Direct Dark Matter Searches: an Overview

GGI Conference on Dark Matter

Florence, February 9, 2009

Laura Baudis

University of Zurich

Goal of Direct Detection Experiments

 Detect new, yet undiscovered particles, which may be responsible for the dark matter in our galaxy. Example: WIMPs = heavy (few GeV - few TeV), color and electrically neutral; in thermal equilibrium with the rest of the particles in the early universe, freeze out when M_W>>T_F

Laura Baudis, University of Zurich, GGI Dark Matter Conference, February 9, 2009

Strategy for WIMP Direct Detection

- Elastic collisions with atomic nuclei
- Rates depend on: $[m_X, \sigma]$, $[f(v), \rho_0]$, $[N, E_{th}]$...

$$\frac{dR}{dE_R} = \frac{\sigma_0 \rho_0}{2m_{\chi} \mu^2} F^2(E_R) \int_{v > \sqrt{m_N E_R/2\mu^2}}^{v_{\text{max}}} \frac{f(\vec{v},t)}{v} d^3 v$$

with WIMP-nucleon cross sections
 < 10⁻⁷ pb, the expected rates are

< 1 event/100kg/day

• Energy of recoiling nuclei

$$\boldsymbol{E}_{\boldsymbol{R}} = \frac{\left| \boldsymbol{\vec{q}} \right|^2}{2\boldsymbol{m}_N} = \frac{\mu^2 v^2}{\boldsymbol{m}_N} (1 - \cos \theta) \le 50 \ \boldsymbol{keV}$$

A Dark Matter Disk in The Milky Way

- from ACDM numerical simulations which include the influence of baryons on the dark matter [J. I. Read, G. Lake, O. Agertz, V. P. Debattista, MNRAS 389, 1041, 2008]
- the stars and gas significantly alter the local phase space density of dark matter
 - ➡ stars and gas settle onto the disk early on (z=1), affecting how smaller dark matter halos are accreted
 - the largest satellites are preferentially dragged towards the disk by dynamical friction, then torn apart
 - the material from the satellites settles into a thick disk of stars, and dark matter
 - ➡ the dark matter density in the disk is constrained to about 0.25 2 x halo density

Laura Baudis, University of Zurich, GGI Dark Matter Conference, February 9, 2009

A Dark Matter Disk in The Milky Way

- The solar system is embedded into the macroscopic structure of the dark disk
- the local density is constrained by $\delta = \frac{\rho_{Disk}}{\rho_{SHM}} \le 2$
- the velocities and dispersions are taken as $v_{disk} = [0, 50, 0] km \cdot s^{-1}; \sigma_{disk} = 50 km \cdot s^{-1}$
 - the dark disk increases the rates at low recoil energies and provides and modifies the shape of the recoil spectrum, depending on the WIMP mass

Direct Detection Techniques

In this talk: only recent results (2007-2008) and status of near future projects

DAMA/LIBRA 2008

modulation of event rate confirmed in 2008

- 25 Nal detectors a 9.7 kg; each viewed by 2 PMTs (5.5-7.5 p.e./keVee)
- 4 years of data taking: 192 x 10³ kg days

residuals from average rate 2-4 keV

DAMA/LIBRA 2008

signal in region dominated by PMT noise (does the tail of the noise distribution modulate?)

signal very close to threshold

modulation of a peak around 3 keV?

what is the contribution of the ⁴⁰K 3 keV X-ray in the singles spectrum?

DAMA Signal and Existing Experimental Limits at Low WIMP Masses

Ion channeling effect: scattered ion parallel to crystal axis will undergo small-angle scattering which will channel it along the gaps in the lattice; such an ion has lower dE/dx, yielding increased light, effectively reducing the energy threshold for low-energy nuclear recoils

Channeling: has not yet been demonstrated for nuclear recoils starting from a lattice site, only for incident ion beams; should be tested in dedicated experiment

+ many other papers....

Laura Baudis, University of Zurich, GGI Dark Matter Conference, February 9, 2009

New Experimental Results at Low WIMP Masses

TEXONO: 4 x 5 g Ge

CoGeNT: 500 g PPC Ge

Limits from indirect detection of ν 's (SuperK)

The COUPP Experiment

 superheated liquid -> detects single bubbles induced by high dE/dx nuclear recoils; advantage: large masses, low costs, SD, SI (I, Br, F, C), high spatial granularity, 'rejection' of ERs 10¹⁰ at 10keV_r; challenge: reduce alpha background

CDMS Results from the Soudan Mine

• 30 Ge (4.75 kg) and Si (1.1 kg) detectors at ~ 20 mK in 5 towers

- Run 123+124: 163 live days, results published in PRL102 (2009) 011301
- Run 125-128: 240 live days under analysis, first results in summer 09 (sensitivity reach ~ 1x10⁻⁴⁴ cm²)

Cryogenic mK Experiments: Near Future

CRESST at LNGS

10 kg array of 33 CaWO₄ detectors new 66 SQUID channel array - new limit from operating 2 detectors (48 kg d) published in 2008, arXiv:0809.1829v1

