Gravity Probe B – Testing General Relativity with Orbiting Gyroscopes

Int'l Workshop on *Precision Tests and Experimental Gravitation in Space* Galileo Galilei Institute, Firenze, Italy; Sep 28-23, 2006

> William Bencze, GP-B Program Manager for the GP-B Team

-B T008:

Outline

- Gravity Probe B
 - Description of the experimental concept
 - Difficult requirements and key enabling technologies.
 - Status of post-flight data analysis
- STEP Mission Update

GP-B T0083

Testing GR with Orbiting Gyroscopes

"If, at first, the idea is not absurd, then there is no hope for it."

- Albert Einstein

Leonard Schiff's relativistic precessions:

$$\boldsymbol{\Omega} = \frac{3GM}{2c^2R^3} (\boldsymbol{R} \times \boldsymbol{v}) + \frac{GI}{c^2R^3} \left[\frac{3\boldsymbol{R}}{R^2} (\boldsymbol{\omega} \cdot \boldsymbol{R}) - \boldsymbol{\omega} \right]$$

Geodetic, Ω_G

Frame Dragging, Ω_{FD}

Spin axis orientation: $\frac{ds}{dt} = \mathbf{\Omega} \times \mathbf{s}^{T}$

How Big is a 0.1 Milli-Arc-Second?

0.1 marc-sec

GP-B T0083

B T008

Einstein's 2 1/2 Tests

Perihelion Precession of Mercury

• GR resolved 43 arc-sec/century discrepancy.

Deflection of light by the sun

- GR correctly predicted 1919 eclipse data.
- 1.75 arc-sec deflection: Present limit 10-3

Gravitational Redshift: Equivalence Principle

- Einstein's "half test' Equivalence principle only
- 1960 Pound-Rebka experiment (ground clocks)
- 1976 Vessot-Levine GP-A (orbiting clocks): 2 × 10-4

Tests of General Relativity to date rely on astronomical measurements, not a laboratory experiment under scientist's control.

Operation in 1g environment degrades mechanical gyro performance Laser gyroscopes and other technologies fidelity too low for GP-B

GP-B T0083

P-B T0083

The "simplest experiment"

"No mission could be simpler than Gravity Probe B. It's just a star, a telescope, and a spinning sphere."

- William Fairbank, GP-B PI (ca. 1964)

1. "Spinning Sphere" Perfect Gyros

- Perfect mass balance
- Roundest spheres
- Gentle gyroscope suspension
- Gyroscope centering control
- Precise initial gyro orientation
- Cross axis force control
- Spin down torques (gas drag)
- Rotor electrical charge
- Orientation readout: low noise SQUIDS
- Magnetic Shielding
- Cryogenics, superfluid He dewar

Drift < 0.1 marc-sec/yr

< 20 nm mass unbalance < 20 nm p-v 200 mV ~ 1 nm < 10 arc-sec ~ 10^{-12} g cross-axis "drag free" < 10^{-9} Pa < 15 mV ~ 200 marc-sec/ \sqrt{Hz} 240 dB shielding 2500 liter @ 1.8K

B T008:

The "simplest experiment" 2

2. Telescope – Accurate pointing

- Precision vehicle pointing
- Low measurement noise
- Mechanically "rock solid"
- Precise orbit

< 0.1 marc-sec/yr

~5 marc-sec ~ 34 marc-sec/√Hz Cryogenic quartz fabrication Orbit trim with GPS monitoring

3. Guide Star – Inertial Reference

- Optically "bright"
- Maximize frame dragging effects
- Precise proper motion measurement
- Near extra-galactic radio source

< 0.1 marc-sec/yr

6 magnitude Near equator VLBI – good radio source Quasar – distant inertial frame

A "simple" experiment ... Indeed!

