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Exact inhomogeneous solutions of GR



The Lemâıtre–Tolman solution (1)

Spherically symmetric non-static solution with a dust source.

Metric in comoving and synchronous coordinates
ds2 = dt2 − R′2

1+2E(r)dr
2 −R2(t, r)(dϑ2 + sin2 ϑdϕ2)

A first integral of the Einstein equations= dynamical equation for R:
Ṙ2 = 2E + 2M

R + Λ
3R

2

The mass density in energy units
8πG
c4 ρ = 2M′

R2R′

Integrating the dynamical equation for Rgives
R∫
0

dR̃√
2E+2M/R̃+1

3ΛR̃2
= t − tB(r)

Three integration functions:

• E(r), the energy per unit mass of the particles within the comoving
shell of radiusr.

•M(r), the gravitational mass of the particles in that shell.

• tB(r), the “bang time”: the singularity (bang or crunch) is not si-
multaneous as in Friedmann models, but occurs at different times
at different distances from the origin.



The Lemâıtre–Tolman solution (2)

For Λ = 0 the first integral can be solved explicitly.

E < 0 (elliptic evolution)

R(t, r) =
M

(−2E)
(1 − cosη)

η − sinη =
(−2E)3/2

M
(t − tB(r))

E = 0 (parabolic evolution)

R(t, r) =
[
9/2M (t − tB(r))2

]1/3

E > 0 (hyperbolic evolution)

R(t, r) =
M

2E
(coshη − 1)

sinhη − η =
(2E)3/2

M
(t − tB(r))

All the above formulas are covariant under coordinate transforma-
tions: r̃ = g(r). Thus, one of the functionsE(r), M(r) and tB(r) can be
fixed at will by the choice ofg.

Two degrees of freedom remain.

The Friedmann solutions are contained in the L–T class as the limit:
tB = const, |E|3/2/M = const.



The Lemâıtre–Tolman solution (3)

• Origin conditions

An origin, or centre of spherical symmetry, occurs atr = rc where
R(t, rc) = 0 for all t. The conditions for a regular centre follow
from the requirement that there is no point-massand no curvature
singularity at r = rc at all times after the Big Bang and before the
Big Crunch. Mustapha and Hellaby 2001.

• Shell crossings

Regular extremum. The density and the Kretschmann scalar di-
verge whereR′ = 0 and M′ , 0, but loci where M′/R′ is finite
when R′ = 0 are also possible on constantr shells. These consti-
tute regular extrema in the spatial section of constantt. Both M′

and R′ change sign across a regular extremum.

Shell crossings(constant r shell colliding with its neighbour) are
loci of R′ = 0 that are not regular maxima or minima of R. They
create undesirable singularities wherethe densitydivergesand changes
sign. Hellaby and Lake 1985have derived the conditions on the 3
arbitrary functions that ensure none be present anywhere in an
L–T model.



The Szekeres solution

Solution of GR with no symmetry(no Killing vector) and dust source.

ds2 = dt2 − e2αdr2 − e2β
(
dx2 + dy2

)

Two families of Sz solutions. Only the one withβ′ , 0 yields useful
applications in astrophysics and cosmology.

Can be parametrised so that a set of independent functions ofr de-
termines each solution.

The sign of one of them fixes the geometry of the{t = const.} 3-
surfaces and the type of evolution (elliptic, parabolic, hyperbolic).

The sign of another function determines the geometry of the{t = const.,
r = const.} 2-surfaces⇒ quasi-spherical, quasi-plane and quasi-hyperbolic
models. Only thequasi-sphericalmodel has been found useful in as-
trophysical cosmology.

A function tB(r) represents the Big-Bang (Crunch) time as in L–T
models.

A shell-cross singularitycan occur if
(
eβ

)′
= 0. Its intersection with

a {t = const.} space isnot a sphere,but a circle or a point.



