \vec{K}_{0,k} + M_{k} \cdot \vec{\Gamma}_{app,k} + \sum_{l=x,y,z} (u_{l} \cdot (K_{2} \cdot \vec{\Gamma}_{app,k}) \cdot u_{l}) \cdot u_{l} + \vec{\Gamma}_{n,k}$$

- S/C position tracking (Doppler) : < 23m, < 23m, 100m accuracy @ fep
- Attitude Control :
 - •Pointing : 10⁻³ rad with variations
 - •Angular velocity variations
 - •Angular accelerations variations

< 24 µrad (inertiel) & 0.4 µrad (spin) @ fep

MICROSCO

- < 2.5 10⁻⁹ rad/s (spin) @ fep
- < 2.3 10⁻¹¹ rad/s² (inertial)
- &1.5 10⁻¹¹ rad/s² (spin) @ fep

• Drag-Free Control : < 3.10^{-10} ms⁻²Hz^{-1/2} noise and < 10^{-12} ms⁻² variations @ fep

Results from definitions and simulations presented at Cnes satellite PDR

Instrument characteristics and in-orbit calibration :

- Resolution : < 10⁻¹²ms⁻²Hz^{-1/2} and 10⁻⁹rads⁻²Hz^{-1/2}
- Stability of sensitivity : < 6.8 10⁻⁸ sine (FEEU thermal effect) and 1.2 10⁻⁵ Hz^{-1/2} @ fep
- SF matching : < 1.5 10^{-4} with stability : < 0.3 10^{-8} sine (SU thermal effect) and 3.10⁻⁶ Hz^{-1/2} @ fep
- Alignment matching : < 5.10⁻⁵ rad
 - with stability : <1.5 10⁻⁹ rad sine (SU thermal effect) and 3.10⁻⁷ rad Hz^{-1/2} @ fep

Results from instrument & satellite definitions and simulations presented during instrument & mission PDR

Performance drivers (3/3)

Experiment Environment

Magnetic :

- •< 10⁻⁴Am² variations @ fep to 0.3 m
- •Test-mass magnetic susceptibility :

 $X_{P \ t \ alloy} = 2.8 \ 10^{-4}$; $X_{Ti \ alloy} = 7.1 \ 10^{-5}$

•Shield from magnetic field and gradients, Obtained through Supranister case & INVAR SU tight housing (Tests realized in CNES and in ONERA lab.)

Self-gravity :

- •Variations of the self-gravity gradient specified < 10⁻¹¹s⁻²
- •Thermo-mechanics Finite Element Models
- + Temperature fluctuations → 10 less gradients on the masses

Thermal accommodation :

- •1mK @ fep on SU at the unit interface
- •10mK/m @ fep on SU at the unit interface
- •10 mK @ fep on FEEU at the unit interface
- •1 K @ fep on ICU at the unit interface

Magnetic property characterized in Cnes lab

Specific double insulation Payload Case for integration in the satellite

Thermal stability of SU & FEEU with passive insulation and anti-Sun radiator

CNES Thermal model being integrated before tests

Instrument Thermal Model

From interface Temperature to relevant Temperature : Photons/Molecules therrmalized on gold coated silica surrounding masses Temperature filtered out @ f_{EP} by a factor 5

Temperature fluctuation Impact (SU)

Radiation pressure : < 3.2 10⁻¹⁶ ms⁻² (worst case^{*} @ fep)

Difference of forces exerted on each test-mass by photons pressure when temperature difference varies on each side in regards to mass (ΔT_{si})

Radiometer effect : < 2.2 10⁻¹⁶ ms⁻² (worst case^{*} @ fep)

Difference of forces exerted on each test-mass by residual gas pressure Pg when temperature difference varies on each side in regards to mass (ΔT_{si})

Outgassing : < 2.5 10⁻¹⁷ ms⁻² (worst case^{*} @ fep)

Difference of forces exerted on each test-mass by variation of gaz pressure ΔPg induced by the outgassing of the gold coated silica parts

 $\Delta P_g \propto \frac{\Delta \text{grad} T_{\text{Si}}}{T^2} \qquad \left| \Gamma_n = \frac{1}{m} \Delta P_g S \right|$

Gold Wire stiffness : thermal stability < 1.7 10⁻¹⁵ms⁻² (worst case @ fep)

Electrical link between mass and Voltage Reference : $5\mu m \phi$ wire when temperature varies, Young Modulus varies

