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Standard model

The Standard Model (SM) is a synthesis of three of the four forces of nature described by gauge theories with
coupling constants:

Strong Interactions: ↵s ⇠ 1
Electromagnetic interactions: ↵em ⇡ 1/137
Weak interactions: GF ⇡ 10�5 GeV�2.

Basic constituents of matter:
Six quarks, u, d, s, c, b, t , each in 3 colors, and six leptons e, ⌫e, µ, ⌫µ, ⌧, ⌫⌧
The quarks and leptons are classified into 3 generations of families.
The interactions between the particles are mediated by vector bosons: the 8 gluons mediate strong
interactions, the W± and Z mediate weak interactions, and the electromagnetic interactions are carried
by the photon �.
The weak bosons acquire a mass through the Higgs mechanism.
The SM is a local gauge field theory with the gauge group SU(3) ⇥ SU(2) ⇥ U(1) specifying the
interactions among these constituents.

Masses in the Standard Model

Parameters Number Comments
Masses of quarks 6 u, d, s light

c, b heavy
t = 175 ± 6 GeV

Masses of leptons 6 e, µ, ⌧
M⌫e, ⌫µ, ⌫⌧ non-zero

Mass of W± 1 80.3 GeV
Mass of Z 1 91.2 GeV
Mass of gluons, � 0 (Gauge symmetry)

Mass of Higgs 1 125.35(15) GeV
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QCD versus QED

QCD is the theory of strong interactions formulated in terms of quarks and gluons as the basic degrees
of freedom of hadronic matter.
Conventional perturbative approach cannot be applied for hadronic process at scales

⇠
< 1 GeV since the

strong coupling constant ↵s ⇠ 1
=) we cannot calculate the masses of mesons and baryons from QCD even if we are given ↵s and the
masses of quarks.
Bound state in QCD very different from QED e.g. the binding energy of a hydrogen atom is to a good
approximation the sum of it constituent masses. Similarly for nuclei the binding energy is O(MeV). For
the proton almost all the mass is attributed to the strong non-linear interactions of the gluons.
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QCD on the lattice

Why Lattice QCD?
Discrete space-time lattice acts as a non-perturbative regularization scheme with the lattice spacing a
providing an ultraviolet cutoff at ⇡/a ! no infinities. Furthermore, renormalized physical quantities have
a finite well behaved limit as a ! 0.
Can be simulated on the computer using methods analogous to those used for Statistical Mechanics
systems. These simulations allow us to calculate correlation functions of hadronic operators and matrix
elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees
of freedom.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant ↵s and the masses
of the up, down, strange, charm and bottom quarks (the top quark is too short lived).
=)Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly
from the QCD Langragian.
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Scalar field theory

Let the continuum~r be defined on lattice points i.e. ~r ! ~n ⌘ (n1, n2, n3)a where a is the lattice spacing.
=) equivalent to many-body problem where:

x̂i , p̂i ! �̂(~n), ⇡̂(~n) x̂i |xi = xi |xi ! �̂(~n) = �(~n) |�i .

We then have

Z
d3r

⇢
1
2
⇡2(~r) +

1
2

|~r�(~r)|2 + V (�(~r))
�

!

X

~n

a3

(
1
2
⇡2(~n) +

1
2a2

3X

i=1

|�(~n + aµi ) � �(~n)|2 + V (�(~n))

)

where µi denotes a displacement by one lattice site in the i th direction.
The evolution operator in Euclidean time:

e�t
P
~n a3

n
1
2⇡

2(~n)+F (�(~n))
o

=

Z
D[�(~n)]e

��ta3 P
~n,k


1

2�t2
(�k+1(~n)��k (~n))2+F (�k (~n))

�

Take isotropic lattice i.e. �t = a
=) time slicing replaces p̂i2(~n) by 1

�t (�k+1(~n) � �k (~n))2
⌘

1
�t (�(n + aµ0) � �(n))2 which has the same

structure as the discrete spatial derivative and where n = (n0, n1, n2, n3)a.

=) O(�)e�t
R

d3 r
n

1
2⇡

2(~r)+ 1
2 |~r�(~r)|2+V (�(~r))

o

!

Z
D[�(n)]O(�)e�Scl [�]

where Scl[�] =
P

n a4
⇢P3

i=0
(�(n+aµi )��(n))

2

a2 + V (�(n))
�

.

Note that Scl is completely symmetric in time and space ! if we choose periodic b.c. then the shortest
dimension acts as a finite temperature.
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Coherent States for bosons

For the Feynman path integral of the 1-d QM example we needed:
Eigenstates of x̂ , x̂ |xi = x |xi and
Unity:

R
dx |xi hx| = 1

The analogs for creation and annihilation operators are provided by boson coherent states.
Consider a creation operator a† then


â, â†

�
= 1 â†

|ni =
p

n + 1 |n + 1i â |ni =
p

n |n � 1i |ni =
1

p
n!

⇣
â†
⌘n

|0i

Define the coherent state |zi by

|zi ⌘ eza†
|0i =

X

n

zn

n!

⇣
â†
⌘n

|0i =
X

n

zn

p
n!

|ni

Properties:

â |zi =
X

n

zn

p
n!

â |ni = z
X

n

zn�1

p
(n � 1)!

|n � 1i = z |zi

hz| z0
i =

X

mn

hm|
z⇤m

p
m!

z0n
p

n!
|ni = ez⇤z0

hz| : A(â†â) : |zi
0 = ez⇤z0A(z⇤, z0) (1)

1 =

Z dzdz⇤

2⇡i
e�z⇤z0

|zi hz|
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⇣
â†
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Generalize for a set of creation operators â†
↵

|zi = e
P
↵ z↵ â†↵ |0i

â↵ |zi = z↵ |zi

hz| : A(â†â) : |zi
0 = e

P
↵ z↵Z0

↵A(z⇤, z0)

1 =

Z Y

↵

dz↵z⇤
↵

2⇡i
e�z⇤↵z0↵ |zi hz| ⌘

Z
dµ(z) |zi hz|
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Path integral using coherent states

Time slicing the evolution operator:

hzf | e�tH
|zii = hzf | e��tH

Z
dµ(zN�1) |zN�1i hzN�1| e��tH

Z
dµ(zN�2) · · · e��tH

|zii

The matrix element of the infinitesimal evolution operator is

dµ(zk ) hzk | e�tH
|zk�1i =

Y

↵

dz⇤
k,↵dzk,↵

2i⇡
e�

P
↵ z⇤k,↵(zk,↵�zk�1,↵)��tH(z⇤k,↵,zk�1,↵)

resulting in

hzf | e�tH
|zii =

Z
D[z⇤

k,↵, zk,↵]e
�S(z⇤k,↵,zk,↵)

S(z⇤, z) =
X

k

�t

(
X

↵

z⇤
k,↵

✓
zk,↵ � zk�1,↵

�t

◆
+ H(z⇤

k,↵, zk�1,↵)

)
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Coherent states for fermions

Fermions are represented by anti-commuting creation and annihilation operators c†
↵ and c↵ ! need to

introduce anti-commuting Grassmann variables ⇠ such that

ĉ↵ |⇠i = ⇠↵ |⇠i ĉ↵ĉ� |⇠i = ⇠↵⇠� |⇠i = �⇠�⇠↵ |⇠i = �ĉ� ĉ↵ |⇠i

Since ⇠2
↵ = 0 (Pauli principle) the only functions allowed are monomials.

The rules for integration over a Grassmann variable ⇠ and ⇠⇤ are

Z
d⇠↵ =

Z
d⇠⇤↵ = 0,

Z
d⇠↵⇠↵ =

Z
d⇠⇤↵⇠

⇤
↵ = 1

A fermion coherent state is defined by

|⇠i ⌘ e�
P
↵ ⇠↵c†↵ |0i

with similar properties to bosons. The path integral have similar form to that for bosons with some minus signs
that distinguish between bosons and fermions.
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Integration over fermions

For numerical evaluation we can not have the path integrals in terms of Grassmann variables. Fortunately for
normalizable field theories we can integrate analytically over the fermionic degrees of freedom
Recall Gaussian integral

Z Y

i

dz⇤
i dzi

2i⇡
e�z⇤i Hij zj+J⇤i zi+z⇤i Ji = [detH]�1 e

J⇤i H�1
ij Jj

An analogous result is obtained for Grassmann “Gaussian”: For one pair of Grassmann variables we have

Z
d⇠⇤d⇠ e�⇠⇤a⇠ =

Z
d⇠⇤d⇠(1 � ⇠⇤a⇠) = a

This generalizes to Z Y

i

d⇠⇤i d⇠i e�⇠⇤i Hij⇠j+⌘
⇤
i ⇠i+⇠

⇤
i ⌘i = [detH] e

⌘⇤i H�1
ij ⌘j

i.e. the only difference is that detH appears in the numerator ! accounts for the minus sign of fermion loops.
If our action is of the form S(⇠⇤, ⇠,�) = ⇠⇤i M(�)ij⇠j + SB(�) then

