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Supersymmetric string backgrounds
Supersymmetric solutions of supergravity, i.e. some given metric with
accompanying fluxes, play an important role in string/M-theory:

◮ entropy matching,
◮ flux compactifications,
◮ AdS/CFT correspondence,
◮ and many many more!

Supersymmetry is a very powerful tool!

Desirable to have a full classification of all supersymmetric backgrounds!
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Supersymmetry transformations

Supersymmetry transforms fermions into bosons:

δǫψµ = Dµǫ , δǫλ = Aǫ ,

and bosons into fermions. The supersymmetry parameter ǫ is a fermion.

Supercovariant derivative Dµ and algebraic expression A are given in terms
of the bosons, e.g. for IIB:

Dµ =(∂M + 1
4ΩM,PQΓPQ − i

2 QM + 1
48 iΓN1...N4 FMN1...N4)+

− 1
96 (ΓM

N1N2N3 GN1N2N3 − 9ΓN1N2 GMN1N2)C∗ ,
A =PNΓNC ∗ + 1

24 GN1N2N3Γ
N1N2N3 .

Contractions of spin connection Ω and fluxes P,G,F with Γ-matrices.

Supersymmetric string backgrounds: from bottom to top Diederik Roest



Introduction Gauge groups G and holonomies H Spinorial geometry Type IIB results Type I results Discussion

Supersymmetry conditions

Consider bosonic background of some space-time g with fluxes P,G,F .
When is this supersymmetric?

Supersymmetry variations of the fields have to vanish:

δǫψµ = Dµǫ = 0 , δǫλ = Aǫ = 0 .

Differential and algebraic Killing spinor equations (KSE).

Solutions ǫ are Killing spinors. There can be 0 ≤ N ≤ 32 of these.

Requiring a background to admit Killing spinors imposes strong conditions.

Question: what are the possible backgrounds for any number of
supersymmetries N?
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Supersymmetry conditions

Refinement: what are the possible backgrounds for N Killing spinors with
common stability subgroup G in the Lorentz group?

Important since lead to G-structure.

For example, in IIB a single spinor can have stability subgroup [a]

G2 , Spin(7) ⋉ R
8 , SU(4) ⋉ R

8 .

(Compare with time-like, null or space-like vector.)

For N ≥ 2 there are more possibilities, depending on the embeddings of the
separate stability subgroups. E.g. two spinors can have trivial stability
subgroup.

[a]: Gran, Gutowski, Papadopoulos ’05.
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Classifications

In which theories are there classifications of all supersymmetric solutions?

Many, many partial results.

Full classifications, i.e. for all possible fractions of susy, for
◮ D = 4: minimal N = 2 [a], coupled to vectors [b],
◮ D = 5: minimal N = 1 [c]
◮ D = 6: minimal N = 1 [d]

Theories with 8 supersymmetries and solutions with N = 4, 8.

Different techniques:
◮ Newman-Penrose (’82, ’83),
◮ spinor bilinears (’02,’03,’06),

[a]: Gibbons, Hull ’82, Tod, ’83, [b]: Meessen, Ortín ’06, [d]: Gauntlett et al ’02, [e]: Gutowski, Martelli, Reall ’03,
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Maximal Supergravity in 11D / 10D

More difficult since more supersymmetries. Few systematic results:
◮ purely gravitational solutions [a],
◮ N = 32 (top): AdS × S and Penrose limits (Hpp-wave or Minkowski) [b],

|
◮ N > 24: homogeneous spaces [c],

|
◮ N = 1 (bottom):

11D: two cases with SU(5) or (Spin(7) ⋉ R
8) × R structure [d],

IIB: three cases with G2, Spin(7) ⋉ R
8 or SU(4) ⋉ R

8 structure [e],

We will focus on IIB and its truncation to type I, but the story generalises to
other supergravities.

[a]: Figueroa-O’Farrill ’99, Bryant ’00, [b]: Figueroa-O’Farrill, Papadopoulos ’02, [c]: Figueroa-O’Farrill, Meessen, Philip ’04,

Figueroa-O’Farrill, Hackett-Jones, Moutsopoulos ’07, [d]: Gauntlett, Pakis ’02, Gauntlett, Gutowski, Pakis ’03 [e]: Gran, Gutowski,

Papadopoulos ’05.
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IIB maximal Supergravity
All maximally supersymmetric (N = 32) backgrounds of IIB are classified [a]:

AdS5 × S5 & its Penrose limits the Hpp-wave or Mink1,9

×
There are many more examples with less supersymmetry, i.e. between top
and bottom:

◮ fundamental objects with N = 16,
◮ intersections thereof with N = 1, 2,4, 8,
◮ pp-wave solutions with N = 20,24,28,
◮ many more, e.g. including interesting gravity duals.