- new run in progress

EDELWEISS at LSM

10 kg (30 modules) of NTD and NbSi Ge detectors in new cryostat

- new charge electrodes
- 100 kg d under analysis
- data taking in progress

CDMS/SuperCDMS at Soudan

CDMS-II run 129 in progress SuperCDMS detectors (1" thick ZIPs, each 650 g of Ge) have been tested Installation of first SuperTower at Soudan in spring 2009 **Goal: 5 x 10⁻⁴⁵ cm² with 16 kg Ge**

Ar (A = 40); λ = 128 nm Xe (A=131); λ = 175 nm

- Dense, homogeneous targets/detectors; high light and charge yields
- **Prompt (S1) light signal** after interaction in active volume; charge is drifted, extracted into the gas phase and detected as **proportional light (S2**)

The XENON10 Experiment at LNGS

- 22 kg LXe (15 kg in active volume)
- 89 1"x 3.5cm R8520 PMTs, in 2 arrays
 - → x-y position from PMT hit pattern; $\sigma_{x-y} \approx 1 \text{ mm}$
 - ⇒ z-position from Δt_{drift} (v_{d,e-} ≈ 2mm/µs), σ_Z ≈0.3 mm
- backgrounds: dominated by detector materials, well understood

XENON10 WIMP Search Data

- WIMP search run Aug. 24. 2006 Feb. 14, 2007: ~ 60 (blind) live days
- **136 kg-days exposure** = 58.6 live days \times 5.4 kg \times 0.86 (ϵ) \times 0.50 (50% NR acceptance)

WIMP 'Box' defined at

50% acceptance of NRs (blue lines): [Mean,-3σ]

10 events in 'box' after all cuts 7.0 (^{+1.4} -1.0) statistical leakage expected from the gamma (ER) band

NR energy scale based on constant 19% QF

XENON10 WIMP Search Results for SI and SD Interactions

- To set limits: all 10 events considered, thus no background subtraction performed
 ⇒ probed the elastic, SI WIMP-nucleon σ down to ≈ 4 × 10⁻⁴⁴ cm² (at M_{WIMP} = 30 GeV)
- natural Xe: ¹²⁹Xe, 26.4 %, spin 1/2, ¹³¹Xe, 21.2%, spin 3/2
- use shell-model calculations by Ressel and Dean [PRC 56, 1997] for <S_n>, <S_p>

New measurements of the Light Yield in LXe

- Columbia + Zurich: at RaRAF (Nevis Labs), 1 MeV n-beam
- Detector: XeCube, 6 R8520 PMTs, 2.5 cm³ LXe, zero field
- New experiment for charge/light yield under preparation at UZH (using D-D neutron generator)

WIMP Mass [GeV/c²]

The ZEPLIN-III Experiment at the Boulby Mine

- Two-phase xenon TPC: 12 kg of LXe in active volume
- 31 x 2" PMTs detect both primary and proportional light signal
- field: 3.9 kV/cm in liquid, 7.8 kV/cm in gas
- backgrounds (about 10× higher than in XENON10):
 - dominated by radioactivity of PMTs

ZEPLIN-III WIMP Search Data and Results

• WIMP search data: 127 kg days (after cuts) in 6.7 kg fiducial

- 7 events observed in the 'WIMP box', 11.6 ± 3.0 events expected (from non-blind WS data)
- Consistent with zero signal, 90% upper signal limit of 2.9 events

LXe TPCs: near future

- XENON100: under commissioning at LNGS, expected to start WS run in spring 2009
- 170 kg (100 kg in active veto) LXe, viewed by 242 PMTs, 30 cm ∅, 30 cm drift
- Goal: factor 100 lower background, factor 10 higher mass than XENON10

XENON100 Light Detectors

• 242 (Hamamatsu R8520) 1"x1", low radioactivity PMTs; 80 with high QE of 33%

- ⇒ 98 top: for good fiducial volume cut efficiency
- ➡ 80 bottom: for optimal S1 collection efficiency (thus low threshold); 64 in active LXe shield
- PMT gain calibration with blue LEDs; the SPE response is measured

top PMT array (gain equalized to 2x10⁶)

bottom PMT array (gain equalized to 2x10⁶)

Preliminary Background from XENON100 Data

data (S1 only)

Monte Carlo simulations

Data and Monte Carlo predictions are in good agreement for overall rate

Next Step: The Xenon100 Upgrade

- 100 kg fiducial mass (total of 260 kg LXe), background 5x10⁻⁴ events/(kg day keV)
- new photon detectors, QUPIDs; ultra-low BG Cu cryostat, new shield, including muon veto
- construction 2010; WIMP search 2011-2012

The LUX Experiment

• 300 kg dual phase LXe TPC (100 kg fiducial), with 122 PMTs in large water shield with muon veto