Z
d⇠⇤d⇠d� e⇠

⇤
i M(�)ij⇠j+SB (�) =

Z
d� detM(�) eSB (�)

i.e. Seff(�) = ln detM(�) + SB(�)
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Fermion propagators

Consider the time ordered product of field creation and annihilation operators at space-time points j = (xj , tj )
and i = (xi , ti ) respectively:

hT̂ i  ̄ji = TrT̂ i  ̄j e� ̄M(�) +SB (�) =

Z
D[�]D[⇠̄⇠]⇠i ⇠̄j e�⇠̄M(�)⇠+SB (�) =

Z
D[�] M�1

ij (�) eSeff(�)

In general for n pairs of creation and annihilation operators
Z

D(⇠⇤, ⇠) ⇠i1 · · · ⇠in⇠
⇤
jn · · · ⇠j1 e�⇠⇤M⇠

=
�2n

�⌘⇤i1
· · · �⌘⇤in�⌘jn · · · �⌘j1

Z
D(⇠⇤, ⇠) e�⇠⇤i Mij⇠j+⌘

⇤
i ⇠i+⇠

⇤
i ⌘i |

⌘=⌘⇤=0

=
�2n

�⌘⇤i1
· · · �⌘⇤in�jn · · · �⌘j1

detM e
⌘⇤i M�1

ij ⌘j
|
⌘=⌘⇤=0

=
X

P

(�1)P M�1
iPn jn · · · M�1

iP1
j1

eln detM

where P denotes a permutation of the indices. This is nothing else but Wick’s theorem.
=) fermions can be integrated out and we left only with an effective action with the bosonic degrees of
freedom.
Boundary conditions:

Tre�tH =

Z
dz⇤

0 dz0e�z⇤0 z0 h±z0| e�tH
|z0i =

Z
dz⇤

0 dz0e�z⇤0 z0
Z

dD[z⇤, z] e�S(z⇤,z)

where the plus is for bosons and minus for fermions and
S(z⇤, z) = ±z⇤

0 (±z0 � zN�1) + H0.N�1 + z⇤
N�1(zN�1 � zN�2) + HN�1,N�2 + · · · + z⇤

1 (z1 � z0)H1,0.
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Lattice Gauge theories

K. Wilson: 1974 formulated Euclidean gauge theories on the lattice as a tool for the study of confinement
and non-perturbative properties of QCD.
M. Creutz: 1980 perform the first numerical implementation of the path integral for gauge theories.

The set-up for the numerical evaluation requires
Discretization of space-time: Discretize space-time in 4 Euclidean dimensions ! simplest isotropic
hypercubic grid with spacing a = aS = aT and size NS ⇥ NS ⇥ NS ⇥ NT

Definition of the gauge and fermion degrees on the discrete space-time: The quark field is represented
by anticommuting Grassmann variables defined at each site of the lattice. They belong to the
fundamental representation of SU(3). The gauge field is discussed below.
Construction of an appropriate action
Definition of the measure of integration in the path integral.
Construction of the operators used to probe the physics
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Gauge degrees of freedom

In the continuum a fermion moving from site x to y in the presence of a gauge field Aµ(x) picks up a phase
factor given by the path ordered product

 (y) = P ei
R y
x gAµ(x)dxµ  (x) .

=) associate gauge fields with links that connect sites on the lattice. So, with each link associate a discrete
version of the path ordered product:

U(x ; x + µ̂) ⌘ Uµ(x) = eiagAµ(x) ,

U is a 3 ⇥ 3 unitary matrix with unit determinant. It follows that

U(x ; x � µ̂) ⌘ U�µ(x) = e�iagAµ(x) = U†(x � µ̂; x) .

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 15 / 32



Local gauge symmetry

The effect of a local gauge transformation V (x) on the variables  (x) and U is defined as

 (x) ! V (x) (x)

 ̄(x) !  ̄(x)V†(x)

Uµ(x) ! V (x)Uµ(x)V†(x + µ̂)

where V (x) is in the same representation as the Uµ(x), i.e.,
it is an SU(3) matrix. With these definitions there are two
types of gauge invariant objects that one can construct on
the lattice.

A string consisting of a path-ordered product of links capped by a fermion and an antifermion e.g.

Tr  ̄(x) Uµ(x) U⌫(x + µ̂) . . . U⇢(y � ⇢̂)  (y)

where the trace is over the color indices.
If the string stretches across the lattice and is closed by the periodicity are called Polyakov lines.
The simplest example of closed Wilson loops is the plaquette, a 1 ⇥ 1 loop,

W 1⇥1
µ⌫ = Pµ⌫(x) = Re Tr

�
Uµ(x) U⌫(x + µ̂) U†

µ(x + ⌫̂) U†
⌫(x)

�
.

Preserve gauge invariance at all a ! protects from having many more parameters to tune (the zero gluon
mass, and the equality of the quark-gluon, 3-gluon, and 4-gluon couplings) and there would arise many more
operators at any given order in a.
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U(1) gauge theory

Consider a Lagrangian of a complex field �: L = @µ�
⇤@µ�� V (�⇤,�). If we require that the Lagrangian is

invariant under a local gauge transformation �0(x) = e�i↵(x)�(x) then we need a field Aµ(x) to compensate
the change in the derivative @µ� that transforms as

A0
µ(x) = Aµ(x) +

1
g
@µ↵(x) @µ ! Dµ ⌘ @µ + igAµ(x)

The gauge invariant Lagrangian is written as

L = �
1
4

Fµ⌫Fµ⌫ + (Dµ�)
⇤Dµ�� V (�⇤,�)

A scalar moving from site x to y in the presence of a gauge field Aµ(x) picks up a phase factor given by

U(x ; y) = eig
R y
x dxµAµ(x)

which removes the phase between the value of the field
at the two points and yields a gauge invariant result.

The action is defined in terms of link variables assigned to links between sites
of the space-time lattice.
The link variable from site n in the µ direction to site n+ aêµ is defined as the

discrete approximation to the integral eig
R n+µ
n : Uµ(n) = ei✓µ(n) with ✓µ(n)

the approximation of g
R n+µ

n dxµAµ(x).

The integral over the field variables is the invariant group measure for U(1):
1

2⇡
R ⇡
�⇡ d✓.

Uµ(n)n n + µ

n + µ + �n + �

U⌫(n + µ)

U†

µ(n + �)

U †

⌫ (n) P 

The action is the sum of all plaquettes Pµ⌫ = U(n)µU⌫(n + µ)U†
µ(n + ⌫)U†

⌫(n).

For U(1): Pµ⌫(n) = ei✓µ(n)ei✓⌫ (n+µ)e�i✓µ(n+µ)e�i✓⌫ (n)
⌘ eiBµ⌫ , Bµ⌫ = �µ✓⌫ � �⌫✓µ

a!0
! Fµ⌫ .
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Lattice action of U(1)

Since a plaquette produces Fµ⌫ the action can be constructed by choosing a function of the plaquette such that
it generates F 2

µ⌫ in the continuum limit.

S = �
X

n

X

µ>⌫

(1 � Re Pµ⌫(n)) = �
X

n

X

µ>⌫

(1 � cos Bµ⌫) ,

where � = 1
g2 and Bµ⌫ = �µ✓⌫ � �⌫✓µ

a!0
! Fµ⌫ .

In the limit a ! 0 we recover continuum QED:
Taking ✓µ(n) = agAµ(n) and expanding ✓⌫(n + êµa) = ✓⌫(n) + a@µ✓⌫(n) + O(a2)

S ⇠
1
g2

X

P

[1 � cos(a@µ✓⌫ � a@⌫✓µ)] =
1
g2

X

P

h
1 � cos(a2gFµ⌫)

i
=

1
g2

X

n

X

µ>⌫

"
a4g2

2
F 2
µ⌫ + · · ·

#

!
1
4

Z
d4x F 2

µ⌫(x)
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SU(N) Gauge Theory on a lattice

The generalization to non-Abelian gauge theory is straightforward. The link variable is

Uµ(n) = eiag�c Ac
µ(n) = eiagAµ(n)

and U�µ(n) = e�iag�c Ac
µ(n) = U†

µ(n � µ)

For SU(3) �c are the Gell-Mann matrices and c = 1, · · · , 8 is a color label. The 8 group generators are
normalized as Tr�a�b = 2�ab and U is a 3 ⇥ 3 unitary matrix with unit determinant.
The action is given in terms of the product of SU(N) group elements around an elementary plaquette

Pµ⌫(n) = Uµ(n)U⌫(n + µ)U†
µ(n + ⌫)U†

⌫(n) = eiagAµ(n)eiagA⌫ (n+µ)e�iagAµ(n+⌫)e�igA⌫ (n)