Only the tip of the iceberg? What are the possible values of N?

Apart from the gravitational and maximally supersymmetric solutions there
were no systematic results, i.e. all possibilities for a given N and G.
[a]: Figueroa-O’Farrill, Papadopoulos ’02.
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Gauge group G

Supersymmetric backgrounds are to be classified up to the use of the gauge
group, e.g. for IIB

G = Spin(9,1) × U(1) ,

which consists of the Lorentz and the R-symmetry.

The gauge group is reduced when there are N Killing spinors,

G ⊂ Spin(9,1) × U(1) ,

where G leaves all Killing spinors invariant.
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Holonomy H

The supercovariant derivative squares into the supercurvature

[DM ,DN ]ǫ =
5X

i=1

RMN,P1···Pi Γ
P1···Pi ǫ ,

which takes values in the holonomy group H. IIB has H = SL(32,R). [a]

Due to N Killing spinors the holonomy group is reduced:

[DM ,DN ]ǫ =

5X
i=1

RMN,P1···Pi Γ
P1···Pi ǫ = 0 , ⇒ H ⊂ SL(32,R) .

It is the interplay of G ⊆ H that gives rise to complications:
◮ gravitational solutions, G = H,
◮ adding fluxes, G ⊂ H in general.

[a]: Papadopoulos, Tsimpis ’03.
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Gravitational holonomy

For purely gravitational solutions the Killing spinor equations reduce to

DMǫ =(∂M + 1
4 ΩM,PQΓPQ)ǫ = 0 ,

which is the Levi-Civita connection ∇. The corresponding curvature is

[DM ,DN ]ǫ =RMN,PQΓPQǫ ,

where RMN,PQ is the Riemann tensor.

Holonomy H = gauge group spin(9,1).
All configurations with the same supercurvature are gauge-equivalent.

N Killing spinors ǫ with stability subgroup G
⇒ Riemann tensor RMN,PQ takes values in G
⇒ all G-invariant spinors are Killing,
⇒ ∃ a gauge with constant Killing spinors ǫ.
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Gravitational solutions

All purely gravitational solutions with special holonomy have been classified:
◮ Riemannian case: product of metrics with holonomies SU(D/2)

(Calabi-Yau’s), Sp(D/4), G2 or Spin(7), [a]
◮ Lorentzian case: reducible holonomy does not imply product metric. [b]

[a]: Berger ’55, [b]: Figueroa-O’Farrill ’99, Bryant ’00.
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More general holonomies

When adding fluxes the holonomy H of the supercovariant connection D is in
general extended to H ⊆ SL(32,R):

[DM ,DN ]ǫ =
5X

i=1

RMN,P1···Pi Γ
P1···Pi ǫ ,

with RMN,P1···Pi given in terms of the spin connection and fluxes.

Possible holonomies:
◮ purely gravitational: H ⊆ Spin(9,1), ⇒ N = 2,4,6,8,16,32,
◮ only g and F : H ⊆ GL(16,C), ⇒ N = 2,4,6,8,10, . . . ,30,32,
◮ most general backgrounds: H ⊆ SL(32,R),

⇒ N = 1,2,3,4,5, . . . ,30,31,32.
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Gauge group vs. holonomy

The fact that the gauge group is a (small) subgroup of the holonomy H of the
supercurvature is the underlying reason for the difficulty in classifying all
supersymmetric solutions.

Not all configurations with the same supercurvature are gauge-equivalent.
Example: maximally supersymmetric solutions with R = 0.

Killing spinor ǫ with stability subgroup G
6⇒ all G-invariant spinors are Killing.

Killing spinors ǫ imply (part of) curvature R is zero,
6⇒ ∃ a gauge with constant Killing spinors ǫ.

More and more complicated cases.

