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Motivations

The confidence regions coming from SN Ia, 
CMB and BAO.
• The flat universe without Λ is ruled out.

• The compilation of cosmological data sets
the need for a dark energy dominated
universe with  ΩM ≈ 0.274, ΩDE ≈ 0.726.

Combination of SNe with
BAO (Eisenstein et. al., 2005)
CMB (WMAP-5 year data, 2008)

(Marek Kowalski 2008)
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They can provide an alternative to understand the 
nature of the Dark Matter and Dark Energy 
components of the Universe.



• Advantages over DM + DE (ΛCDM):
- there is a single fluid that behaves both as DM and DE,

• Disadvantages over DM + DE (ΛCDM):
- Success of UDM models strongly depend on the effective speed of sound. 
Indeed the speed of sound must be small enough such that there are no negative    
consequences for CMB anisotropies and for the formation of the structures in the Universe.
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- Purely k-essence model by Scherrer (2005) 
Merits: during matter epoch and today if we impose                  cs ≈0 ,  p ≈ - Λ

and the fluid behaves like  DM + Λ .
Drawbacks : very strong constraint at small scale:                       

(Giannakis & Hu 2005)   in order to produce halos able to reionize the universe.
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- Purely k-essence model by Scherrer (2005) 
Merits: during matter epoch and today if we impose                  cs ≈0 ,  p ≈ - Λ

and the fluid behaves like  DM + Λ .
Drawbacks : very strong constraint at small scale:                       

(Giannakis & Hu 2005)   in order to produce halos able to reionize the universe.

- Generalized Scherrer Solutions (Bertacca et  al 2007)
Merits: 1) similar to Scherrer model,  for                   during matter epoch and today, cs ≈0,  

p ≈ - Λ and  the fluid behaves like  DM + Λ.
2) The constraint is less strong for high values of n. Indeed

because we want  UDM to behave like dark matter at least since the epoch of    
matter-radiation equality.

Drawbacks: similar to Scherrer model.
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UDM with Lagrangian  L(φ,X) 

• Let us consider a generic fluid. In the FRW background, p=p(N), ρ=ρ(N), where 
N=log(a),  and the continuity equation is (dρ/dN)(N) + 3ρ(N)= - 3p(N)

Imposing any type of pressure during the various epochs of the Universe, we obtain a
term that behaves like pressure-less matter (in the Cosmological Background)
E.g. if p= -Λ on cosmological scale this fluid reproduces the background of 

the ΛCDM model
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• If this fluid is described by a generic scalar field Lagrangian, then the value of p and 
ρ can be described with this scalar field                        in the following way

and equation of state 
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• If this fluid is described by a generic scalar field Lagrangian, then the value of p and 
ρ can be described with this scalar field                        in the following way

and equation of state 

• Then we can reconstruct scalar field models with Lagrangian with 
non-canonical kinetic term to obtain Unified Dark Matter Models (UDM) that   
describe both Dark Matter and Dark Energy (or a Cosmological Constant)
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The role of the (effective) speed of sound cs in UDM Models
In UDM models there are two simple but important aspects: 
1. The fluid which triggers the accelerated expansion at late times is also the 

one which has to cluster in order to produce the structures we see today. 
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2. From the last scattering to the present epoch, the energy density of the 

universe is dominated by a single dark fluid, and therefore the gravitational 
potential evolution is determined by the background and perturbation 
evolution of just such a fluid. 

The result of this general trend is that the possible appearance of cs ≠ 0, where

corresponds to the appearance of a non zero Jeans length. It makes the
oscillating behavior of the dark fluid perturbations below the Jeans length
immediately visible through a strong time dependence of the gravitational 
potential  (Bertacca & Bartolo 2007).
One can verify that the scalar field fluctuations oscillate and decade in time as
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UDM with Lagrangian  L(φ,X) D. Bertacca, N.Bartolo, A.Diaferio & 
S. Matarrese, JCAP 0810:023,2008

Therefore the speed of sound plays a major role in the evolution of the scalar 
field perturbations and in the growth of the over-densities. If cs is significantly 
different from zero it can alter the evolution of density of linear and non-linear 
perturbations [(Hu 1998) and (Giannakis & Hu 2005) ].

Finally, when cs becomes large at late times, this leads to strong deviations 
from the usual ISW effect  of ΛCDM models (Bertacca & Bartolo 2007) .
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Finally, when cs becomes large at late times, this leads to strong deviations 
from the usual ISW effect  of ΛCDM models (Bertacca & Bartolo 2007) .

In order to have cs small enough such that the cosmic structure can form,

let us consider the following Lagrangian L(φ,X) = f(φ)g(X)-V(φ).
Then

In this case we can decouple the equation of state w and the speed of 
sound cs!

This condition does not occur when we consider either Lagrangians with 
purely kinetic term (Ex, adiabatic fluid p=p(ρ)) or Lagrangians L = f(φ)g(X) 
or L = g(X)-V(φ)! 
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UDM Lagrangian L(φ,X) = f(φ)g(X)-V(φ) D. Bertacca, N.Bartolo, A.Diaferio & 
S. Matarrese,     JCAP 0810:023,2008

• For L(φ,X) = -Λ along the classical trajectories on comological scale.

• Assuming that the kinetic term is of the Infield type           .

• Imposing that 

• → we can derive X(a), φ(a), during various 
epochs, and, finally, we can reconstruct 
the functional form of  f(φ) and V(φ).

During the radiation-dominated epoch, once 
the initial value of φ(a~0) is fixed, there is a large
basin of attraction in term of the initial value of the 
kinetic term such that we can assume 
X(a~0)<< Λ / 2 .
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• Starting  from Lagrangians with non-canonical kinetic terms we have  

investigated the possibility that the dynamics of a single scalar field can 
account for a unified description of DM and DE sectors.
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Future works:
• With Bartolo and Corasaniti, I am studying the constraints on power 

spectrum from current observation of large-scale structure of the universe 
• With Diaferio and Camera, I am studying the weak lensing cosmic 

convergence and shear signal power-spectrum.
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