In order to find the continuum limit of this plaquette we expand A by applying the the Baker-Hausdorff identity

eX eY = eX+Y+ 1
2 [X,Y ]+···

Pµ⌫ ⇠ eiagAµ(n)eiag(A⌫ (n)+a@µA⌫ (n))e�iag(Aµ(n)+a@⌫Aµ(n))e�iagA⌫ (n)

⇠ eiag
⇣

Aµ(n)+A⌫ (n)+a@µA⌫ (n)+ 1
2 iag[Aµ,A⌫ ]

⌘

e�iag
⇣

Aµ(n)+A⌫ (n)+a@⌫Aµ(n)� 1
2 iag[Aµ,A⌫ ]

⌘

⇠ eia2g(@µA⌫ (n)�@⌫Aµ(n)+ig[Aµ,A⌫ ]) = eia2gFµ⌫

and therefore we may define the SU(N) action by choosing a function of the plaquette which yields F 2
µ⌫ :

S(U) = �
X

n

X

µ>⌫

✓
1 �

1
N

Re TrPµ⌫

◆
, � =

2N
g2

,
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SU(N) Gauge Theory

S(U) = �
X

n

X

µ>⌫

✓
1 �

1
N

Re TrPµ⌫

◆
, � =

2N
g2

,

Using the continuum limit of the plaquette we can easily obtain the continuum limit of the above action:

S(U) = �
X

n

X

µ>⌫

✓
1 �

1
N

Re Tr

✓
1 + ia2Fµ⌫ �

1
2

a4g2F 2
µ⌫ + · · ·

◆◆

⇠
1
2
�a4g2 X

n

X

µ>⌫

1
N

Tr

✓
1
2
�cF c

µ⌫(n)
1
2
�bF b

µ⌫(n)
◆

⇠ �
g2

2N

X

n

a4 X

µ⌫

1
2

F c
µ⌫F c

µ⌫(n)

!
1
4

Z
d4xF c

µ⌫(x)F
c
µ⌫

The fact that the generators �c are traceless is used to eliminate linear terms. The relation Tr�b�c = 2�bc has
been used to get the diagonal piece.
There is a great freedom to construct other expressions with the same continuum limit. E.g. considering a
product of link variables around a larger rectangle ja ⇥ ka we obtain

1
a4

✓
1 �

1
N

ReTrW j⇥k
◆

= cjk F 2
µ⌫ + a2 X

m

dm
jk Im(Dµ, D⌫ , F↵� , F��) + O(a4)

where Im denotes an invariant from two derivatives and two F ’s and the coefficients c and d are calculable !

we can construct improved actions by taking linear combinations for various rectangles.
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Gauge action

There are four important points to note based on the above construction of the lattice action.

1 The leading correction is O(a2): The term a2
6 Fµ⌫(@

3
µA⌫ � @3

⌫Aµ) is present in the expansion of all
planar Wilson loops. Thus at the classical level it can be gotten rid of by choosing an action that is a
linear combination of say 1 ⇥ 1 and 1 ⇥ 2 Wilson loops with the appropriate relative strength given by the
Taylor expansion

2 Quantum effects will give rise to corrections, i.e. a2
! X(g2)a2 where in perturbation theory

X(g2) = 1 + c1g2 + . . ., and will bring in additional non-planar loops. Improvement of the action will
consequently require including these additional loops, and adjusting the relative strengths which become
functions of g2.

3 The reason for defining the action in terms of small loops is computational speed and reducing the size of
the discretization errors. For example the leading correction to 1 ⇥ 1 loops is proportional to a2/6
whereas for 1 ⇥ 2 loops it increases to 5a2/12. Also, the cost of simulation increases by a factor of 2 � 3.

4 The electric and magnetic fields E and B are proportional to Fµ⌫ . They are are given in terms of the

imaginary part of Wilson loops: ImPµ⌫
a!0
= a2gFµ⌫ .

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 21 / 32



Wilson loops

In the pure gauge theory the only gauge invariant objects are closed loops. The Wilson loop

W = TrUi (x)Uk (x + ja) · · · Ui (x � ia)

Consider a space-time Wilson loop: Under a gauge transformation a product of gauge links becomes

Ui (x) · · · Uj (x + ka) ! V (x)Ui (x) · · · Uj (x + ka)V†(x + ka)

whereas
 (x) ̄(x + ka) ! V (x) (x) ̄(x + ka)V†(x + ka).

i.e as far as the gauge fields are concerned the ends of a chain of link variables are equivalent to an external
quark-antiquark source ! response of system to an external quark-antiquark source.
The expectation of the space-time Wilson loop

hWi =

R
DUe�S(u)WR
DUe�S(u)

gives the time evolution of the system: Prior to ti there are no color
sources ! |0i = e�ti H |Q = 0i.

At time ti the line of link variables between 0 and R creates
an external antiquark source at 0 and a quark source at R.
The links in the time direction between ti and tf maintain
these sources at 0 and R ! state evolves to the lowest
gluon state in the presence of a quark-antiquark source.
The q � q̄ pair is annihilated at time tf .

=) hWi / e�(tf �ti )V (R) where V (R) is the potential between two
static quarks.
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Area law

Consider a non-relativistic particle

H =
p2

2m
+ V (r)

Propagator:
G(~r 0, t ;~r , 0) =

⌦
r 0
�� e�iHt

|ri m!1
�! �3(r 0 � r)e�iV (r)t

Wick rotation: t ! �it
=) GE (r

0, t ; r , 0) m!1
�! �3(r 0 � r)e�V (r)t

i.e. the potential is determined by the exponential behavior of the propagator of a static particle.
In the gauge theory we need to generate the eigenstate of the QCD Hamiltonian for static quark-antiquark !

e.g.time evolving the Wilson loop or correlation between two Polyakov loops.
If there are J links in the time direction and K links in the space direction then

hW J⇥K
i

J!1
⇠ e�aJV (aK ) K!1

⇠ e�a2�JK

where we used the fact that at large distances the potential is linear since in pure gauge no quark-antiquark can
be produced.
=) Area law - Signature of confinement
Note that this holds in the limit of large Wilson loops and for the Wilson loops considered one has corrections
that are proportional to the perimeter of the loop as well as a constant term. Take ratios to eliminate these:

=) �(I, J) = � log

 
W I⇥J W J�1⇥J�1

W I⇥J�1W J�1⇥J

!
⇠ a2�.
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Wilson loop revisited

Consider a heavy quark Q and a heavy antiquark Q̄. Construct a gauge invariant state at t = 0

|�↵,�i (~x,~y) = Q̄↵(~x, 0)U(~x, 0;~y, 0)Q�(~y, 0) |⌦i

Propagate at later time t and annihilate the QQ̄:

G�0,↵0 ;↵,�(y
0x 0; x, y) ⌘ h⌦| T̂ Q̄�0 (~y

0, t)U(~y 0, t ;~x 0, t)Q↵0 (~x 0, t)Q̄↵(~x, 0)U(~x, 0;~y, 0)Q�(~y, 0) |⌦i

=
1
Z

Z
DUD(Q̄, Q)Q̄�0 (y

0) · · · Q�(x) eiS

where x = (~x, 0), y = (~y, 0), x 0 = (~x 0, t) and y 0 = (~y 0, t).
Do in the continuum theory, i.e.

S = SG(A) + SQ(Q̄, Q, A) , SQ =

Z
d4xQ̄(x)

�
i�µDµ

� MQ
�

Q(x)

Integrate over heavy fermions:

G�0,↵0 ;↵,�(y
0x 0; x, y) =

1
Z

Z
D(A)

⇥
S��0 (y, y 0; A)S↵0↵(x

0, x ; A) � S↵0�0 (x
0, y 0; A)S�↵(y, x ; A)

⇤

U(x ; y)U(y 0; x 0) DetDQ(A) eiSG

S(z, z0; A) is the quark propagator in an external field Aµ i.e.

(i�µDµ � MQ)S(z, z0; A) = �4(z � z0)
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Take MQ ! 1:

S(z, z0; A) = Peig
R t
0 dt0A0(~x,t

0) S(z � z0) , (i�0@0 � MQ)S(z � z0) = �4(z � z0)

=) iS(z, z0; A) = �(3)(~z � ~z0)P eig
R t
0 dt0A0(~x,t

0)
⇢
⇥(z0 � z0

0)

✓
1 + �0

2

◆
e�iMQ (z0�z00)

+ ⇥(z0
0 � z0)

✓
1 � �0

2

◆
eiMQ (z0�z00)

�

G�0,↵0 ;↵,�(y
0x 0; x, y)

MQ!1
�! �(3)(~x � ~x 0)�(3)(~y � ~y 0)

✓
1 + �0

2

◆

↵0↵

✓
1 � �0

2

◆

��0
e�2iMQ t

hPeig
H

dxµAµ
i

Rotate in Euclidean time and discretize:

G�0,↵0 ;↵,�(y
0x 0; x, y)

MQ!1
�! �(3)(~x � ~x 0)�(3)(~y � ~y 0)

✓
1 + �0

2

◆

↵0↵

✓
1 � �0

2

◆

��0
e�2MQ t

hWC(U)i

where WC is the Wilson loop: hWCi = 1
Z
R

D(U) WC(u) e�SG(U)
! e�V (R)t .