The Overall Space Vehicle

- Redundant spacecraft processors, transponders.
- ★ 16 Helium gas thrusters, 0-10 mN ea, for fine 6 DOF control.
- ★ Roll star sensors for fine pointing.
- ★ Magnetometers for coarse attitude determination.
- ★ Tertiary sun sensors for very coarse attitude determination.
- Magnetic torque rods for coarse orientation control.
- ★ Mass trim to tune moments of inertia.
- ★ Dual transponders for TDRSS and ground station communications.
- Stanford-modified GPS receiver for precise orbit information.
- ★ 70 A-Hr batteries, solar arrays operating perfectly.

GP-B Launch - 20 April 2004

The Science Gyroscopes

Gyroscope rotor and housing halves

- Material: Fused quartz, homogeneous to a few parts in 10⁷
- \star Overcoated with niobium.
- ★ Diameter: 38 mm.
- ★ Electrostatically suspended.
- Spherical to 10 nm minimizes suspension torques.
- Mass unbalance: 10 nm minimizes forcing torques.
- ★ All four units operational on orbit.

Demonstrated performance:

- Spin speed: 60 80 Hz.
- 20,000 year spin-down time.

P-B T0083

"Perfect" Mass Balance Needed!

External forces acting through center of force, different than CM

Drag-free eliminates mass-unbalance torque and key to understanding of other support torques **Mass Balance Requirements:**

On Earth (f = 1 g) $\frac{\delta r}{r} < 5.8 \times 10^{-18}$ (ridiculous -10^{-4} of a proton!) Standard satellite $(f \sim 10^{-8} \text{ g})$ $\frac{\delta r}{r} < 5.8 \times 10^{-10}$ (unlikely - 0.1 of H atom diameter)GP-B drag-free ($f \sim 10^{-12}$ g $\frac{\delta r}{r} < 5.8 \times 10^{-6}$ cross- track average) (straightforward – 100 nm) $\frac{\delta r}{r} < 3 \times 10^{-7}$ **Demonstrated GP-B rotor:** Requirement $\Omega < \Omega_0$ ~ 0.1 marc-s/yr (1.54 x 10⁻¹⁷ rad/s) $\Omega = \tau / I \omega_s$ Drift-rate: Torque: $\tau = mf \, \delta r$ Moment of Inertia: $I = (2/5) mr^2$

GP-B T0083

Sphericity Measurement

Typical measured rotor topology; peak-valley = 19 nm

Talyrond sphericity measurements to ~1 nm

If a GP-B rotor was scaled to the size of the Earth, the largest peak-to-valley elevation change would be only 6 feet!

Flight Proportional Thruster Design

Thrust: 0 – 10 mN I_{SP}: 130 sec Mdot: 6-7 mg·s⁻¹ Noise: 25 μ N·Hz^{-1/2}

Propellant: Helium Dewar Boiloff Supply: 5 to 17.5 torr

- Cold gas (no FEEP!) proportional thruster; 16 units on space vehicle.
- Operates under choked flow conditions
- Pressure feedback makes thrust independent of temperature

Location of thrusters on Space Vehicle

Drag-free Operational Modes

- Suspended "accelerometer" mode
 - Measured gyro control effort nulled by space vehicle thrust.
 - Used during most of mission due to robustness, gyro safety.
- Unsuspended "free float" mode
 - SV chases gyro; nulls position signal.

Drag Free Control for a Perfect Orbit

GP-B T0083

Superconducting SQUID Readout

The Conundrum:

How to measure with extreme accuracy the direction of spin of perfectly round, perfectly uniform, sphere with no marks on it?

The Solution:

London Moment Readout. A spinning superconductor develops a magnetic "pointer" aligned with its spin axis.

Magnetic field sensed by a SQUID, a quantum limited, DC coupled magnetic sensor.

WS, ML TO SQUID ELECTRONICS BL LR SQUID MAGNETOMETER

$$M_L = -\frac{2mc}{e}\omega_s = -1.14 \times 10^{-7}\omega_s \quad \text{(Gauss)}$$

SQUID electronics in Niobium carrier

Performance: measurement better than 200 marc-s/√Hz

Star Tracking Telescope

Detector Package

Image divider

GP-B T0083

- Measurement noise: ~ 34 marc-s/\/Hz
- All-quartz construction.
- Cryogenic temperatures make a very stable mechanical system.