Reparametrisation of the Szekeres solution

ds2 = dt2 − (R′−RE′/E)2

ε−k(r) dr2 − R2

E2 (dx2 + dy2)

E ≡ S
2

[(
x−P
S

)2
+

(
y−Q
S

)2
+ ε

]

R(t, r),S(r),P(r),Q(r) and for the quasi-spherical modelε = +1.

Ṙ2 = −k(r) + 2M
R + Λ

3R
2.

For Λ = 0 the solutionsR(t, r) are the same as the L–T solutions.

The density in this parametrisation is

κρ =
2(M′−3ME′/E)
R2(R′−RE′/E)

.

The number of arbitrary functions corresponding to physical de-
grees of freedomis 5 (6 functions: k(r),M(r), tB(r),S(r),P(r),Q(r) -
the choice ofr).



Properties of the quasi-spherical Szekeres solution

R = 0 is anorigin (Bang or Crunch). R < 0 impossible.

M(r) > 0⇒ any vacuum exterior has positive Schwarzschild mass.

|S(r)| , 0 is needed soS > 0 is a reasonable choice.

For a well-behaved metric signaturek < 1 except where(R′ −RE′/E) = 0

Either M′ − 3ME′/E ≥ 0 and R′ −RE′/E ≥ 0

or M′ − 3ME′/E ≤ 0 and R′ −RE′/E ≤ 0.

If R′ −RE′/E passes through0 anywhere other than at a regular
extremum⇒ shell cross.

Conditions of regularity at the origin and no shell-crossing have
been derived byHellaby and Krasiński 2002.

The distribution of mass over each single sphere{t = const, r = const}
has the form ofa mass-dipole superposed on a monopole.



Structure evolution with L–T models



Initial conditions

Initial conditions are imposed at the CMB and at the observer. Then,
the model is evolved in between.

Krasi ński and Hellaby 2002have estimated what angle would be
subtended in the CMB sky by matter that today forms various objects.

At the current best resolution, the only structures whose trace has
a chance of appearing on the CMB maps arelarge cluster concentra-
tions like the Great Attractor (angle on the CMB sky: 0.2-0.3◦).

No data exist on the shapeof the density or velocity profiles at last
scattering or on thespatial extentof the region that is perturbed. For
the shape, simple functions are assumed.

It turns out that the final outcome of evolution is sensitive to the
initial velocity profile ⇒ consider these models as preliminary.



Galaxy plus black hole formation

Aim: model the formation of a galaxy with a central black hole
(M87), starting from initial fluctuations at recombination and ending
at present timeKrasi ński and Hellaby 2004.

Model: two parts matched across a comoving boundaryM = MBH,
with MBH the observationally estimated current mass inside the black
hole.

Exterior part = observed present-day density profile of M87+ initial
fluctuation compatible with CMB observations.

Interior = no observational constraints⇒ two descriptions proposed,
both L–T models, 1) a collapsing body (the black hole is formed in the
course of evolution), 2) a dense preexisting wormhole.

Theorem: the initial and final states uniquely define the L–T model
evolving between them, i.e. the arbitrary functionsE(M) and tB(M).

Conclusion. The galaxy-black hole structure can be generated by
both mechanisms, but the black hole appears in a much shorter time
(almost instantly after the BB) by condensation around a wormhole.



Rich galaxy cluster and void

Aim: check whether it is possible to obtain a rich galaxy cluster or a
void from initial density and velocity perturbations.

Galaxy cluster

A pure velocity perturbation can nearly produce a galaxy cluster. A
mere density perturbation fails to do it. Velocity perturbations gener-
ate structures much more efficiently than density perturbations.

Void

A void consistent with observational data (density contrast less than
δ = −0.94, smooth edges and high density in the surrounding regions)
is very hard to obtain with L–T models without shell crossingBolejko
et al. 2005.

Adding a realistic distribution of radiation (using Tolman models,
otherwise known as Misner-Sharp) helps forming observed voidsBole-
jko 2006.



Structure evolution with Szekeres models



Double structure evolution

Model of a void with an adjourning supercluster evolved inside an
homogeneous backgroundBolejko 2006.
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Current density distribution in background units.

