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Abstract

In this article we review the present status of α clustering in nu-

clear systems. An important aspect is first of all condensation in

nuclear matter. Like for pairing, quartetting in matter is at the root

of similar phenomena in finite nuclei. Cluster approaches for finite

nuclei are shortly recapitulated in historical order. The α container

model as recently been proposed by Tohsaki-Horiuch-Schuck-Röpke

(THSR) will be outlined and the ensuing condensate aspect of the

Hoyle state at 7.65 MeV in 12C investigated in some detail. A spe-

cial case will be made with respect to the very accurate reproduction

of the inelastic form factor from the ground to Hoyle state with the

THSR description. The extended volume will be deduced. New

developments concerning excitations of the Hoyle state will be dis-

cussed. After 15 years since the proposal of the α condensation

concept a critical assessment of this idea will be given. Alpha gas

states in other nuclei like 16O and 13C will be considered. An im-

portant aspect are experimental evidences, present and future ones.

The THSR wave function can also describe configurations of one α

particle on top of a doubly magic core. The cases of 20Ne and 212Po

will be investigated.

1. Introduction

Nuclei are very interesting objects from the many body
point of view. They are selfbound droplets, i.e., clusters
of fermions! As we know, this stems from the fact that in
nuclear physics, there exist four different fermions: pro-
ton, spin up/down, neutron spin up/down. If there were
only neutrons, no nuclei would exist. This is due to the
Pauli exclusion principle. Take the case of the α particle
described approximately by the spherical harmonic oscil-
lator as mean field potential: one can put two protons
and two neutrons in the lowest (S) level, that is just the

α particle. With four neutrons one would have to put
two of them in the P-shell what is energetically very pe-
nalising. Neutron matter is unbound whereas symmetric
nuclear matter is bound. Of course, this is not only due to
the Pauli principle. We know that the proton-neutron at-
traction is stronger than the neutron-neutron (or proton-
proton) one. Proton and neutron form a bound state, the
other two combinations not. The binding energy of the
deuteron (1.1 MeV/nucleon) is to a large extent due to the
tensor force. So is the one of the α particle. The α parti-
cle is the lightest doubly magic nucleus with almost same
binding per nucleon (7.07 MeV) as the strongest bound
nucleus, i.e., Iron (52Fe). The binding of the deuteron is
about seven times weaker than the one of the α particle.
The α is a very stiff particle. Its first excited state is at ∼
20 MeV. This is factors higher than in any other nucleus.
It helps to give to the α particle under some circumstances
the property of an almost ideal boson. This happens, once
the average density of the system is low as, e.g. in 8Be
which has an average density at least four times smaller
than the nuclear saturation density ρ0. All nuclei, besides
8Be, have a ground state density around ρ0 and can be
described to lowest order as an ideal gas of fermions hold
together by their proper mean field. 8Be is the only ex-
ception forming two loosely bound α’s, see Fig. 1. For this
singular situation exist general arguments but no detailed
numerical explanation (as far as we know). We will come
to the discussion of 8Be later. However, radially expand-
ing a heavier nucleus consisting of nα particles gives raise
to a strong loss of its binding. At a critical expansion, i.e.
low density, it is energetically more favorable that the nu-
cleus breaks up into nα particles because each α particle
can have (at its center) saturation. Of course, the sum of
surface energies of all α particles is penalising but less than
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Fig. 1: Green’s function Monte Carlo results for 8Be. Left:
laboratory frame; right: intrinsic frame. From [1]
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Fig. 2: Mean-field energy of 16O as a function of its radius r.
At a certain critical radius 16O clusters into four α particles
(tetrahedron) [2].

the loss of binding due to expansion. For illustration, we
show in Fig. 2 a pure mean field calculation of 16O which
has broken up into a tetrahedron of four α particles at
low density [2]. Of course in this case the α’s are fixed to
definite spatial points and, thus, they form a crystal. In
reality, however, the α’s can move around lowering in this
way the energy of the system greatly. We will come back
to this in the main part of the review. Such α cluster-
ing scenarios are observed when two heavier nuclei collide
head on at c.o.m. energies/particle around the Fermi en-
ergy. The nuclei first fuse and compress. Then decompress
and at sufficiently low density the system breaks up into
clusters. A great number of α particles is detected for cen-
tral collisions, see [3][4] and references in there. However,
also in finite nuclei such low density nα systems can exist
as resonances close to the nα disintegration threshold.

