GGI – Workshop Firenze, April 12th, 2007

FLUX COMPACTIFICATIONS (CLEARING THE SWAMPLAND)

Gianguido Dall'Agata (Padua University / INFN)

Flux compactifications in string theory: A Comprehensive review. Mariana Grana (Ecole Normale Superieure & Ecole Polytechnique, CPHT) . LPTENS-05-26, CPHT-RR-049-0805, Sep 2005. 85pp. Published in Phys.Rept.423:91-158,2006. e-Print: hep-th/0509003

Flux compactification.

Michael R. Douglas (Rutgers U., Piscataway & IHES, Bures-sur-Yvette), Shamit Kachru (Stanford U., Phys. Dept. & SLAC & Santa Barbara, KITP). SLAC-PUB-12131, Oct 2006. 68pp. Submitted to Rev.Mod.Phys. e-Print: hep-th/0610102

Part I: An overview of flux compactifications

Setup, problems and solutions

Properties of the effective theories

Part II: Twisted tori (and geometric fluxes)

Part III: Effective theories for general backgrounds

Part IV: Non-geometric backgrounds (Every supergravity from string theory?!)

PART I: OVERVIEW OF FLUX COMPACTIFICATIONS

 String Theory as the ultimate unified theory: no dimensionless free parameters

• But: lives in 10 (or 11) dimensions.

Low energy theory: supergravity

 Standard approach to obtain sensible phenomenology from string theory: compactification

 Field fluctuations in the extra dimensions are seen as masses and couplings in 4d.

 Hence: low energy properties depend on bigb energy choices Compactification Ansatz to 4 dimensions:

 $M_{10} = M_4 \times Y_6$

 $ds^{2}(x,y) = e^{2A(y)} ds_{4}^{2}(x) + e^{-2A(y)} ds_{Y_{6}}^{2}(y)$

Other fields proportional to 4d volume (or independent) Minimal setup: pure geometry

If all fluxes are set to zero F = 0, the only non-trivial equation of motion is the Einstein equation

 $R_{MN} = 0$

Compactification Ansatz to 4 dimensions:

$$M_{10} = M_4 \times Y_6$$

$$ds^{2}(x,y) = e^{2A(y)} ds^{2}_{4}(x) + e^{-2A(y)} ds^{2}_{Y_{6}}(y)$$

Minimal setup: pure geometry

$$R_{MN}(x,y) = 0$$

 $M_4 \ge Y_6$ is a direct product The internal space is Ricci-flatA(y) = 0 $R_{mn}(y) = 0$

•Ansatz $M_{10} = M_4 \times Y_6$

- Supersymmetry $\iff \exists \eta \mid \delta \psi_m = \nabla_m \eta = 0$
- Integrability $\nabla^2 \eta = R^{ab} \gamma_{ab} \eta = 0$

Reduced holonomy Ricci flatness

• Result: Y₆ is a special bolonomy manifold

This is a general result for any geometric reduction

$$M_D \Rightarrow M_d \times Y_{D-d}$$

Special holonomy manifolds were classified by Bergèr (1955):

D-d		Y _{D-d}
6		Calabi-Yau (H=SU(3))
7	A A A	G ₂ -manifolds
8	N. N. N.	Spin(7)

Special-holonomy manifolds specify the vacuum

The lower dimensional effective theories describe the dynamics of the fluctuations around these backgrounds

Se Example: metric fluctuations

$$g_{MN}(x,y) = g_{MN}^0(y) + \delta g_{MN}(x,y)$$

The background is not changed if:

 $R_{MN}\left(g_{MN}^{0} + \delta g_{MN}\right) = 0$

This forces:

$$m_{\delta g_{mn}}^2 = 0$$
 MODULI FIELDS

MODULI SPACE (SPACE OF DEFORMATIONS)

Problem: HUGE VACUUM DEGENERACY

Ser minimal supersymmetry

Y₆ has SU(3) holonomy = Calabi-Yau

Since '86 Standard-Model like vacua have been searched

Heterotic string theory has large gauge groups partially broken by compactification

Huge number of CY manifolds

 \bigcirc Moduli ϕ^i related to the size and shape of Y₆ have flat potential

More modern approach: Intersecting Brane Worlds

Gravity propagates in_ **STANDARD HIDDEN** D=10 **SECTOR** MODEL

Can we remove the vacuum degeneracy?

Search Add non perturbative effects (difficult to compute and control)

Seven-Schwarz and Ramond-Ramond fluxes!