To estimate how two neighbouring structures influence each other,
the evolution of a double structure in QSS models has been compared
with that of single structures in L–T models and linear perturbation
theory.
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Evolution of the density profile from 100 Myr after the Big Bang (1) up to the present time (7).

In the QSS models, the growth of the density contrast is5 times
faster than in L–T models and 8 times faster than in the linear ap-
proach.



Triple structure evolution

The model is composed of an overdense region at the origin, followed by a small

void which spreads to a givenr coordinate. At a larger distance from the origin, the

void is huge and its larger side is adjacent to an overdense regionBolejko 2007.

Current density distribution.
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Evolution of the density profile from 0.5 Myr after the Big Bang (a) up o the present time (e).

Where the void is large, it evolves much faster than the underdense region closer

to the “centered” cluster. The exterior overdense region close to the void along a

large area evolves much faster than the more compact supercluster at the centre.

This suggests that, in the Universe,small voids surrounded by large high densities

evolve much more slowly than large isolated voids.



Solving cosmological problems with exact inhomogeneous
models



The inhomogeneous Universe

Sloan Digital Sky Survey (false colors)

The Universe isnot homogeneous. We see voids, groups of galaxies,
clusters, superclusters, walls, filaments, etc. However, it is usually ar-
gued that it should benearly homogeneous at large scales (thus the use
of Friedmannian models); buthow largeare these scales?



SN Ia data and dark energy

Since its discovery(Riess et al. 1998, Perlmutter et al. 1999)the
dimming of distant SNe Ia, as interpreted in a Friedmannian frame-
work, has been mostly ascribed to the influence of a mysterious “dark
energy” component.

This “dark energy” acts as a negative pressure fluid (possibly a mere
cosmological constant) which tends to accelerate the Universe expan-
sion.

Even if, from some theoretical point view , a geometrical cosmolog-
ical constant could be a natural component of the Einstein equations
(Nottale 1993, 1996), its actual value remains to be confirmed.

It is well-known that the inhomogeneities observed in our Universe
can have an effect upon the values of the cosmological parameters de-
rived in the framework of a smoothed out Friedmannian modelEllis
and Stoeger 1987.

Moreover, the onset of “dark energy” domination in a previously
matter dominated Universe appears at the epoch whenstructure for-
mation enters the non-linear regime.Hence the failure of linear per-
turbation theory at these scales and the need of either averaging schemes
or exact solutions.



Accelerated expansion: a mirage?

What we see isnot an accelerated expansion(this is only the out-
come of the Friedmannian assumption) but the “dimming” of the su-
pernovae, or more exactly theirluminosity distance-redshift relation.

However, the acceleration interpretation was sufficiently misleading
such as to induce some authors to try to derive or rule outno-go theo-
rems, i.e., theorems stating that a locally defined expansion cannot be
accelerating in models satisfying the strong energy condition. But this
is not the point.

Other stressed, more accurately, that the definition of a decelera-
tion parameter in an inhomogeneous model is trickyHirata and Seljak
2005, Apostopoulos et al. 2006.

To understand intuitively how inhomogeneities can mimic an accel-
erated expansion, consider a very simple toy model. A low-density
inner homogeneous region is connected at some redshift to an outer
homogeneous region of higher density. Both regions decelerate, but
since the inner void expands faster than the outer region, anappar-
ent accelerationis experienced by the observer located inside this void
(Tomita, 2001).



Use of exact inhomogeneous models in cosmology

L–T models have been most widely used as exact inhomogeneous
models in cosmology since they are the most tractable among the few
available (but QSS models are currently slightly coming into play).

But caution with L–T is required since:

• An origin, or centre of spherical symmetry, occurs atr = rc where
R(t, rc) = 0 for all t. The conditions for a regular centre were de-
rived by Mustapha and Hellaby 2001.

• Shell crossings,where a constantr shell collides with its neigh-
bour, create undesirable singularities where the density diverges
and changes sign. The conditions on the 3 arbitrary functions that
ensure none be present anywhere in an L–T model were given by
Hellaby and Lake 1985.