What is the analog of the gravitational special holonomy?
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G-structures [a]

N globally well-defined
Killing spinors ǫi

Dǫi = 0
isotropy group G

⇐⇒
N2 globally well-defined
diff. forms κij = ǭiΓ

(p)ǫj

diff. relations ∇κij ∼ Fκij

invariant under G

The existence of the global differential forms κij implies that the structure
group of the frame bundle is reduced: SO(dim − 1, 1) → G

Intrinsic torsion: decompose ∇κij ∼ ⊕Wi - modules (irreps of G)
All Wi 6= 0 - most general G-structure (and fluxes), ...
..., all Wi = 0 - special holonomy G (no fluxes).

susy-ic solutions without flux ⇔ manifolds with special holonomy
susy-ic solutions with flux ⇔ manifolds with G-structures

Different G-structures possible depending on the fluxes. Solve KSEs!

[a]: Gauntlett, Martelli, Pakis, Waldram ’02
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Solving the Killing spinor equations

Different methods to solve the Killing spinor equations:
Spinor bilinears:

◮ Uses the N2 differential relations ∇ηij ∼ Fηij ,
◮ Necessary conditions, check sufficiency by hand,
◮ 11D: all N = 1 [a]

Spinorial geometry:
◮ Basis in the space of spinors and description in terms of forms,
◮ Analyses the N Killing spinor equations Dǫi = 0 directly,
◮ Necessary and sufficient conditions,
◮ 11D: all N = 1, some N = 2,4, ..., all N = 31 cases [b,c]
◮ IIB: all N = 1, some N = 2, 4, ..., all N = 31 cases [d]
◮ Type I: all supersymmetric configurations [e]

[a]: Gauntlett, Pakis ’02, Gauntlett, Gutowski, Pakis ’03, [b]: Gillard, Gran, Papadopoulos, ’04, Gran, Papadopoulos, DR ’05, Gran,

Gutowski, Papadopoulos, DR ’06, [c]: Cariglia, Mac Conamhna ’04, Mac Conamhna ’05, [d]: Gran, Gutowski, Papadopoulos ’05, Gran,

Gutowski, Papadopoulos, DR ’05, ’06, [e]: Gran, Papadopoulos, DR, Sloane ’07.
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Basis in space of spinors

Spinor in terms of forms [a]:

space of Dirac spinors ǫ
of Spin(9,1)
dimension 64

≡
space of forms η

spanned by e1, . . . , e5

(with compl. coeff.)
dimension 2 · 25

Γ-matrices in null and holomorphic basis M = (−,+, α, ᾱ):
Γaη =

√
2ea ∧ η for a = (−, α)

Γāη =
√

2eayη for ā = (+, ᾱ)
⇔ creation operators

annihilation oper.
Satisfy Clifford algebra ΓMΓN + ΓNΓM = 2gMN .

⇒
{1, ea, . . . , ea1···a5} with a = (α, 5) form a basis for Dirac spinors!

Γ-matrices act as creation/annihilation operators
η = 1 - Clifford vacuum, η = e12345 - fully excited state

⇐

Weyl spinors ≡ even/odd forms and Majorana spinors ≡ η∗ = Γ6789η.
[a]: Lawson, Michelsohn ’89, Wang ’89, Harvey ’90
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Weyl spinors as forms

Arbitrary Weyl spinor in 10D:

ǫ = f iηi ,

composed of the sixteen MW basis elements ηi

1 + e1234, i(1 − e1234), eαβ − 1
2 ǫαβ

γδeγδ , i(eαβ + 1
2ǫαβ

γδeγδ) ,

eα5 + 1
6 ǫα

βγδeβγδ5, i(eα5 − 1
6ǫα

βγδeβγδ5) ,

with α = 1,2, 3, 4.

Functions fi dependent on space-time:
◮ real for type I spinors,
◮ complex for type IIB spinors.
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Killing spinor equations

Supercovariant connection Dµ and algebraic constraint A consists of
products of spin connection ΩM,PQ , derivatives of scalars PM ,QM and fluxes
GM1M2M3 ,FM1...M5 with Γ-matrices.

Substitute ǫ and expand in basis (amounts to products of Γ-matrices), and set
all coefficients equal to zero [a].

KSE reduces to linear system of equations for scalars, fluxes,
spin connection and functions f (and their derivatives) of Killing spinor.

Very complicated linear system for geometry and fluxes due to N arbitrary
spinors.