Introducing fluxes constrains the system

Furthermore: introducing fluxes means adding energy to the system

Effective theory is deformed

Vacuum degeneracy may be lifted

No-go theorem forbids this!

THE NO-GO THEOREM (ASSUMPTIONS)

Standard action (no higher curvature corrections) $\alpha' R^2 + \dots$ Q All massless fields have positive kinetic energy \odot Semi-negative definite potential: $V_D \leq 0$ Smooth solution Warped product Ansatz: $ds^{2}(x,y) = e^{2A(y)} \left(ds_{4}^{2}(x) + ds_{Y_{e}}^{2}(y) \right)$

THE NO-GO THEOREM

The trace of the Einstein equation on the space-time indices becomes an equation for the warp factor:

$$(D-2)^{-1} e^{(2-D)A} \nabla^2 e^{(D-2)A} = R_4 + e^{2A} \tilde{T}$$

For a p-form F_p respecting Poincaré invariance

$$\widetilde{T} = -F_{\mu\nu\rho\sigma m_1...m_{p-4}}F^{\mu\nu\rho\sigma m_1...m_{p-4}} + \frac{d}{D-2}\left(1-\frac{1}{p}\right)F^2$$

Integrating by parts (r.h.s positive definite for M_4 or dS)

$$\int_{Y_6} \left(\nabla \mathrm{e}^{(D-2)A} \right)^2 \le 0 \Rightarrow A = const$$

THE NO-GO THEOREM

The trace of the Einstein equation on the space-time indices becomes an equation for the warp factor:

 $0 = R_4 + \mathrm{e}^{2A}\tilde{T}$

For a p-form F_p respecting Poincaré invariance

 $\widetilde{T} = -F_{\mu\nu\rho\sigma m_1...m_{p-4}}F^{\mu\nu\rho\sigma m_1...m_{p-4}} + \frac{d}{D-2}\left(1-\frac{1}{p}\right)F^2$

We are left with 2 options:
1) Minkowski (R₄ = 0) and NO fluxes
2) Anti-de Sitter spacetime (R₄ < 0) with flux

THE NO-GO THEOREM

String theory can avoid (naturally) these constraints. © Exotic theories (Type * theories) Use non-compact manifolds Introduce sources (D-branes and O-planes) Must produce negative tension (O-planes) Generative Higher derivative terms (stringy corrections) Natural in Heterotic theory for anomaly cancellation

MODULI SPACE (SPACE OF DEFORMATIONS)

This is "The Landscape of Flux Compactifications"

WHAT DO WE DO WITH THIS?

Determine the number of different vacua

Determine their properties (classify them)

Extract phenomenology (Λ, α, \dots distribution)

Measure? (anthropic vs. entropic selection)

Dynamical selection

THESE LECTURES' APPROACH:

EFFECTIVE THEORIES (BOTTOM-UP)

What kind of effective theories do we get?

How much can we believe these theories?

Which 4d supergravities have a stringy origin and which ones have not?

Can we realize any 4d sugra from some 10d construction?

© Equivalence classes?

Fluxes generate a potential for the moduli fields: Let us give a v.e.v. to the common sector 3-form $\langle H_{IJK}(x,y)\rangle = h_{IJK}$

The 3-form kinetic term becomes a scalar potential in 4d

 $\int_{M} H \wedge \star H = \int d^4x \, \left(h_{abc} g^{ad}(x) g^{be}(x) g^{cf}(x) h_{def} + \ldots \right)$ $= V(g_{ab})$

But there is more...

Fluxes determine (non abelian) gauge couplings:

 $\int H \wedge \star H = \int d^4x \sqrt{-g_4} \left(\partial_\mu B_\nu{}^a \partial^\mu B^{\nu b} g_{ab} + \partial_\mu B_\nu{}^a g^{\mu b} g^{\nu c} h_{abc} + \ldots \right)$

Vector fields from the metric $g_{\mu I}$ and tensors $B_{\mu I}$

Gauged SUGRA (couplings and potential) fixed by the gauge group (and symplectic embedding)

Jacobi identities = 10/11d Bianchi identities

A LIGHTNING REVIEW OF GAUGED SUPERGRAVITIES

Standard supergravity has a scalar manifold \mathcal{M} describing their σ -model

A subgroup of its isometries are realised as global symmetries

 \bigcirc Deformation
global symmetriesRemarkably: ∂_{μ} No need of $O(g^3)$ terms to
consistently close the action \bigcirc This process modifiesLagrangeanLagrangeanSusy rulesO(g) mass terms $O(g^2)$ potentialO(g) fermion shifts