Physical length	0.33 m	At focal plane:	
Focal length	3.81 m	Image diameter	50 µm
Aperture	0.14 m	0.1 marc-s =	0.18 nm

Integrated Telescope

Telescope in Probe

B T008:

Ultra-low Magnetic Field

- Magnetic fields are kept from gyroscopes and SQUIDs using a superconducting lead (Pb) bag
 - Mag flux = field x area.
 - Successive expansions of four folded superconducting bags give stable field levels at ~ 10⁻⁷ G.
- AC shielding at 10⁻¹² [=240 dB!] from a combination of cryoperm, lead bag, local superconducting shields & symmetry.

Enables the readout system to function to its stringent requirements

Lead bag in Dewar

Expanded lead bag

Cryogenic Dewar and Probe

Probe during assembly

- Gyroscopes
- GP-B T0083

- 2524 liter superfluid helium (1.82K dewar)
- Porous plug phase separator.

Dewar

- Lifetime 17.3 months longest lived dewar in space.
- Dewar boil-off gas used for attitude and translation control of vehicle

Guide Star Selection

Palomar star map

Criteria:

- Sufficiently close to equatorial plane for maximum frame dragging signal
- Optically bright enough to meet the pointing requirement.
- Be a radio star to allow VLBI proper motion measurement

-B T0083

Proper Motion Measurement via VLBI

Very Large Array, Socorro, New Mexico

- SAO measuring position of IM Peg via VLBI.
- Calibrated against extra-galatic objects
- Defines a very precise distant inertial frame.

Preliminary HR 8703 Positions for Peak of Radio Brightness Solar System Barycentric, J2000 Coordinate System

History of IM Peg position since Dec 1991

-B T008

3 Stages of In-flight Verification

A. Initial orbit checkout (121 days)

- Re-verification of all ground calibrations.
- Scale factors, thermal sensitivities, etc.
- Disturbance measurements on gyros at low spin speed.
- **B. Science Phase (~ 11 months)**
 - Exploiting the built-in checks (i.e. Nature's helpful variations).

C. Post-experiment tests (~ 1 month starting Aug 2005)

 Refined calibrations through careful and deliberate enhancement of disturbances, etc.

> Mission Operations Center (MOC) at Stanford University

P-B T0083

One Orbit of Science Data

Repeat every 97 minutes for a year.....

Data processing:

• Remove known (calibrate-able) signals from SQUID signal to get at gyro precession.

Remove effects of:

- Motional aberration of starlight.
- Parallax.
- Pointing errors; roll phase errors.
- Telescope/SQUID scale factors.
- Pointing dither.
- SQUID calibration signal.
- Scale factor variation with gyro polhode (trapped flux).
- Other systemic effects.

Data Analysis: An Incremental Approach

- Phase 1 Day-by-day. (thru March 2006)
 - Full year data grading; Instrument calibration.
 - Treatment of known features (e.g. aberration, pointing errors).
 - <u>Result</u>: first-cut "orientation of the day" per gyroscope.

• Phase 2 – Month-to-Month. (thru September 2006)

- Identify and remove systematic effects.
- Improve instrument calibrations through long-term trending.
- <u>Result:</u> second-cut: "trend of the month" per gyroscope.
- Phase 3 1 Year Perspective. (thru April 2007)
 - Combine and cross-check data from all 4 gyroscopes
 - Incorporate measured guide star proper motion.
 - <u>Result</u>: Experimental results compared with predicted GR effects.

26

Built-In Checks Assure Accurate Result

- Structure of Data
 - Predicted GR results:
 - Orbital aberration:
 - Annual aberration:
 - Gravitational deflection of light:
 - Parallax:
- Scaling Verifications
 - Magnitudes & planar relations of effects known
- Robustness further confirmed
 by agreement with
 - Multiple data analysis approaches.
 - Gyro-to-gyro direct comparisons.