Problem is reduced to parametrising the N Killing spinors. Orbit analysis for
every N!
[a]: Papadopoulos et al ’04, ’05, Mac Conamhna ’04, ’05.
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N = 1 orbits of IIB

Bottom-up approach:

Using Lorentz symmetry, any Killing spinor can be brought to one of the three
orbit representatives with stability subgroup G:

G = Spin(7) ⋉ R
8 with ǫ = (f1 + if2)(1 + e1234)

G = SU(4) ⋉ R
8 with ǫ = (f1 + if2)1 + (h1 + if2)e1234

G = G2 with ǫ = f1(1 + e1234) + ig1(e15 + e2345)

Simple form, plugging into KSE gives (relatively) simple linear system. Gives
complicated geometries [a].

For N ≥ 2 the orbit analysis is much more complicated.up to N = 31!

[a]: Gran, Gutowski, Papadopoulos ’05.
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N = 31 orbits of IIB

Top-down approach:

N = 31 Killing spinors ǫi defining one orthogonal spinor: < ǫi , ν >= 0.

Use Lorentz symmetry to bring ν to one of three orbit representatives.

Alg. KSE of IIB ⇒ scalars and three-form field strengths vanish.

⇒ holonomy GL(16,C) ∈ SL(32,R) ⇒ N even ⇒ N = 32.
N = 31 is not IIB [a]

First constraint on N in type II theories.

[a]: Gran, Gutowski, Papadopoulos, DR ’06.
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N = 31 in IIA and 11D

Same result in IIA using moving G-frame method [a]. Algebraic KSE implies
that all fluxes vanish.

In 11D there is no algebraic KSE. However, the N = 31 supercurvature
vanishes on-shell [b].

No N = 31 by quotients of N = 32 either [c].

[a]: Bandos, De Azcárraga, Varela ’06, [b]: Gran, Gutowski, Papadopoulos, DR ’06, [c]: Figueroa-O’Farrill, Gadhia ’07.
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Type I theory

Truncation of IIB to type I with 16 supercharges and coupled to arbitrary
number of vector multiplets.

The supercovariant derivative is given by

DM = ∂M + 1
4ΩM,PQΓPQ + 1

2 HMPQΓPQ ,

Three-form flux acts as torsion but does not enlarge the holonomy H.

Same simplifications as in gravitational case. All backgrounds with parallel
spinors DMǫ = 0 have been classified [a].

But parallel spinors are not enough for supersymmetry:
◮ gaugino variation δχ = FPQΓPQǫ = 0

(allows for a Lie-theoretic analysis)
◮ dilatino variation δλ = (∂MφΓM − 1

12 HMNPΓMNP)ǫ = 0
(has to be solved explicitly)

What are the type I backgrounds with P parallel spinors of which N < P are
Killing? Orbit analysis!

[a]: Gran, Gutowski, Lohrmann, Papadopoulos ’05.
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Bottom up approach
Killing spinors can be taken constant due to G = H.

Using the Lorentz symmetry, any 10D Majorana-Weyl spinor can be brought
to the form

ǫ1 = 1 + e1234 ,

i.e. there is only one orbit. The remaining gauge symmetry is its stability
subgroup G = Spin(7) ⋉ R

8.

For the second spinor, there are two orbits. Using the remaining G, it can be
brought to the form

ǫ2 = i(1 − e1234) ,

with G = SU(4) ⋉ R
8, or

ǫ2 = e15 + e2345 ,

with G = G2.

For N ≥ 2, this splits up in chains of orbits with non-compact and compact
stability subgroups.

Supersymmetric string backgrounds: from bottom to top Diederik Roest



Introduction Gauge groups G and holonomies H Spinorial geometry Type IIB results Type I results Discussion

Orbits with non-compact stability subgroups
These are composed of basis elements

1 + e1234, i(1 − e1234), eij − ǫij
klekl , i(eij + ǫij

kl ekl) ,

which transform in the fundamental of SO(8). This allows one to bring any
spinor to the form of a basis element.