Explicit realization in 4d: $\{g_{\mu\nu}, \psi^{i}_{\mu}, A^{I}_{\mu}, \lambda^{A}, \phi^{a}\}$ Consider the isometries $\delta \phi^a = \epsilon^{\alpha} k^a_{\alpha}(\phi)$ A subgroup can be gauged by the vector fields $D_{\mu}\phi^{a} = \partial_{\mu}\phi^{a} + \Box$ Geometric relations $D_a S_{ij} = \mathcal{N}_i^A e^a_{Aj} + k^a_I f^I_{ij}$ Modified SUSY rules $\delta \psi^i_{\mu} = D_{\mu} \epsilon^i + h_I(\phi) F^{I \nu \rho} \gamma_{\mu \nu \rho} \epsilon^i + g \gamma_{\mu} S^{ij} \epsilon_j$ $\delta\lambda^A = e^A_{ai}(\phi) D\phi^a \epsilon^i + f^A_I(\phi) \gamma^{\mu\nu} F^I_{\mu\nu} \epsilon^i + g N^A_i \epsilon^i$ Scalar potential: $\mathcal{V} = N_A^i g^A {}_B N_i^B - \operatorname{tr} S^2$

✓ Introducing fluxes generates a backreaction on Y₆ (and its moduli space)

So The 4d effective theory has a potential

Moduli acquire mass

Which modes should we keep?

"Small fluxes" approximation

"Small fluxes" approximation

For zero fluxes the geometry is given $M_{10} = M_4 \times Y_6$ Turning on fluxes $d \star H = \dots$

$$R_{mn} = H_m{}^{ij}H_{nij} + \dots$$

Other issues:

 Consistent truncations vs. Effective theories (do we actually need a vacuum?)
 Effective potentials may not contain all the 10d information

AN EXAMPLE: IIB ON CALABI-YAU + FLUXES (T⁶/Z₂XZ₂ WITH O-PLANES)

Reminder of IIB action and Bianchi

$$S = \frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} e^{-2\Phi} \left(R + 4\partial_\mu \Phi \partial^\mu \Phi - \frac{1}{2} H^2 \right)$$

$$\frac{1}{4\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(F_1^2 + \tilde{F}_3^2 + \frac{1}{2}\tilde{F}_5^2 + \frac{1}{2}\tilde{F}_5^2 + \frac{1}{4\kappa_{10}^2} \int C_4 \wedge H_3 \wedge F_3 \right) d\tilde{F}_5 = 0$$

$$\tau \equiv C_0 + i \mathrm{e}^{\Phi} \quad G_3 \equiv F - \tau H$$

$$d ilde{F}_5 = H_3 \wedge F_3$$

 $d ilde{F}_3 = H_3 \wedge F_1$

AN EXAMPLE: IIB ON CALABI-YAU + FLUXES (T⁶/Z₂XZ₂ WITH O-PLANES)

 \bigcirc A very simple (singular) Calabi–Yau manifold is the $Z_{2x}Z_{2}$ orbifold of T⁶

[©] The orbifold action is

	4	5	6	7	8	9
Z_2	_	_	_	_	+	+
Z_2	+	+	_	_	_	_
$Z_2 \ge Z_2$	-	_	+	+	_	_

 \bigcirc This results in a factorized $(T^2)^3$

Each torus has one complex structure modulus Uⁱ and one Kæhler modulus Tⁱ

The complex structure moduli are

$$U^{i} = \frac{1}{g_{11}^{i}} \left(\sqrt{\det g^{i}} + i g_{12}^{i} \right) \text{ where } g^{i} = \left(\begin{array}{cc} g_{11}^{i} & g_{12}^{i} \\ g_{12}^{i} & g_{22}^{i} \end{array} \right)$$

The Kæhler moduli are

 $T^i = c^i + i\sqrt{\det g^i}$

They also follow as deformation parameters of the complex structure

 $\Omega = \alpha_{\Lambda} X^{\Lambda}(U) - \beta^{\Lambda} F_{\Lambda}(U) \quad \text{with} \quad \alpha, \beta \in H^{3}(M, \mathbb{R})$ $\star_{6} C_{4} + iJ = T^{i} \omega_{i} \quad \text{with} \quad \omega \in H^{2}(M, \mathbb{R})$ We can actually write the surviving basis of 3-forms

 $\Omega = \left(dy^4 + U^1 dy^5\right) \wedge \left(dy^6 + U^2 dy^7\right) \wedge \left(dy^8 + U^3 dy^9\right)$