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 25 / 32



String tension

Can we relate the string tension extracted from the Wilson loop to a quantity measured in experiment?
Families of mesons with a given set of quantum numbers have masses obeying the Regge formula

M2
J =

1
↵

J, ↵ = 0.9 GeV
�1

Consider a simple model: [J. W. Negele]

A massless quark and an antiquark connected by a string of
length 2L.
Since they are massless they are moving with the speed of
light and the speed of a segment of string a distance x from
the origin is v = x

L c

�=energy per unit length of the flux in its rest frame
Contribution to energy and angular momentum of the
element dx :

dE = ��dx, dJ = ��vxdx

=) M =

Z L

�L
dx

�
q

1 �
� x

L
�2

= ⇡�L , J =

Z L

�L
dx

�x2/L
q

1 �
� x

L
�2

=
⇡

2
�L2 =) M2 = 2⇡�J

or
p
� = 2⇡↵�1/2 = 420 MeV.

v=c 

v=c 

x 

L 

-L 

d
x 

v=cx/L 

Note that this is a rough model and disagreement to the 10% level will not come as a surprise.
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Results

G. Bali, K. Schilling, C. Schlichter, 1995

Flux

tube

forms

between

qq

quarks fixedQQ

free
gluons

flux
tube

E
(GeV)

1 fm

2 6

2

1
1

0

[S. Necco and R. Sommer, NPB622 (2002)]
r0 extracted from the qq̄ force: r2 @V (r)

@r |r=r0 = 1.65.
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Continuum limit

Pure gauge on a lattice has only two parameters: the dimensionless bare coupling constant g and the lattice
spacing a.
As we change a, g must be adjusted to keep physical quantities fixed.
The renormalization procedure is in principle simple:

Pick an initial value of g
Calculate a set of dimensionful physical quantities hOii. These can be written in the form:

hOii = a�di hOL
i (g)i, di = dimension of operator, and O

L

i
dimensionless.

e.g. the string tension has the form � = a�2�

Use the physical value of one operator, e.g. O1 to determine a that corresponds to the particular value of
g e.g. if we choose � then a =

p
�/0.420 GeV�1

All other observables are then determined
One should then repeat the above steps for smaller values of g to determine g(a) and the physical quantities
hO2i · · · hONi.
The existence of a continuum limit implies that

hOi (g(a), a)i = a�di hOL
i (g)i

a!0
�! Ophys.

i

i.e. the values of these observables should approach a limit as g ! 0 and agree with experiment.
All dimensionful quantities in lattice simulations are measured in units of the lattice spacing e.g. for masses one
measures mL

⌘ Ma and not M. As a ! 0 Ma ! 0 or the correlation length ⇠L
⌘ 1/Ma diverges. This is

precisely what one wants to happen so that the system looses memory of the lattice.
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Asymptotic freedom

Asymptotic freedom: the running coupling g ! 0 as the momentum scale of the probe µ or 1/a ! 1. It is
characterized by renormalization group function a dg

da or the �-function

�a
@g
@a

⌘ �(g) = ��0g3
� �1g5 + . . .

The perturbative �-function satisfies for N colors and nf active flavors [’t Hooft, Politzer, Gross and Wilczek]

�0 =
⇣

11N�2nf
3

⌘
1

16⇡2 , �1 =

✓
34N2

3 �
10Nnf

3 �
nf (N

2�1)
N

◆
1

(16⇡2)2
.

The point is that these two leading terms in the expansion of �(g) are gauge and regularization scheme
invariant ! can be used in lattice regularization.
Integration of this relation yields

a(g2) =
1
⇤L

⇣
�0g2

⌘� �1
2�2

0 e
� 1

2�0g2
⌘

1
⇤L

f (g) ,

where nf = 0 for pure gauge and ⇤L is an integration constant which is regularization scheme dependent.
Inverting we obtain:

g(a)�2 = �0 ln(a
�2⇤�2

L ) +
�1

�0
ln
⇣
ln(a�2⇤�2

L )
⌘
+ · · ·

i.e. changing a one must tune g such that physical observables remain independent. Vanishing a corresponds
to vanishing g ! asymptotic freedom.
From our lattice calculation we can calculate a(g2) e.g.

a(g2) =

"
a2�|g2

�exper.

#1/2

=

p
�

0.42 GeV

should coincide with the perturbative result as a ! 0 and be independent of the obsrvable used. This is called
asymptotic scaling.
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Mass scale ⇤QCD

Asymptotic freedom implies that QCD dynamically generates a mass scale.
Consider: µ @g

@µ = � = ��0g3
� �1g5.

Integrate from momentum scale µ1 to µ2 with µ2 > µ1 keeping only the �0 term:

1
2�0g2(µ2)

�
1

2�0g2(µ1)
= log

µ2

µ1
,

i.e. the coupling constant of non-abelian gauge theories depends logarithmically on the momentum scale of the
process. Equivalently:

1
2�0g2(µ)

� log µ = log ⇤QCD =) exp
� 1

2�0g2(µ)

 
=

µ

⇤QCD

=) ↵s(µ) =
g2(µ)

4⇡
=

1
8⇡�0 log

µ
⇤QCD

introduces ⇤QCD , the invariant scale of the theory with dimensions of mass.
=) QCD in pure gauge with g dimensionless dynamically generates a mass scale.
This happens because to specify g we need a momentum scale at which it is defined.
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Mass scale ⇤QCD
Extending the above analysis to include �1 gives

⇤QCD = lim
µ!1

µ
� 1
�0g2(µ)

�
�1

2�2
0 exp[�

1
2�0g2(µ)

] ⌘ µ f
�
g(µ)

�
.

This 2-loop definition of ⇤QCD is not unique; the value of ⇤QCD depends on the the precise relation between g
and µ. However, once the value of ⇤ is determined in one scheme it can be related to that in any other
perturbative scheme. For example, in the lattice regularized theory ⇤latt is also defined by the same equation
but with µ replaced by 1/a. Then to 1-loop

⇤QCD

⇤latt
= µa exp

⇢
�

1
2�0


1

g2(µ)
�

1
g2(a)

��
.

In perturbation theory the two coupling constants are related as

g2(µ) = g2(a)
⇢

1 � �0g2(a)
✓

log(µa)2
� log C2

◆
+ O(g4)

�

and
⇤QCD = C ⇤latt

i.e. the two constants, ⇤QCD and ⇤latt , are related by a multiplicative constant. To calculate C requires knowing
the finite part of the coupling constant renormalization to 1-loop in both the lattice and continuum regularization
schemes.
The results are listed in the following Table for ⇤MOM and ⇤MS .

nf 0 1 2 3 4

⇤MS/⇤latt 28.8 34.0 41.1 51.0 65.5

⇤MOM/⇤latt 83.4 89.4 96.7 105.8 117.4
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Exercises

1 Using fermion coherent states find the path integral representation of the evolution operator. Then find
the partition function and propagator for a non-interacting many partilce system.

2 Uisng the SPA evaluate the 1-D integral

I(l) =
Z 1

�1
dx e�lf (x)

to O(1/l) assuming l � 1 and f (x) a real function with a minimum at x = x0. Try to use a diagramatic
expression and then give the diagrams for the O(1/l2)-terms.

3 Write a computer program to implement the Metropolis Monte Carlo algorithm for the one dimensional
harmonic oscillator V (x) = x2

2 with m = 1. Compare your results with those of standard quantum
mechanics:

hx| e
�HT

|xi ⇡ |hx| E0i|
2

e
�E0T

where E0 = 1/2 and hx| E0i = e�x2/2

⇡1/4 .

Extract the energy and wave-function from your numerical result. In addition calculate

G(t) =
1
N

X

j

hx(tj + t)x(tj )i

for all t = 0, a, 2a . . . (N � 1)a; i.e. calculate Gn = 1
N
P

jhx(j+n)modN xji for n = 0 . . . N � 1 with periodic
boundary conditions. Try N = 20 lattice sites with lattice spacing a = 1/2, and set ✏ = 1.4 and
Ncor = 20. Try Ncf ’s of 25, 100, 1000 and 10000. Use the results to compute the excitation energy from

�En ⌘ log(Gn/Gn+1)
n large
�! (E1 � E0)a

Repeat this exercise for V (x) = x4/2.
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Lecture 3: Hadron spectrum

Outline

1 Spectrum calculations
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Stochastic sources

2 Low-lying hadrons
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4 Exotics
Glueballs
Multi-quark states
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Introduction to the basic techniques
Successful calculations of the masses of low-lying baryons is a prerequisite for the validity of lattice QCD.