- 6614.4 marc-sec Geodetic 40.9 marc-sec Frame-dragging
- 5185.6 marc-sec
- 20495.8 marc-sec
- 21.12 marc-sec peak (11 Mar 2005)
- ~ 10 marc-sec

Gravitational deflection of starlight

B T008

Redundancy – with Variation

• 4 gyros & SQUIDs with distinct characteristics

- Different rotor & housing shapes, mass distributions, surface finish.
- Different spin directions 2 clockwise, 2 counterclockwise
- Different spin speeds & polhode rates
- Different acceleration environments (distances from drag-free point)
- Different magnetic fields & pressures

Optical reference

- Guide telescope 2 separate optical images & detector assemblies
- Roll reference 2 roll axis star telescopes

Gravity ProBe

B T008

What's Taking so Long, Anyway?

- Overall, the GP-B spacecraft operated very well on orbit.
- However, not perfectly:
 - Out-of-spec pointing
 - Requires more careful telescope calibration.
 - Polhode period damping modelling
 - Modulates the gyro orientation angle readout scale factor. (systematic error source)
 - Interference from onboard electronics system (ECU)
 - "Segmented" data from spacecraft anomalies.
 - Knitting segments together requires care.
 - Need for "data grading" 1 TB of science data!

All require time to understand, model, and remove...

...a lesson for other "simple" missions now in development

GP-B T0083

Satellite Test of the Equivalence Principle "STEP"

Program Update

Space: > 5 Orders of Magnitude Leap STEP Goal: 1 part in 10¹⁸

Proposed EP Tests in Space

<u>Proposal</u>	Institution	Accuracy Goal
SEE Satellite Energy Exchange	U. Tennessee	Unspecified
Microscope	ONERA, OCA CNES, ESA	10 ⁻¹⁵
Equivalence Balloon drop test of EP	Harvard SAO, IFSI Rome	10 ⁻¹⁵
GG Galileo Galilei	Università di Pisa	10 ⁻¹⁷
STEP Satellite test of EP	Stanford U., NASA/MSFC, European collaboration	10 ⁻¹⁸

STEP Mission Elements

6 Month Lifetime

- Sun synchronous orbit, I=970
- 550 Km altitude
- Drag Free control w/ He Thrusters

Cryogenic Experiment

- Superfluid Helium Flight Dewar
- Aerogel He Confinement
- Superconducting Magnetic Shielding

4 Differential Accelerometers

- Test Mass pairs of different materials
- Micron tolerances Superconducting bearings
- DC SQUID acceleration sensors
- Electrostatic positioning system
- UV fiber-optic Charge Control

STEP Status

B T008

Beginning 2nd year of 3 year Technology Program under NASA MSFC

Technology Program Goals:

- Fabricate prototype flight instrument
 - Differential accelerometer
 - Cryogenic electronics
 - Quartz block mounting structure
- Transfer critical GP-B technologies
 - SQUID readout
 - Drag-free thrusters
 - Electrostatic positioning system

Integrated ground test of prototype flight accelerometer

B T008

GP-B: Over the Horizon

★ Dewar was depleted on 29 Sep 2005 – superconducting electronics ceased to function.

> Systematic effects will be characterized and compensated for in 2006, followed by detailed data review by external experts.

GP-B – An International Collaboration

- Stanford University C.W.F. Everitt PI, GP-B team
- Lockheed Martin GP-B team
- Science Advisory Committee *Clifford Will chair*
- Harvard Smithsonian
 Irwin Shapiro
- JPL John Anderson
- York University
 Norbert Bartel
- Purdue University
 Steve Collicot
- San Francisco State Jim Lockhart
- National University of Ireland Susan M.P. McKenna-Lawlor

 Haivensity of Abordson
- University of Aberdeen

Mike Player

GP-B T0083

Development, Science Instrument, Management Mission Operations, Data Analysis Probe, Dewar, Spacecraft bus, Flight Software

Research at Other Institutions

Guide Star and Star Proper Motion Studies

Independent Science Analysis

Guide Star and Star Proper Motion Studies

Helium Ullage Behaviour

Gyroscope Read-out Topics

Proton Monitor

High Precision Homogeneity Measurement of Quartz