• The assumption ofcentral observer,generally retained for simplic-
ity, can be considered as grounded on the observed quasi-isotropy
of the CMB temperature, and thus as a good working approxima-
tion at large scales. At smaller scales, it gives simplified models of
the Universe averaged only over the angular coordinates around
the observer, i. e.,with the relax of only one degree of symmetry as
regards the homogeneity assumption.

However, models assuming an off-centre observer and L–T Swiss-
cheeses have also been studied to get rid of possible misleading features
of spherical symmetry.



Degeneracy of L–T models

It is well-known, from the work of Mustapha, Hellaby and Ellis
1997,that an infinite class of L–T models can fit a given set of observa-
tions isotropic around the observer. This has been confirmed byMNC
2000while studying the fitting of L–T models with a central observer
to the supernova data.

The problem of finding THE spherically symmetric model able to
solve the cosmological constant problem is therefore completely de-
generate. It is the reason why many different centered L–T models
have been proposed and shown to do the job rather well.

Thus, to constrain the model further on, it is mandatory to fit it to
other cosmological data.



Direct and inverse problem

Two procedures for trying to solve the dark energy problem with
inhomogeneous (L–T) models:

• The direct way: first guess the form of the parameter functions
defining a class of models supposed to represent our Universe with
no cosmological constant, and write the dependence of these func-
tions in terms of a limited number of constant parameters;then fit
these constant parameters to the observed SN Ia data or to the lu-
minosity distance-redshift relation of the standardΛCDM model.

• The inverse problem: consider the luminosity distanceDL(z) as
given by observations or by theΛCDM model as an input and try
to select a specific L–T model with zero cosmological constant best
fitting this relation.

Then, to avoid degeneracy, jump to a further step and try to repro-
duce more andpossibly all the available observational data,Alnes et
al. 2006, Bolejko 2008, Garcia-Bellido and Haugbolle 2008, Hellaby et
al. 2007, 2008.



Example of centered L–T: the GBH model

The GBH void class of L–T model studied byGarcia-Bellido and
Haugbolle 2008a,bis specified by its matter contentΩM(r) and its ex-
pansion rateH(r), governed by 5 free constant parameters and match-
ing to an E-deS universe at large scales. A constrained model with an
homogeneous Big-Bang is also considered.

These models are fitted to a series of observations (CMB, LSS, BAO,
SN Ia, HST measure ofH0, age of the globular clusters, gas fraction in
clusters, kinematic SZ effect for 9 distant galaxy clusters) to constrain
their parameters.
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Two of the six likelihoods for the GBH constrained model: in yellow with 1-, 2-, 3-σ contours= the

likelihood for the combined data set; in blue, purple and green respectively with 1- and 2-σ contours

= the likelihood for the individual SN Ia, BAO and CMB data sets.

Current data do put significant constraints on the models. Current
observationsdo not exclude the possibility that we leave close to the
centre of a large (around 2.5 Gpc) voidwithin an Einstein-de Sitter
Universe, i. e.,no dark energy.



Example of L–T Swiss-cheese: Marra et al.’s model

The model: Lattice of L–T bubbles with radius ≥350 Mpc in E-de
S background. Initially, the void at the center of each hole is domi-
nated by negative curvature and a compensating overdensity matches
smoothly the density and curvature EdS values at the border of the
holeMarra, Kolb, Matarrese and Riotto 2007.

Since the voids expand faster than the cheese, the overdense regions
contract and become thin shells at the borders of the bubbles while un-
derdense regions turn into emptier voids, eventually occupying most of
the volume.

Conclusion: Redshift effects are suppressed by a compensating ef-
fect acting on the size of a half bubble whileevolution, i.e. the pres-
ence of voids,bends the photon paths and affects more photon physics
than inhomogeneity geometry⇒ ΛCDM best reproduced by large
void models which have more time to evolvewhile photons are passing
through.