*Worst case *: lower density mass & inertial pointing (lower f_{EP}, thus less thermal filtering)*

ep) sidual aas pressure Pa w

$$\Gamma_{n} = \frac{1}{m} \left(P_{g} \frac{\Delta T_{Si}}{T} \right) S$$

$$\Gamma_{n} = \frac{1}{m} k_{\text{wire}} x_{0} \left(\frac{1}{E} \frac{\partial E}{\partial T} \right) \Delta T_{\text{Si}}$$

$$O \text{ N E R A}$$

FEEU THERMAL VACUUM TESTS

factor 2 expected

MICROSCOP

Temperature Fluctuation Impact :major effects

MICROSCOPE

Electrostatic stiffness & bias force :

Thermal stability < 1.8 10^{-15} + 1.10⁻¹⁵ ms⁻² (worst case @ fep)

 Bias due to geometrical dissymetry (Cylindricity, electrode geometry,...) or to electrical dissymmetry (capacitive sensor position offset A_{CSoffset}, ...)

$$\Delta Bias \approx A_{geometry} \left[\frac{\Delta_{cylind}}{gap} \right] \frac{\partial \left(V_p^2 + V_d^2 \right)}{\partial T} \Delta T_{FEEU}$$

$$\Delta Bias \approx \left(\frac{\partial \omega_{elec}^2}{\partial T}\right) \Delta T_{FEEU} \Delta_{CSoffset}$$
Electrosta tic
stiffness variation s

Scale factor stability :

 $< 6.5 \ 10^{-6} \ {\rm K}^{-1}$, effect depending on S/C drag compensation system performance

- Due to Vp stability (40 μ V/K) and to ADC reference source stability (30 μ V/K)
- Interest of thermal insulation of these circuits wrt unit interface
- Interest of regulated power line and steady power consumption

Thermal variations mainly due to Reference Voltage source : being improved by an expected factor 4 with up-dated components

$$\left(\frac{\partial V_p}{\partial T}\right) = 40\,\mu\,V\,/\,K$$

ONERA

Mission Performances :

Rotating satellite session : $f_{EP} = (\Pi + 3/2) f_{orb} \sim 8 \cdot 10^4 Hz$

|--|

- •Bias : 18, noise : 17, sf : 1
- Temperature sensitivity : 30 + 3 ; thermal gradient sensitivity : 3
- •Magnetism : 2

Major terms

Random	ms ⁻² /Hz ^{1/2}	
Coriolis (differential mode)	5.12 E-13	Invar thermal fluctuations
PM Motion (differential mode)	3.11 E-13	Positioning Instabilities
Accelerometer measurement noise	1.34 E-12	Mass Damping
Bias sensitivity to thermal gradient variation	3.75 E-13	Radiation & Radiometer

Tone @ fep	ms ⁻²	
Coriolis (differential mode)	1.71 E-15	Invar thermal fluctuations
PM motion (differential mode)	1.04 E-15	Positioning Instabilities
PM position (differential mode)	8.68 E-16	[T–Ω ²]
Bias sensitivity to thermal gradient variation	1.25 E-15	Radiation & Radiometer

Budget

Total random errors : $B = 1.6 \ 10^{-12} \ ms^{-2}/Hz^{-1/2}$ integration duration : $T_i = 20$ orbits @ h = 730 km4 major tone errors : $D = 4.9 \ 10^{-15} \ ms^{-2}$ $(D = 2.5 \ 10^{-15} \ ms^{-2} \ with quad. sum)$

$$\eta = \frac{\sqrt{D^2 + \frac{B^2}{T_i}}}{g(H)} = 0.9 \times 10^{-15}$$

Value compatible with the specification : 1×10^{-15} per session At least 50 sessions during the 1 year mission ONERA

Conclusion

Payload & Satellite definition achieved PDRs conclude with no mission stopping items

but 6-12 months needed more to assess FEEP or other solution, Instrument :

SU definition can be still optimized :

for resistance to vibration : according to selected launcher requirements for thermal stability : SU Temp. gradient can be improved & ref. voltage source can be more thermally insulated

Error analysis to be completed with experimental results and correlation analysis

End 2006 : Payload key point before QM production

2007 : QM production & tests 2008 : FM production & tests 2009 : FM qualification & delivery

End 2006 : Mission Performance key point Mid 07 : Propulsion System Review 2007, 2009 : satellite development

Launch date : 2009-2010 depending on Propulsion System delivery

PIERRE TOUBOUL - GREX ,Florence - sept 06 - 32