Choose the set of input parameters i.e. the bare quark masses and coupling constant
Choose lattice size
Create initial state of the hadron J

†
h
|0i. Some standard interpolating fields:

J⇡ = d̄�5u , J⇢ = d̄�µu , JN = ✏abc(uaT
C�5d

b)uc , J� = ✏abc(uaT
C�⌫d

b)uc

We can make the following observations for JN :
I The combination u

aT (C�5d
b)uc transforms like a Lorentz scalar ! JN transform like u and thus is

a spin 1/2 Dirac spinor.
I The color variables are antisymmetrized
I The non-relativistic limit of JN agrees with the non-relativistic quark model: The upper components

of uC�5d = u(�i�2)d = �u"d# + u#d" ! produces the SU(6) proton wave function.
Consider the pion two-point function:

C⇡⇡(t) =

Z
d

3
x h0| J⇡(~x, t)J†

⇡(
~0, 0) |0i

It is calculated by evaluating

C⇡⇡(t) =

Z
d

3
x

Z
D[ ̄ ]D[U] e

� ̄D(U) �S[U]
d̄(~x, t)�5u(~x, t)ū(~0, 0)�5d(~0, 0)

=

Z
d

3
x

Z
D[U] e

� ln DetD(U)�S[U]
D

�1
u

(U)(~x, t ;~0, 0)�5D
�1
d

(~0, 0;~x, t)�5

N!1
=

1
N

X

U

Tr|G(U)(~x, y ;~0, 0)|2

where G = D
�1 and we assume that u and d are degenerate.
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Effective mass
The physical content of Cki (t) can be seen as follows:

Cki (t) =

Z
d

3
xe

i~p.~x
h0| e

tH�i~x.~q
Jk (~0, 0) e

�tH+i~x.~q
X

n

Z
d

3
q

��n,~q
↵ ⌦

n,~q
��

2En(~q)
J

†
i
(~0, 0) |0i

The integral over x projects onto momentum ~p and for large t only the lowest state of the quantum numbers of J

contributes
! Cki (~p, t)

t!1
= h0| Jk

��~p, h
↵ ⌦
~p, h

�� J
†
i
|0i e

�E
h
(~p)t

2E
h
(~p)

The mass of a given state is determined from the rate of exponential fall-off of Ckk (~0, t). Define an
effective mass

meff(t) = � log
� Ckk (~0, t)

Ckk (~0, t � 1)

� t!1
�! m

which, in the limit t ! 1, converges to the desired value.
Optimize Jk to get a large overlap with the wave function, i.e. make

wn(~p) ⌘
|h0|J

k
|ni|2

2En(~p)
: spectral weight of n

th state, large for the state of interest and the small for the rest

Use enough statistics so that the
signal extends to large enough t at
which any remaining contamination
from higher states is negligible
Because of the finite extent of the
lattice one usually imposes
(anti)-periodic b.c.
=) meson correlators are symmetric
in t and e

�mt
! e

�mt + e
�m(T�t)

where T is the time extent of the
lattice
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Comments on the behavior of the effective mass

The convergence of meff(t) to the asymptotic value m can be from above or below depending on the
choice of the interpolating field J. Only for Jk = Ji is the correlation function positive definite and the
convergence is monotonically and from above.
Interpolating fields project to all states with the same quantum numbers. For large t the ground state
dominates
i.e meff(t) ! constant : plateau region
The onset and the length of the plateau region depends on the interpolating operators.
The statistical errors grow exponentially with t , except for the case of the pion.
For extracting higher states number of methods are developed: A common approach is to use k 6= i and
study the generalized eigenvalue equations.

Summary: Extract the mass as described above.
If computation is done with physical values of the quark masses, then study its dependence as a function of a,
and L before we can compare to experimental data.
If the computation is not done with physical values of the quark masses then study quark mass dependence.

Exercise:
Convince yourself that the statistical errors grow exponentially with t , except for the case of the pion.
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Introduction to the basic techniques
Successful calculations of the masses of low-lying baryons is a prerequisite for the validity of lattice QCD.

Choose the set of input parameters i.e. the bare quark masses and coupling constant
Choose lattice size
Create initial state of the hadron J

†
h
|0i. Some standard interpolating fields:

J⇡ = d̄�5u , J⇢ = d̄�µu , JN = ✏abc(uaT
C�5d

b)uc , J� = ✏abc(uaT
C�⌫d

b)uc

We can make the following observations for JN :
I The combination u

aT (C�5d
b)uc transforms like a Lorentz scalar! JN transform like u and thus is

a spin 1/2 Dirac spinor.
I The color variables are antisymmetrized
I The non-relativistic limit of JN agrees with the non-relativistic quark model: The upper components

of uC�5d = u(�i�2)d = �u"d# + u#d" ! produces the SU(6) proton wave function.
Consider the pion two-point function:

C⇡⇡(t) =

Z
d

3
x h0| J⇡(~x, t)J†

⇡(~0, 0) |0i

It is calculated by evaluating

C⇡⇡(t) =

Z
d

3
x

Z
D[ ̄ ]D[U] e

� ̄D(U) �S[U]
d̄(~x, t)�5u(~x, t)ū(~0, 0)�5d(~0, 0)

=

Z
d

3
x

Z
D[U] e

� ln DetD(U)�S[U]
D
�1
u

(U)(~x, t ;~0, 0)�5D
�1
d

(~0, 0;~x, t)�5

N!1
=

1
N

X

U

Tr|G(U)(~x, y ;~0, 0)|2

where G = D
�1 and we assume that u and d are degenerate.
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Effective mass
The physical content of Cki (t) can be seen as follows:

Cki (t) =

Z
d

3
xe

i~p.~x
h0| e

tH�i~x.~q
Jk (~0, 0) e

�tH+i~x.~q
X

n

Z
d

3
q

˛̨
n,~q

¸ ˙
n,~q

˛̨

2En(~q)
J
†
i
(~0, 0) |0i

The integral over x projects onto momentum ~p and for large t only the lowest state of the quantum numbers of J

contributes
! Cki (~p, t)

t!1
= h0| Jk

˛̨
~p, h

¸ ˙
~p, h

˛̨
Ji |0i e

�E
h
(~p)t

2E
h
(~p)

The mass of a given state is determined from the rate of exponential fall-off of Ckk (~0, t). Define an
effective mass

meff(t) = � log
` Ckk (~0, t)

Ckk (~0, t � 1)

´ t!1
�! m

which, in the limit t !1, converges to the desired value.
Optimize Jk to get a large overlap with the wave function, i.e. make

wn(~p) ⌘
|h0|J

k
|ni|2

2En(~p)
: spectral weight of n

th state, large for the state of interest and the small for the rest

Use enough statistics so that the
signal extends to large enough t at
which any remaining contamination
from higher states is negligible
Because of the finite extent of the
lattice one usually imposes
(anti)-periodic b.c.
=) meson correlators are symmetric
in t and e

�mt
! e

�mt + e
�m(T�t)

where T is the time extent of the
lattice
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Comments on the behavior of the effective mass

The convergence of meff(t) to the asymptotic value m can be from above or below depending on the
choice of the interpolating field J. Only for Jk = Ji is the correlation function positive definite and the
convergence is monotonically and from above.
Interpolating fields project to all states with the same quantum numbers For large t the ground state
dominates
i.e meff(t) ! constant : plateau region
The onset and the length of the plateau region depends on the interpolating operators.
The statistical errors grow exponentially with t , except for the case of the pion.
For extracting higher states number of methods are developed: A common approach is to use k 6= i and
study the generalized eigenvalue equations.

Extracting the mass as described above, we then study its dependence as a function of quark masses, a, L,
before we can compare to experimental data.

Exercise:
Convince yourself that the statistical errors grow exponentially with t , except for the case of the pion.
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Current challenges

Construct optimized interpolating fields which maximize the spectral weight wn for a given state
Develop techniques to extract excited states from the two-point correlators
Develop techniques to study the internal structure of hadrons e.g. “molecular” versus multi-quark nature,
radial excitation, etc.
Develop techniques to study resonances and decay widths
Near chiral regime it is crucial to combine optimized methods to keep statistical noise small
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Smearing techniques
Hadrons are extended objects having size O(1 fm). The interpolating fields create point sources
! they have a small overlap with the hadron state we want to study
=) Optimize projection to the state of interest:

Employ ”gauge invariant smearing” of quark fields:

 smear(~x, t) =
X

~y

F (~x,~y, U(t)) (~y, t)

• To enhance ground state dominance use Gaussian smearing

F (~x,~y, U(t)) = (1 + ↵H)n�

H(~x,~y ; U(t)) =
3X

i=1

“
Ui (x)�

x,y�î
+ U

†
i
(x � î)�

x,y+î

”
α 1      + 

repeat n-times 

• Exponential smearing:
F (~x,~y, U(t)) = (D2 + m

2
sc

)�nsc (~x,~y)

where one computes the propagator of a scalar particle propagating
in the 3-dimensional space of the same background gauge field U(t)

Adjust the smearing parameters ↵ (msc ) and n� (nsc ) so that r .m.s
radius of the initial state made of the smeared quarks has a value
close to the experimental value.