- 50 kg LXe prototype with 4 R8778 PMTs being assembled and tested at CWRU
- full detector to be installed at Homestake Davis Cavern, 4850 ft in fall 2009 (in 8 m Ø water tank)
- WIMP sensitivity goal: 7 × 10⁻¹⁰ pb after 10 months

R. Gaitskell, IDM08, Stockholm

Two-phase Argon Detectors

ArDM at CERN

WARP at LNGS 3.2 kg LAr operated at LNGS; results from zero events > 55 keVr

140 kg LAr, 41 3" PMTs under construction active LAr shield: ~ 8t, viewed by 300 PMTs

1 t LAr prototype under construction direct electron readout via LEMs (thick macroscopic GEM) S1 with 14 x 8" PMTs

(b) WIMP Exposure of 96.5 kg • day

Directional Detectors: gas TPCs

DRIFT at Boulby

DRIFT

negative ion (CS₂) TPC: $1 \text{ m}^3 40 \text{ Torr CS}_2$ gas (0.17 kg); 2 mm pitch anode + crossed MWPC

- NR discrimination via track morphology

- 3D track reconstruction for recoil direction: find head-tail of recoil based on dE/dx

- new run in 2007/08 at Boulby with strongly reduced Rn backgrounds

DM-TPC

low-pressure CF₄ gas TPC: 50 Torr

- 40 keV recoil ~ 1-2 mm track
- PMTs for trigger => z information
- CCD images avalanche region => E and x-y
- head-tail of recoil based on dE/dx
- 2 x 10^{-2} m³ modules under commissioning at
- MIT and ready for operation at WIPP in 2009
- 1 m³ detector being designed (0.25 0.5 kg/m³)

Summary/Outlook

- Many different techniques/targets are being employed to search for dark matter particles
- Steady progress in the last ~ 10 years: > factor 100 increase in sensitivity!

Summary/Outlook

- Experiments are probing some of the theory regions for WIMP candidates
- Next generation projects: should reach the $\leq 10^{-10}$ pb level => WIMP (astro)-physics

End

Inelastic Dark Matter: an explanation for DAMA/ LIBRA signal?

• possible explanation for DAMA signal and null results for other experiments by:

- suppressing signals on lighter vs heavier target
- enhancing the modulated vs unmodulated signal (20-30%), because the model is sensitive to the high velocity component of the halo
- eliminating low energy events; signal peaks at higher energies (70 keV for Ge, 35 keV for I/Xe, 25 keV for W)

• needed:

- → 2 dark matter states with a mass splitting of about 100 keV (by "coincidence" equal to $m_X v^2$)
- ➡ WIMP-nucleus scattering occurs through a transition to an WIMP excited state
- → elastic scattering ($\chi N \rightarrow \chi N$) must be forbidden, or highly suppressed
- → inelastic scattering ($\chi N \rightarrow \chi^* N$) is allowed

$$\begin{split} &\delta = m_{\chi^*} - m_{\chi} \sim \beta^2 m_{\chi} \sim 100 \text{ keV} \\ &\frac{v^2 \mu_{\chi N}}{2} > \delta \\ &\frac{100 \text{ keV}}{100 \text{ keV}} \end{split}$$

Inelastic Dark Matter: an explanation for DAMA/ LIBRA signal?

- The mass splitting is comparable to the kinetic energy of a WIMP in the halo
- Only WIMPs with sufficient kinetic energy to up-scatter into the heavier state will scatter off nuclei in a detector:

- Minimum velocity requirement: experiments will probe the higher velocity region of the WIMP halo distribution
- Heavier targets will be favored over light targets

Inelastic Dark Matter: an explanation for DAMA/ LIBRA signal?

• Some benchmark points:

#	m_{χ}	σ_n	δ	DAMA	XENON	CDMS	ZEPLIN	KIMS	CRESST	
				2-6 keVee	4.5-45 keV	10-100 keV	5-20 keVee	3-8 keVee	12-60 keV	
	(GeV)	$(10^{-40}{ m cm}^2)$	(keV)	(10^{-2} dru)	(counts)	(counts)	(counts)	(10^{-2} dru)	(counts)	
$_{\mathrm{expt}}$				1.31 ± 0.16	24 (31.6)	2(5.3)	29 (37.2)	5.65 ± 3.27	6 (10.5)	obs. # events
1	70	11.85	119	0.93	1.39	0	8.81	0.77	8.92	pred. # events
2	90	5.75	123	1.25	5.52	0	14.87	1.62	9.38	
3	120	3.63	125	1.24	9.06	0.26	18.61	2.27	9.64	
4	150	2.92	126	1.21	11.17	1.19	20.55	2.63	9.82	
5	180	2.67	126	1.18	12.46	2.22	21.69	2.85	9.93	
6	250	2.62	127	1.14	14.01	3.95	23.03	3.12	10.02	

 Upcoming results from Ge (peak at ~70 keV), Xe (35 keV), I (35 keV) and W (25 keV) should test this explanation for the DAMA signal!