Applying a fitting approach to the same Swiss-cheese,Marra, Kolb
and Matarrese 2008find no important effects due to global expansion
but sensible ones with respect to density due tostructure evolution.

Future prospects:considerQSS modelswhich exhibit enhanced struc-
ture evolution.



Extracting the cosmic L–T metric from observations

The inverse problem of deriving the arbitrary functions of a L–T
model from observations is very much involved. This is the reason
why most of the authors who have tried to deal with this issue have
addedsome a priori constraints to the modelVanderveld et al. 2006,
Chung and Romano 2006, Tanimoto and Nambu 2007.

LU and Hellaby 2007and McClure and Hellaby 2007initiated a pro-
gram to extract the metric from observations. This isthe full inverse
problem and is not degenerate.To date it has assumed the metric has
the L–T form, as a relatively simple case to start from, though the long
term intention is to remove the assumption of spherical symmetry.

They developed and coded an algorithm that generates the L–T met-
ric functions, given observational data on the redshifts, apparent lumi-
nosities or angular diameters, number counts of galaxies, estimates for
the absolute luminosities or true diameters and source masses, as func-
tions of z. This allows both of the physical functions of an L–T model
to be determinedwithout any a priori assumption on their form.

McClure and Hellaby 2008improved several aspects of the numeri-
cal procedure so that it can handle input data that are subject to sta-
tistical fluctuations.



Horizon problem and inflation

Horizon problem. The comoving region over which the CMB is ob-
served as quasi-homogeneous at the last-scattering surface is much
larger than the intersection of this surface with future light cones issu-
ing from the BB surface. This problem develops sooner or later in any
universe model with a spacelike BB singularity.

Inflation only postponesthe occurrence of the problem.



Permanent solution: DBB L–T model

Theorem: a spherically symmetric model withg00 = [t − b(r)]af (r, t)
exhibits a timelike shell-crossing surface att = b(r) if a > 1/2 and
g′00 , 0.

We have shown that a L–T model witht′B(r) > 0 for all r (delayed
Big-Bang) and some other properties exhibits the conditions of appli-
cation of the above theorem allowing us tosolve permanently the hori-
zon problem with no inflation MNC and Schneider 1998, MNC 2000,
MNC and Szekeres 2002.



Other applications of inhomogeneous solutions

• Study of light propagation and temperature fluctuations of the CMB
in QSS Swiss-cheese models.

Clearly, underdense regions induce negative temperature fluctua-
tions, overdense regions induce positive fluctuations (Rees-Sciama
effect, less than one order of magnitude than the measured rms
temperature fluctuations in the CMB). Although it is highly un-
likely that the signal caused by local structures has a signature of
acoustic oscillations, theselocal structures can have some visible
impact on observationsBolejko 2009.

• CMB low multipoles in L–T models with off-center observer.

Large scale inhomogeneities can affect the amplitude of low-order
multipoles and possibly reproduce the dipole, quadrupole and oc-
topole anisotropies of the CMBSchneider and MNC 1999, Alnes
and Amarzguioui 2006.



Conclusions

• The concordance model is built on a spatially homogeneous back-
ground metric combined with first order perturbation theory to
account for structure formation. Although this assumption yielded
many important successes in cosmology it is not the whole story
and we must not lose sight of the fact thatthe present-day Universe
is actually very inhomogeneous.

• The increasing precision of observational data implies that the use
of FLRW models, which has been appropriate up to now, must be
considered just a zeroth order approximation, and linear perturba-
tion theory a first order approximation whose domain of validity is
an early, nearly homogeneous Universe.

• In the nonlinear regime,which was entered since structures formed,
there is no escape from the use of exact methods (or of averaging
schemes aiming at investigating this issue from the view-point of
backreaction).

• In the era of “precision cosmology”, inhomogeneity effects on the
determination of cosmological models cannot be ignored.

• Exact inhomogeneous solutionscan be employed not only for study-
ing the geometry and dynamics of the Universe, but also to investi-
gatethe formation and evolution of structures.


