Department of Physics, University of Jyväskylä Helsinki Institute of Physics, University of Helsinki GGI, Firenze, January 27, 2009 SIGRAV School in Cosmology

Valerio Marra

in collaboration with Rocky Kolb and Sabino Matarrese

Cosmological background solutions and cosmological backreactions

V. Marra, E. W. Kolb, S. Matarrese, A. Riotto On cosmological observables in a swiss-cheese universe. Phys. Rev. D 76, 123004 (2007)

V. Marra, E. W. Kolb, S. Matarrese Light-cone averages in a swiss-cheese universe. Phys. Rev. D 77, 023003 (2008) E. W. Kolb, V. Marra, S. Matarrese

Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78, 103002 (2008)

V. Marra A back-reaction approach to dark energy. Padua@research ID588; arXiv:0803.3152

The cosmic concordance model

Ω_M	\simeq	0.25
Ω_{DE}	\simeq	0.75
w_{DE}	\simeq	-1

successful, but ..

- coincidence problem
- origin problem

Kowalski et al. 08

A point of view

The "safe" consequence of the success of the concordance model is that the isotropic and homogeneous LCDM model is a good observational fit to the real inhomogeneous universe.

Cosmological backgrounds

• Global Background Solution (GBS)

 $\rho_{GBS} = \langle \rho \rangle_H$ ${}^3\mathcal{R}_{GBS} = \langle {}^3\mathcal{R} \rangle_H$

+ local equation of state

• Average Background Solution (ABS) $\longrightarrow a_H(t) \propto V_H(t)^{1/3}$ [Buchert's background]

 $\rho_{ABS} \neq \langle \rho \rangle_H$ ${}^3\mathcal{R}_{ABS} \neq \langle {}^3\mathcal{R} \rangle_H$

"averaged" equation of state: no local energy conditions

 $\rho_{PBS} \neq \langle \rho \rangle_H$ ${}^3\mathcal{R}_{PBS} \neq \langle {}^3\mathcal{R} \rangle_H$

• Phenomenological Background Solution (PBS)

 $\rightarrow d_L(z)$

Backreactions

Description of the spacetime: GBS, ABS, none? [perturbatively]

Description of the observer: on what does the PBS depend? are all the PBSs the same?

Description of the spacetime

with $\psi \ll 1$

Description of the spacetime

No-go theorems are made by assumptions

reconsider the assumption

"with velocity much smaller than light relative to the Hubble flow" Ishibashi and Wald, 2006

Description of the spacetime

• Phenomenological Peculiar Velocities

small

observations do not see big departures from the *observed* Hubble flow

 Global Peculiar Velocities

to be relaxed

otherwise we assume that - *as a starting point* - the GBS describes the spacetime

small GPV are a restriction on the dynamics of the inhomogeneities

If inhomogeneities alone explain the concordance model, then there will be big GPV wrt EdS-GBS

Big Global Peculiar Velocities

The GBS does not describe the spacetime: hint for Strong Backreaction

> E. W. Kolb, V. Marra, S. Matarrese Phys. Rev. D 78, 103002 (2008)

Description of the observer

• Global Observer

observer comoving with the GBS/ABS Hubble flow

 Phenomenological Observer observer comoving with the PBS Hubble flow

Description of the observer

verifies this reasoning *a posteriori*

Bare principles

• Bare Cosmological Principle homogeneity and isotropy on a large enough scale the ABS (not necessarily the GBS!) describes the universe: insensitive to the scale of averaging

• Bare Copernican Principle

observed isotropy, success of LCDM the PBS (not necessarily the GBS/ABS!) describes observations for every observer, even though not necessarily the same

Swiss cheese

EdS cheese with LTB holes:

$$\frac{\dot{a}^2(r,t)}{a^2(r,t)} = \frac{8\pi G}{3}\,\hat{\rho}(r,t) - \frac{k(r)}{a^2(r,t)}$$

$PBS \neq GBS$

concordance model:

 $\Lambda CDM \text{ with } \Omega_M = 0.3, \ \Omega_{DE} = 0.7$ $q_0 = \Omega_M/2 - \Omega_{DE} = -0.55$

reference model:

EdS model:

 $\Lambda CDM \text{ with } \Omega_M = 0.6, \ \Omega_{DE} = 0.4$ $q_0 = \Omega_M/2 - \Omega_{DE} = -0.1$

 $\Lambda CDM \text{ with } \Omega_M = 1, \ \Omega_{DE} = 0$ $q_0 = \Omega_M/2 - \Omega_{DE} = 0.5$

V. Marra, E. W. Kolb, S. Matarrese, A. Riotto Phys. Rev. D 76, 123004 (2007) V. Marra, E. W. Kolb, S. Matarrese Phys. Rev. D 77, 023003 (2008)

"Hubble bubble" scenario

The GBS describes the spacetime but not the PBSs of the phenomenological observers: Weak Backreaction

Observable backreaction

The PBS is the only one that matters from an observational point of view.

The distinction between strong and weak backreaction is indeed good to lay a framework, but it might be illusory and unphysical.

Only the "end result" matters

Observable Backreaction:

the evolution of inhomogeneities leads the PBS to have an energy content and curvature different from the corresponding local quantities

THANKS