Hence one can choose the following representatives:
◮ ǫ1 = 1 + e1234 G = Spin(7) ⋉ R

8

◮ ǫ2 = i(1 − e1234) G = SU(4) ⋉ R
8

◮ ǫ3 = e12 − e34 G = Sp(2) ⋉ R
8

◮ ǫ4 = i(e12 + e34) G = (SU(2)× SU(2)) ⋉ R
8

◮ ǫ5 = e13 + e24 G = SU(2) ⋉ R
8

◮ ǫ6 = i(e13 − e24) G = U(1) ⋉ R
8

◮ ǫ7 = e14 − e23 G = R
8

◮ ǫ8 = i(e14 + e23) G = R
8

The stability subgroups are isomorphic to SO(8 − N), acting in the
fundamental representation on the remaining 8 − N Killing spinors, hence
there is only one case per N.
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Orbits with compact stability subgroups

One can choose the following representatives:
◮ ǫ1 = 1 + e1234 G = Spin(7) ⋉ R

8

◮ ǫ2 = e15 + e2345 G = G2

◮ ǫ3−A = i(1 − e1234) G = SU(3)
ǫ3−B = i(1 − e1234) + e25 − e1345 G = SU(2)

◮ ǫ4−A1 = i(e15 − e2345) G = SU(3)
ǫ4−A2 = i(e12 + e34) G = SU(2)
ǫ4−A3 = i(e15 − e2345) + e12 − e34 G = SU(2)
ǫ4−A4 = i sin(φ)(e15 − e2345) + cos(φ)(e25 − e1345) G = SU(2)
ǫ4−B = i sin(φ)(e15 − e2345) + i cos(φ)(e12 + e34) G = SU(2)
plus a number of unknown orbits with G = 1

All G 6= 1 orbits with N > 4 can be determined by the top down approach,
using the Lorentz symmetry on the normal spinors.

All orbits of type I Killing spinors with G 6= 1. [a]

[a]: Gran, Papadopoulos, DR, Sloane ’07.
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Type I orbits [a]

G = \ N = 1 2 3 4 5 6 7 8 16

G2 − √ − − − − − − −
SU(3) − − √ √ − − − − −
SU(2) − − √ √ √ √ √ √ −

1 − − − ? ? ? ? ? ?

Spin(7) ⋉ R
8 √ − − − − − − − −

SU(4) ⋉ R
8 − √ − − − − − − −

Sp(2) ⋉ R
8 − − √ − − − − − −

(SU(2) × SU(2)) ⋉ R
8 − − − √ − − − − −

SU(2) ⋉ R
8 − − − − √ − − − −

U(1) ⋉ R
8 − − − − − √ − − −

R
8 − − − − − − √ √ −

√
: Type I background with N Killing spinors with stability subgroup G.

?: occur but with unknown orbits.
−: do not occur.

[a]: Gran, Papadopoulos, DR, Sloane ’07.
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Complete classification

For G 6= 1 we have [a]:
◮ determined the different orbits for all values of N,
◮ solved the corresponding Killing spinor equations.

For G = 1 the backgrounds are parallelisable which have been classified [b],
include e.g. AdS3× S3× S3 × R.

Full classification of all solutions to the Killing spinor equations of type I
supergravity!

In some cases, part of the field equations still need to be imposed.

Look for interesting string backgrounds?

[a]: Gran, Papadopoulos, DR, Sloane ’07, [b]: Figueroa-O’Farrill, Kawano, Yamaguchi ’03.
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Summary

◮ Classification of supersymmetric backgrounds with N Killing spinors with
stability subgroup G,

◮ Spinorial geometry:
• basis in the space of spinors in terms of forms ea1···ai
• converts KSEs for N arbitrary Killing spinors to linear system
• use of gauge symmetry Spin(9, 1) to determine orbit structure of Killing

spinors
• bottom up and top down approach

◮ Allows for a full classification of all orbits and the KSE solutions in type I
supergravity,

◮ N = 1 and N = 31 in IIB supergravity, more complicated orbit structure
for 2 ≤ N ≤ 30.
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Outlook

◮ pp-wave with N = 28 in IIB. What about N = 29, 30, i.e. what is the
lowest non-maximal number of supersymmetries?

◮ Conjecture based on warped product Ansatz [a]:

N = 1,2, 3, 4,5, 6, 8,10,12, 14,16,18,20, 22,24,26,28,32,

Consistent with data. Derivation?
◮ G = 1 leads to very strong constraints, e.g. parallelisability in type I.

What is the analog in IIB?
◮ Generic N = 16 Killing spinors lead to P = G = 0 and hence N = 32.

What are the remaining possibilities?

[a]: Duff ’02.
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Thanks for your attention!
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