!

n

0.3876

0.36227

0.33693

0.3116

0.28627

0.26093

0.2356

0.21027

0.18493
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Examples of effective mass plots
• Quenched at about 550 MeV pions:

am
⇡
eff am

N

eff

• Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing
function F (~x,~y, U(t)).
• NF = 2

H. Wittig, SFB/TR16, August, 2009
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Stochastic sources
The calculation of hadron masses involves the computation of the
point-to-all propagator:

G(~x, t ;~x0, t0)
aa0
µµ0

obtained from solving DG = �4(~x0, t0)�aa0�µµ0

In order to reduce statistical noise as we approach the physical pion
mass one may want to sum over the source coordinates as well.
This requires a new inversion for each lattice point!

(A) Quenched QCD: quark loops neglected

(B) Full QCD

=) replace point source by stochastic noise vector such that:

1
Nr

NrX

r=1

⇣a

µ(x)r ⌘ h⇣
a

µir = 0 ,
1
Nr

NrX

r=1

⇣a

µ(x0)r⇣
⇤a
0

µ0 (x)r = �4(x � x
0)�µµ0�aa0

Inverting using these ⇣0s as sources one obtains a set of solutions vectors

�a

µ(x)r =
X

y

G
abµ⌫(x, y) ⇣b

⌫(y)r ! G
ab

µ⌫(x, y) = h�a

µ(x)⇣⇤b(y)ir

A common choice for the noise vectors is Z(2) noise. These satisfy only approximately the above relations and
so one introduces stochastic noise needing a large number of Nr .
=) reduce Nr by employing “dilution schemes”
For mesons one can apply the ’one-end’ trick that combines appropriately solution vectors to obtain the
two-point correlators. E.g. for the pion:

1
Nr

X

~x,r

�†
r
(~x, t ; t0)�r (~x, y ; t0) =

X

~x,~x0

Tr|G(x, x0)|
2
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Systematic effects

Cut-off effects
mN

m⌦
|
lat =

mN

m⌦
|
exp + O(a/r0)

p, p � 1

where r0 is determined from the force between a static quark and anti-quark.
=) we need to extrapolate to the continuum limit i.e. take a ! 0
Finite volume effects: Use Lm⇡ > 3.5
Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV.

=) Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 10 / 26



Systematic effects
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mN

m⌦
|
lat =

mN

m⌦
|
exp + O(a/r0)

p, p � 1

where r0 is determined from the force between a static quark and anti-quark.
=) we need to extrapolate to the continuum limit i.e. take a ! 0
Finite volume effects: Use Lm⇡ > 3.5
Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV.

=) Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

Quenched calculation with Wilson fermions CP-PACS
Collaboration, S. Aoki et al. Phys. Rev. D 67 (2003)

Calculation done at 4 values of a! take
continuum limit
The scale is set using m⇢

The strange quark mass is set by the kaon mass
and by the � mass
Established that the quenched approximation
reproduces the experimental spectrum with up to
15% deviations
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Unquenched calculations

Nf = 2 + 1 smeared Clover fermions BMW Collaboration, S. Dürr et al. Science 322 (2008)

3 lattice spacing: a ⇠ 0.125, 0.085, 0.065 fm
set by m⌅

Pion masses: m⇡
⇠
> 190 MeV

Volume:mmin
⇡ L

⇠
> 4
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Nucleon mass
Use nucleon mass at physical limit
Cut-off effects negligible) use continuous chiral perturbation.
Correct for volume dependence coming from pions propagating around the lattice [A. Ali Khan et al.

(QCDSF) NPB689, 175 (2004)

Nf = 2 twisted mass, m
min
⇡ ⇠ 270 MeV, Lm

min
⇡ ⇠ 3.3 [C. Alexandrou et al. (ETMC) PRD78 (2008) 014509]
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Lattice spacing determination
Use nucleon mass at physical limit
Cut-off effects negligible) use continuous chiral perturbation.
Correct for volume dependence coming from pions propagating around the lattice A. Ali Khan et al.

(QCDSF) NPB689, 175 (2004)

Extrapolate using LO expansion: mN = m
0
N
� 4c1m

2
⇡ �

3g
2
A

16⇡f2⇡
m

3
⇡

Simultaneous fits to � = 3.9, � = 4.05 and � = 4.2 results

We find r0 = 0.462(5)(27) fm where the
systematic error is estimated using HB�PT to
O(p4)
=) a�=3.9 = 0.089(1)(5) fm,
a�=4.05 = 0.070(1)(4) fm and
a�=3.9 = 0.056(1)(4) fm
These are consistent with the lattice spacings
from f⇡ .
We use the lattice spacing determined from
the nucleon mass for converting to physical
units for baryon structure.
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Comparison of results using different actions
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0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

Baryon Spectrum
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Λ
Σ

Ξ
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Ω

Exp. results
Width
Input
ETMC results
BMW results

Good agreement between different discretization schemes

=) Significant progress in understanding the masses of low-lying mesons ans baryons
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Excited states

Lattice calculations of excited states are much less advanced:
Usually calculations are done on coarse lattices and at one lattice spacing! no continuum
extrapolations
Up to very recently only in quenched QCD
Chiral extrapolations are scarce
The width of resonances is mostly ignored

1 One major challenge is to isolate the sub-leading contributions to the two-point correlator. Various
methods are used:

I Variational
I Bayesian
I �2-histogram searches

2 Another major challenge is to distinguish resonances from multi-quark or multi-hadron states
I Use scaling of spectral weight with the spatial volume
I Dependence on boundary conditions
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Variational principle

Consider a basis of interpolating fields Ji , i = 1, · · · , N having the same quantum numbers

Define an N ⇥ N correlator matrix:

Ckj (t) = hJk (t)J†
j
i =

1X

n=1

h0| Jk |ni hn| J
†
j
|0i e

�Ent

Define the N principal correlators �k (t, t0) as the eigenvalues of the generalized eigenvalue problem
(GEVP):

C(t)vn(t, t0) = �n(t, t0)C(t0)vn(t, t0)

where t0 is some reference time separation.

The vectors ṽn(t, t0) ⌘ C
1/2(t0)vn(t, t0) diagonalize C

�1/2(t0)C(t)C�1/2(t0)! use to define a basis of
interpolating fields J̃n =

P
N

k=1(ṽ
⇤
n
)k Jk

J̃n

† creates the n
th eigenstate: |ni = J̃

†
n
|0i.

The N principal eigenvalues correspond to the N lowest-lying stationary-state energies [Lüscher and
Wolff 1990]

E
eff
n

(t, t0) = �@t�n(t, t0) = En + O

“
e
��Ent

”
, �En =

m 6=n

min |Em � En|
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Anisotropic lattices

Use a different lattice space at for time direction as that for the spatial directions as

=) this is advantageous for studying excitations which have larger masses since the two-point correlation
function fall off rapidly:

C(~0, t)
t�0
! e

�at m(t/at )

Typically ⇠ ⌘ as

at
⇠ 3 and as ⇠ 0.1� 0.15 fm (check for spatial lattice spacing effects)
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�2-method

Assign to each solution
{A1, · · · , An} a �2 and a probability.
Construct an ensemble of solutions.
The probability distribution for any
parameter assuming a given value is
the solution.
Assume a maximum number of L

excited states in the spectral
decomposition of the correlator
C(t) =

P
L

l=0 Al e
�m

l
t and select a

suitable range of values for each of
the parameters Al > 0 and
m0 < m1 < m2 < · · · .
Evaluate the �2(1 + L, j)
corresponding to the particular
solution using our lattice data. We
repeat this procedure a large number,
typically a few hundred thousand,
generating an ensemble of solutions.

We find m0 = 1.3171(13), m1 = 1.608(9), m2 = 2.010(11)
as compared to 1.3169(1), 1.62(2) and 1.98(22) from a Bayesian
analysis, [G. P. Lepage at al,, NP109A (2002) 185]

[C. A., C.N. Papanicolas and E. Stiliaris, PoS LAT2008, arXvi:0810.3882]
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Results using the variational principle

If t0 = t/2 then correction is only O
“

e
��E

N+1 t

”
[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]
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Results using the variational principle
If t0 = t/2 then correction is only O

“
e
��E

N+1 t

”
[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]

Nucleon effective mass plots with m⇡ = 450 MeV using differing Gaussian smearings
C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 19 / 26



Excited states of the Nucleon

The first excited state of the nucleon is known as the Roper. It has a mass below the negative parity state of the
nucleon.
It has been difficult to obtain the Roper in lattice calculations most of which are done in the quenched
approximation

Quenched calculation, using variational principle [M. S.
Mahbub et al., arXiv:1007.4871]

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 20 / 26



Excited states of the Nucleon/�

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]

Two lattice spacings: a = 0.15 fm, a = 0.12 fm

m⇡
>
⇠ 350 MeV and lattice sizes 163

⇥ 32 and 203
⇥ 32 with m

min
⇡ L ⇠ 4

Variational approach using different levels of Gaussian smearing; 6⇥ 6 correlation matrix
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Results using variational method and anisotropic lattices
Hadron Spectrum Collaboration [Bulava et al., Phys. Rev. D79 (2009) 034505]
Use extended fields operators in a variational approach! 16⇥ 16 correlator matrix

• Nf = 2 Wilson fermions with at

as
= 3 and a = 0.11 fm at m⇡ = 420 MeV and 580 MeV on a volume of

L = 2.64 fm! m
min
⇡ ⇠ 5.6.