A very fameous example is the second 0+ state at 7.65
MeV in 12C, the so-called Hoyle state. Its existence was
predicted in 1954 by the astrophysicist Fred Hoyle [5] and
later found practically at the predicted energy by Fowler
et al. [6]. This state is supposed to be a loosely bound
agglomerate of three α particles situated about 300 keV

above the 3α disintegration threshold. As for the case of
8Be, this state is hold together by the Coulomb barrier.
It is one of the most important states in nuclear physics
because it is the gateway for Carbon production in the
universe through the so-called triple α reaction [7, 8, 9,
10, 11, 12, 13] and is, thus, responsable for life on earth.
A great part of this article will deal with the description
of the properties of this state. However, it is now believed
that there exist heavier nuclei which show similar α gas
states around the α disintegration threshold, for instance
16O around 14.4 MeV [14]. Alpha particles are bosons. If
they are weakly interacting like e.g., in the Hoyle or other
states, they may essentially be condensed in the 0S orbit
of their own cluster mean field. We will dwell extensively
on this ’condensation’ aspect in the main part of the text.

Clustering and in particular α particle clustering has al-
ready a long history. The alpha particle model was first
introduced by Gamow [15, 16]. Before the discovery of
the neutron, nuclei were assumed to be composed of α
particles, protons and electrons. In 1937 Wefelmeier [17]
proposed his well known model where the nα particles are
arranged in crystalline order in Z = N nuclei. In the work
of Hafstad and Teller in 1938 [18], the α’s in a selfconju-
gate nucleus are arranged in close packed form interacting
with nearest neighbors. The energy levels of 16O were
discussed by Dennison [19] with a regular tetrahedron ar-
rangement of the four α’s. Other forerunners of α cluster
physics with this kind of models were Kameny [20] and
Glassgold and Galonsky [21]. The latter discussed energy
levels of 12C calculating the rotations and vibrations of
an equilateral triangle arrangement of the three α’s, see
also a recent application of this idea in [22] discussed be-
low. Several works also tried to solve, e.g., the 3α system
in considering the 3-body Schrödinger equation with an
effective α-α potential reproducing the α-α phase shifts,
see two recent publications [23, 24]. In the main part
of the article we will discuss recent works of this type. In
1956 Morinaga came up with the idea that the Hoyle state
could be a linear chain state of three α particles [25]. This
at that time somewhat spectacular idea found some echo
in the community. But in the 1970-ties first with the so-
called Orthogonality Condition Method (OCM) Horiuchi
[26] and shortly later Kamimura et al. [27] and indepen-
dently Uegaki et al. [28] showed that the Hoyle state is
in fact a weakly coupled system of three α’s or in other
words a gas like state of α particles in relative S-states.
The emerging picture then was that the Hoyle state is of
low density where a third α particle is orbiting in an S-
wave around a 8Be-like object also being in an S-wave.
Actually both groups in [27, 28] started with a fully mi-
croscopic 12 nucleon wave function where the c.o.m. part
was to be determined by a variational Resonating Group
Method (RGM) calculation in the first case and by a Gen-
erator Coordinate Method (GCM) one in the second case
[29, 30]. Slight variants of the Volkov force [31] were used.

All known properties of the Hoyle state were repro-
duced in both cases with this parameter free calculations.
Besides the Hoyle state several other states were pre-
dicted and agreement with experiment found. The sec-
ond 2+ state was only confirmed very recently [32, 33].
The achievements of these works were so outstanding and
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ahead of their time that–one is tempted to say–’as often
after such an exploit’ the physics of the Hoyle state stayed
essentially dormant for roughly a quarter century. It was
only in 2001 where a new aspect of the Hoyle state came
on the forefront of discussion. Tohsaki, Horiuchi, Schuck,
and Röpke (THSR) proposed that the Hoyle state and
other nα nuclei as, for instance, 16O with excitation en-
ergies roughly around the alpha disintegration threshold
form actually an α particle condensate. They proposed
a wave function of the (particle number projected) BCS
type, however, the pair wave function replaced by a quar-
tet one formed by a wide Gaussian for the c.o.m. mo-
tion and an intrinsic translationally invariant α particle
wave function with a free space extension. The variational
solution with respect to the single size parameter of the
c.o.m. Gaussian gave an almost 100 % squared overlap
with Kamimura’s wave function [34], thus, proving that
implicitly the latter one has the more simplified (analytic)
structure of the THSR wave function. Additionally it was
later shown that THSR predicts a 70% occupancy of the
three alpha’s of the Hoyle state being in identical 0S or-
bit. This was rightly qualified as an α particle condensate.
This interpretation of the Hoyle state and the prediction
that in heavier nα nuclei similar α condensates may exist,
triggered an immense new interest in the Hoyle state and
α cluster states around it. Many experimental and the-
oretical arcticles have appeared since then including 4-5
review articles on the subject [35, 36, 37, 38, 39]. And
the intensity of this type of studies does not seem to slow
down.