And of 2-forms

 $dy^4 \wedge dy^5$ $dy^6 \wedge dy^7$ $dy^8 \wedge dy^9$

 $\star_6 C_4 + iJ = T^1 dy^4 \wedge dy^5 + T^2 dy^6 \wedge dy^7 + T^3 dy^8 \wedge dy^9$

The moduli describe Kæhler manifolds with potentials

$$K_{cs} = -\log\left[i\int\Omega\wedge\overline{\Omega}\right]$$
$$K_{k} = -\log\frac{4}{3}\left[\int J\wedge J\wedge J\right]$$

plus a factor for the axio/dilaton S

$$K_S = -\log\left(S - \bar{S}\right)$$

Before introducing fluxes the solution is flat

$$ds_{10}^2 = e^{2A(y)} \left(-dy_0^2 + dy_1^2 + dy_2^2 + dy_3^2 \right) + e^{-2A(y)} \left(\sum_{i=4}^9 (dy_i)^2 \right)$$

$$G = H_{NS} - SF_{RR} = \left(h^{\Lambda} - Sf^{\Lambda}\right)\alpha^{\Lambda} - \left(h_{\Lambda} - Sf_{\Lambda}\right)\beta^{\Lambda}$$

The backreaction on the geometry generates only a warping in the geometry

$$\nabla^2 e^{4A} = e^{2A} \frac{G_{mnp}\overline{G}^{mnp}}{6i(\overline{S}-S)} + \frac{e^{-6A}}{4} \partial_m \alpha \partial^m \alpha + \rho^{loc}$$

Consistency further imposes that the flux gives a solution to the equations of motion only if it is of type imaginary self dual (ISD), i.e.

 $G + i \star G = 0$

Supersymmetry further restricts to type (2,1) and primitive, i.e.

 $G^{(3,0)} = G^{(0,3)} = G^{(1,2)} = 0$ and $J \wedge G = 0$ Let us now describe the deformation to the effective action

No-backreaction approximation justified because full solution is warped Calabi-Yau:

 $ds^{2} = e^{2A(y)} \left(-dx_{0}^{2} + dx_{1}^{2} + dx_{2}^{2} + dx_{3}^{2} \right) + e^{-2A(y)} ds_{CY}^{2}(y)$

For "small" fluxes $e^{2A(y)} \sim 1$

Light fields are CY moduli

Masses are related to the warp-factor

 $\phi^{i} \sim \text{harmonic forms} \qquad A(y) \Rightarrow m_{\phi^{i}}^{2} \neq 0$

The scalar potential follows from reduction of the 3form kinetic term

 $V = -\frac{1}{2} \int_{Y_6} \frac{G \wedge \star \overline{G}}{i(\overline{S} - S)} = -\frac{1}{2} \int_{Y_6} \frac{G^+ \wedge \star \overline{G}^+}{i(\overline{S} - S)} + \int_{Y_6} \frac{G \wedge \overline{G}}{(\overline{S} - S)}$

4d potential topological term

$$G^+ \equiv \frac{1}{2}(G + i \star G)$$

The topological term is used to cancel tadpoles

$$dF_5 = -iG \wedge \overline{G} + \rho^{loc}$$

Integrated $\longrightarrow e \times m + Q^{loc}(N_{D3}, N_{O3}, N_{D7}, ...) = 0$

For small fluxes G⁺ can be expanded on the basis of harmonic 3-forms and we get the N=1 potential

$$V = e^{K} \left(g^{a\overline{b}} D_{a} W \overline{D}_{\overline{b}} \overline{W} - 3|W|^{2} \right)$$

for the famous superpotential

 $W = \int G \wedge \Omega$

which depends only on the axio/dilaton and complex structure moduli

$$W = c_i U^i + d_i S U^i$$

The consequences are:

We cannot stabilize all the moduli (no Kæhler dependence)

The potential is positive definite (no-scale model)

The only supersymmetric vacua are Minkowski

We can use the effective superpotential to describe the 10d vacua by minimizing W:

$$D_{U^i}W \equiv \partial_{U^i}W + \partial_{U^i}KW = \int G \wedge \chi_i^{(2,1)}$$

 $D_{T^{i}}W \equiv \partial_{T^{i}}W + \partial_{T^{i}}KW = \partial_{T^{i}}K \int G \wedge \Omega$

 $D_S W \equiv \partial_S W + \partial_S K W = \frac{1}{\bar{S} - S} \int \bar{G} \wedge \Omega$

 $G^{(3,0)} = G^{(0,3)} = G^{(1,2)} = 0$

No conditions on $G_{NP}^{(2,1)}$