Extrapolation of the mass of the nucleon linearly in m
2
⇡ yields mN = 972(28) Mev

Excited states of nucleon:
m

P11
m

N
= 1.83 (experiment 1.53) and

m
P11

m
S11

= 1.19 (experiment 0.94) i.e. wrong ordering
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Glueballs
The non-Abelian nature of QCD allows bound
states of gluon
Candidate states observed experimentally:
f0(1370), f0(1500), f0(1710), f0(222)
! can be calculated in lattice QCD
Interpolating fields purely gluonic! J

PC

assignment ambiguous
Use variational approach using interpolating
operators for given irreducible representation of
the hypercubic group! recover spin-parity in
the continuum limit

Quenched results: m0++ = 1710(50)(80) MeV, m2++ = 2390(30)(120) MeV [Chen et al., hep-lat/0510074]
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Multi-quark states

Up now only bound states of q̄q and qqq have been clearly established
QCD predicts many more: quarks+glue, tetra-quarks (candidate �-meson), molecular states of mesons,
pentaquarks, etc
Example: Pentaquark state ⇥+(1540)-experimental evidence faded away?
Very narrow resonance about 100 MeV above K � N threshold =) presents a challenge for lattice QCD since
we need to distinguish between a resonance and a 2-particle scattering state

L=0 

L=1 

u        d 

u        d 

s 
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Lattice study of ⇥+

Techniques developed:
Identify the two lowest states and check for volume dependence of their mass: For scattering state

E =
q

m2
n + (2⇡~n/L)2 +

q
m2

k
+ (2⇡~n/L)2. For -ve parity channel we have S-wave KN scattering.

Extract spectral weights and check their scaling with the spatial volume: Spectral weight for a resonance
is independent of spatial volume whereas for a scattering state scales as ⇠ 1/L

3

Change from periodic to anti-periodic b.c. in the spatial directions and check if the mass in the negative
parity channel changes: Use anti-periodic for light quarks and periodic for the strange
! ⇥+ is not affected since it has an even number of light quarks
N has three and K one! smallest allowed momentum for each quark id ⇡/L and therefore the S-wave
KN scattering energy is increased.
Use interpolating fields in which the quarks are spatially separated
Check whether the binding increases with quark mass

[C.A. & A. Tsapalis, PRD73 (2006) 014507]

All lattice computations are done in the quenched
theory using Wilson, domain wall or overlap
fermions and a number of different actions. All
groups but one agree that if the pentaquark exists
it has negative parity
=) no real evidence for its existence
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Resonances
As we approach the physical point it is important to develop techniques to study unstable particle
The favorite method is to study the energy of a two-particle state as a function of the spatial length of the box.
The ⇢-meson width was studied in NF = 2 twisted mass fermions (ETMC) by Xu Feng, K. Jansen and D.
Renner.

Consider ⇡+⇡� in the I = 1-channel
Estimate P-wave scattering phase shift �11(k) using finite size methods
Use Lüscher’s relation between energy in a finite box and the phase in infinite volume
Use Center of Mass frame and Moving frame

Use effective range formula: tan�11(k) =
g

2
⇢⇡⇡
6⇡

k
3

E

“
m2

R
�E2

” , k =
p

E2/4� m2
⇡ ! determine MR and

g⇢⇡⇡ and then extract �⇢ =
g

2
⇢⇡⇡
6⇡

k
3
R

m2
R

, kR =
q

m2
R
/4� m2

⇡

m⇡ = 309 MeV, L = 2.8 fm
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Current challenges

Construct optimized interpolating fields which maximize the spectral weight wn for a given state
Develop techniques to extract excited states from the two-point correlators
Develop techniques to study the internal structure of hadrons e.g. “molecular” versus multi-quark nature,
radial excitation, etc.
Develop techniques to study resonances and decay widths
At the physical point, it is crucial to combine optimized methods to keep statistical noise small
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Smearing techniques
Hadrons are extended objects having size O(1 fm). The interpolating fields create point sources
! they have a small overlap with the hadron state we want to study
=) Optimize projection to the state of interest:

Employ ”gauge invariant smearing” of quark fields:

 smear(~x, t) =
X

~y

F (~x,~y, U(t)) (~y, t)

• To enhance ground state dominance use Gaussian smearing

F (~x,~y, U(t)) = (1 + ↵H)n�

H(~x,~y ; U(t)) =
3X

i=1

⇣
Ui (x)�x,y�î

+ U
†
i
(x � î)�

x,y+î

⌘
α 1      + 

repeat n-times 

• Exponential smearing:
F (~x,~y, U(t)) = (D2 + m

2
sc
)�nsc (~x,~y)

where one computes the propagator of a scalar particle propagating
in the 3-dimensional space of the same background gauge field U(t)

Adjust the smearing parameters ↵ (msc ) and n� (nsc ) so that r .m.s
radius of the initial state made of the smeared quarks has a value
close to the experimental value.

!

n

0.3876

0.36227

0.33693

0.3116
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0.21027
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1 2 3 4 5
0

10

20

30

40

50

60

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 7 / 28



Examples of effective mass plots
• Quenched at about 550 MeV pions:

am
⇡
eff am

N

eff

• Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing
function F (~x,~y, U(t)).
• NF = 2

H. Wittig, SFB/TR16, August, 2009
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Stochastic sources
The calculation of hadron masses involves the computation of the
point-to-all propagator:

G(~x, t ;~x0, t0)
aa0
µµ0

obtained from solving DG = �4(~x0, t0)�aa0�µµ0

In order to reduce statistical noise as we approach the physical pion
mass one may want to sum over the source coordinates as well.
This requires a new inversion for each lattice point!

(A) Quenched QCD: quark loops neglected

(B) Full QCD

=) replace point source by stochastic noise vector such that:

1
Nr

NrX

r=1

⇣a

µ(x)r ⌘ h⇣a

µir = 0 ,
1
Nr

NrX

r=1

⇣a

µ(x
0)r⇣

⇤a
0

µ0 (x)r = �4(x � x
0)�µµ0�aa0

Inverting using these ⇣0
s as sources one obtains a set of solutions vectors

�a

µ(x)r =
X

y

G
abµ⌫(x, y) ⇣b

⌫(y)r ! G
ab

µ⌫(x, y) = h�a

µ(x)⇣
⇤b(y)ir

A common choice for the noise vectors is Z(2) noise. These satisfy only approximately the above relations and
so one introduces stochastic noise needing a large number of Nr .
=) reduce Nr by employing “dilution schemes”
For mesons one can apply the ’one-end’ trick that combines appropriately solution vectors to obtain the
two-point correlators. E.g. for the pion:

1
Nr

X

~x,r

�†
r
(~x, t ; t0)�r (~x, y ; t0) =

X

~x,~x0

Tr|G(x, x0)|
2
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Systematic effects

Cut-off effects
mN

m⌦
|
lat =

mN

m⌦
|
exp + O(a/r0)

p, p � 1

where r0 some length scale e.g. determined from the force between a static quark and anti-quark.
=) we need to extrapolate to the continuum limit i.e. take a ! 0
Finite volume effects: Use Lm⇡ > 3.5
Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV or at the physical point.

=) Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.
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|
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where r0 some length scale e.g. determined from the force between a static quark and anti-quark.
=) we need to extrapolate to the continuum limit i.e. take a ! 0
Finite volume effects: Use Lm⇡ > 3.5
Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV or at the physical point.

=) Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

Quenched calculation with Wilson fermions CP-PACS
Collaboration, S. Aoki et al. Phys. Rev. D 67 (2003)

Calculation done at 4 values of a ! take
continuum limit
The scale is set using m⇢

The strange quark mass is set by the kaon mass
and by the � mass
Established that the quenched approximation
reproduces the experimental spectrum with up to
15% deviations
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Unquenched calculations

Nf = 2 + 1 smeared Clover fermions BMW Collaboration, S. Dürr et al. Science 322 (2008)

3 lattice spacing: a ⇠ 0.125, 0.085, 0.065 fm
set by m⌅

Pion masses: m⇡
⇠
> 190 MeV

Volume:mmin
⇡ L

⇠
> 4
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Low-lying hadron masses

Simulation parameters used by the Extended Twisted Mass Collaboration (ETMC)

Ensemble V � µl µ� µ� L · m⇡ m⇡ [MeV]

cB211.072.64 128 ⇥ 643 1.778 0.00072 0.1246826 0.1315052 3.62 140.1 (0.2)
cC211.060.80 160 ⇥ 803 1.836 0.00060 0.106586 0.107146 3.78 136.7 (0.2)
cD211.054.96 192 ⇥ 963 1.900 0.00054 0.087911 0.086224 3.9 140.8 (0.2)
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Comparison of results using different actions

N � � � � �� �� �
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ETMC, C. Alexandrou et al. Phys. Rev. D 108
(2023) 9, 094510, arXiv: 2309.04401 [hep-lat]

Good agreement between different discretization schemes

=) Significant progress in understanding the masses of low-lying mesons and baryons
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Isospin and QED corrections to masses
BMW collaboration computed isospin and QED corrections determining the mass splitting for the low-lying
baryons, Sz. Borsanyi et al., Science 347 (2015) 1452
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Excited states

Lattice calculations of excited states are harder:
Usually calculations are done on coarse lattices and at one lattice spacing ! no continuum
extrapolations
Still done at larger than physical pion masses and the width of resonances is mostly ignored
At the physical point most are resonances

1 One major challenge is to isolate the sub-leading contributions to the two-point correlator. Various
methods are used:

I Variational
I Bayesian, see e.g. G. P. Lepage at al,, NP109A (2002) 185
I �2-histogram searches, see [C. Alexandrou, C.N. Papanicolas and E. Stiliaris, PoS LAT2008,

arXvi:0810.3882

2 Another major challenge is to distinguish resonances from multi-quark or multi-hadron states
I Use scaling of spectral weight with the spatial volume
I Dependence on boundary conditions
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Variational principle

Consider a basis of interpolating fields Ji , i = 1, · · · , N having the same quantum numbers
Define an N ⇥ N correlator matrix:

Ckj (t) = hJk (t)J
†
j
i =

1X

n=1

h0| Jk |ni hn| J
†
j
|0i e

�Ent

Define the N principal correlators �k (t, t0) as the eigenvalues of the generalized eigenvalue problem
(GEVP):

C(t)vn(t, t0) = �n(t, t0)C(t0)vn(t, t0)

where t0 is some reference time separation.

The vectors ṽn(t, t0) ⌘ C
1/2(t0)vn(t, t0) diagonalize C

�1/2(t0)C(t)C�1/2(t0) ! use to define a basis of
interpolating fields J̃n =

P
N

k=1(ṽ
⇤
n
)k Jk

J̃n

† creates the n
th eigenstate: |ni = J̃

†
n
|0i.

The N principal eigenvalues correspond to the N lowest-lying stationary-state energies [Lüscher and
Wolff 1990]

E
eff
n
(t, t0) = �@t�n(t, t0) = En + O

⇣
e

��Ent
⌘

, �En =
m 6=n

min |Em � En|
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Anisotropic lattices

Use a different lattice space at for time direction as that for the spatial directions as

=) this is advantageous for studying excitations which have larger masses since the two-point correlation
function fall off rapidly:

C(~0, t)
t�0
! e

�at m(t/at )

Typically ⇠ ⌘
as

at
⇠ 3 and as ⇠ 0.1 � 0.15 fm (check for spatial lattice spacing effects)
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Results using the variational principle

If t0 = t/2 then correction is only O

⇣
e

��E
N+1 t

⌘
[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]
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Results using the variational principle
If t0 = t/2 then correction is only O

⇣
e

��E
N+1 t

⌘
[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]

Nucleon effective mass plots with m⇡ = 450 MeV using differing Gaussian smearings
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Excited states of the Nucleon
The first excited state of the nucleon is known as the Roper. It has a mass below the negative parity state of the
nucleon.
It has been difficult to obtain the Roper in lattice calculations most of which are done in the quenched
approximation

Quenched calculation, using variational principle [M. S. Mahbub et al., arXiv:1007.4871]
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Excited states of the Nucleon/�

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]
Two lattice spacings: a = 0.15 fm, a = 0.12 fm

m⇡
>
⇠ 350 MeV and lattice sizes 163

⇥ 32 and 203
⇥ 32 with m

min
⇡ L ⇠ 4

Variational approach using different levels of Gaussian smearing; 6 ⇥ 6 correlation matrix
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Results using variational method and anisotropic lattices
Hadron Spectrum Collaboration [Bulava et al., Phys. Rev. D79 (2009) 034505]
Use extended fields operators in a variational approach ! 16 ⇥ 16 correlator matrix

• Nf = 2 Wilson fermions with at

as
= 3 and

a = 0.11 fm at m⇡ = 420 MeV and 580 MeV on a
volume of L = 2.64 fm ! m

min
⇡ ⇠ 5.6.

•Extrapolation of the mass of the nucleon linearly in
m

2
⇡ yields mN = 972(28) Mev

•Excited states of nucleon:
m

P11
m

N
= 1.83 (experiment 1.53) and

m
P11

m
S11

= 1.19

(experiment 0.94) i.e. wrong ordering
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Recent results on nulceon excited states

• Nf = 2 + 1 Wilson-clover dynamical fermions, m⇡ = 156 MeV
Variational basis: N(0), N(0)�(0) and N(p)⇡(�p) with p = 2⇡/L

• No Roper state observed
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek,
Phys. Rev. D 95 (2017) 1, 014510, arXiv:1610.01422 [hep-lat]
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Excited meson states

Analysis using Nf = 2 + 1 clover fermions on a 243
⇥ 128 anisotropic lattice with a pion mass m⇡ ⇠240 MeV.

A correlation matrix of 58 operators including extended operators

J. Bulava, et al., PoS(Lattice 2013):266 (2013) (arXiv:1310.7887 [hep-lat])
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Excited meson states

Analysis using Nf = 2 + 1 clover fermions on a 243
⇥ 128 anisotropic lattice with a pion mass m⇡ ⇠390 MeV.

A correlation matrix of 13 ⇥ 13 correlation matrix including the scalar gluon operator

Without the gluon operator With gluon operator

C. Morningstar, arXiv:2502.02547 [hep-lat])
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Glueballs
The non-Abelian nature of QCD allows bound
states of gluon
Candidate states observed experimentally:
f0(1370), f0(1500), f0(1710), f0(222)
! can be calculated in lattice QCD
Interpolating fields purely gluonic ! J

PC

assignment ambiguous
Use variational approach using interpolating
operators for given irreducible representation of
the hypercubic group ! recover spin-parity in
the continuum limit

Computation with Nf = 4 and Nf = 2 + 1 + 1 twisted mass fermions with m⇡ ⇠260 MeV.

• The pseudoscalar and tensor glueball mass are not
affected by including light quarks.
• A lowest state is observed in the scalar channel
when introducing dynamical light quarks - multipion
state.

A. Athenodorou et al., 2308.10054 [hep-lat]
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Multi-quark states

• Bound states of q̄q and qqq have been clearly established
• QCD predicts many more: quarks+glue, tetra-quarks, molecular states of mesons, pentaquarks, etc
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Multi-quark states
• Bound states of q̄q and qqq have been clearly established
• QCD predicts many more: quarks+glue, tetra-quarks, molecular states of mesons, pentaquarks, etc
Examples are the recently discovered X, Y and Z states at LHCb and BESII
Very narrow resonances near threshold =) presents a challenge for lattice QCD since we need to distinguish
between a resonance and a 2-particle scattering state
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Resonances
At the physical point it is important to develop techniques to study unstable particle
Lüscher method: study the energy of a two-particle state as a function of the spatial length of the box.
The ⇢-meson width was studied in NF = 2 twisted mass fermions (ETMC) by Xu Feng, K. Jansen and D.
Renner.

Consider ⇡+⇡� in the I = 1-channel
Estimate P-wave scattering phase shift �11(k) using finite size methods
Use Lüscher’s relation between energy in a finite box and the phase in infinite volume
Use Center of Mass frame and Moving frame

Use effective range formula: tan�11(k) =
g

2
⇢⇡⇡
6⇡

k
3

E

⇣
m2

R
�E2

⌘ , k =
p

E2/4 � m2
⇡ ! determine MR and

g⇢⇡⇡ and then extract �⇢ =
g

2
⇢⇡⇡
6⇡

k
3
R

m2
R

, kR =
q

m2
R
/4 � m2

⇡

m⇡ = 309 MeV, L = 2.8 fm
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Resonances - �
Elastic pion-nucleon scattering in I=3/2 channel [S. Paul el. PoS LATTICE2018 (2018) 089]
Use Nf = 2 + 1 clover fermions with m⇡ ⇡ 250 MeV, and two volumes
Basis: � and N⇡
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