Our article is organised as follows. In Sect.2 we show
how in infinite nuclear matter, below a certain low critical
density, α particle condensation appears. In Sects. 3-7, we
recapitulate in condensed form the most important theo-
retical methods to treat α clustering in finite nuclei, that
is the RGM, the OCM, the Brink and Generator Coordi-
nate Method (Brink-GCM), the Antisymmetrised Molec-
ular and Fermion Molecular Dynamics (AMD, FMD), and
finally the wave function proposed by Tohsaki, Horiuchi,
Schuck, Röpke (THSR). In Sect. 8 and 9, the Hoyle state
in 12C and its α condensate structure is discussed em-
ploying the THSR wave function. In Sect. 10 the spacial
extension of the Hoyle state is investigated and in Sect.11
excited Hoyle states are studied. In Sect.12 we present an
OCM study of the 0+ spectrum of 16O with the finding
that only the 6-th 0+ state at 15.1 MeV can be interpreted
as an α cluster condensate state. In Sect.13, a critical
round up of the hypothesis of the Hoyle state being an α
particle condensate is presented and the question asked:
where do we stand after 15 years? In Sect.14 we show that
also in the ground states of the lighter self conjugate nuclei
non-negligeable correlations of the α type exist which can
act as seeds to break those nuclei into α gas states when
excited. In Sect.15 we treat the case what happens to
the cluster states when an additional neutron is added to
12C. In Sect.16 we discuss the experimental situation con-
cerning α condensation. In the next section 17 we come
back to cases where the α is strongly present, even in the
ground state. Such is the case for 20Ne where two doubly
magic nuclei (16O and α) try to merge. In Sect.18, we
point more in detail to the fact that the successful THSR

description of cluster states sheds a new light on cluster
dynamics being essentially non-localised in opposition to
the old dumbell picture. Then in Sect.19, we come to an-
other case of two merging doubly magic nuclei: 208Pb +α
= 212Po. Finally, in Sect.20, we give an outlook and con-
clude.

2. Alpha particle Condensation in Infinite Matter

The possibility of quartet, i.e., α particle condensation in
nuclear systems has only come to the forefront in recent
years. First, this may be due to the fact that quartet
condensation, i.e., condensation of four tightly correlated
fermions, is a technically much more difficult problem than
is pairing. Second, as we will see, the BEC-BCS transition
for quartets is very different from the pair case. As a
matter of fact the analog to the weak coupling BCS like,
long coherence length regime does not exist for quartets.
Rather, at higher densities the quartets dissolve and go
over into two Cooper pairs or a correlated four particle
state.

Quartets are, of course, present in nuclear systems. In
other fields of physics they are much rarer. One knows
that two excitons (bound states between an electron and
a hole) in semiconducters can form a bound state and the
question has been asked in the past whether bi-excitons
can condense [40]. In future cold atom devices, one may
trap four different species of fermions which, with the help
of Feshbach resonances, could form quartets (please reme-
ber that four different fermions are quite necessary to form
quartets for Pauli principle and, thus, energetic reasons).
Theoretical models of condensed matter have already been
treated and a quartet phase predicted [41], see also [42].

Let us start the theoretical description. For this it is
convenient to recapitulate what is done in standard S-wave
pairing. On the one hand, we have the equation for the
order parameter κ(p1,p2) = 〈cp1

cp2
〉 (we suppose S-wave

pairing and suppress the spin dependence)

κ(p1,p2) =
1− n(p1)− n(p2)

ep1
+ ep2

− 2µ

∑
p′

1,p′
2

〈p1p2|v|p′
1p

′
2〉κ(p′

1,p
′
2)

(1)
with ek kinetic energy, eventually with a Hartree-Fock
(HF) shift, and 〈p1p2|v|p′

1p
′
2〉 = δ(K −K ′)v(q − q′) the

matrix element of the force with K, q c.o.m. and rela-
tive momenta. One recognises the in medium two-particle
Bethe-Salpeter equation at T = 0, taken at the eigenvalue
E = 2µ where µ is the chemical potential. Inserting the
standard BCS expression for the occupation numbers

n(p) =
1

2

(
1− ep − µ

2
√

(ep − µ)2 +∆2

)
(2)

leads for pairs at rest, i.e., K = p1 + p2 = 0, to the stan-
dard gap equation [43]. We want to proceed in an analo-
gous way with the quartets. In obvious short hand nota-
tion, the in-medium four fermion Bethe-Salpeter equation
for the quartet order parameter K(1234) = 〈c1c2c3c4〉 is
given by [44]

(e1 + e2 + e3 + e4 − 4µ)K(1234) = (1− n1 − n2)

×
∑

1′2′〈12|v|1′2′〉K(1′2′34) + permutations , (3)
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Fig. 3: Single particle mass operator in case of pairing (upper
panel) and quartetting (lower panel).

We see that above equation is a rather straight forward
extension of the pairing case to the quartet one. The dif-
ficulty lies in the problem how to find the single-particle
(s.p.) occupation numbers nk in the quartet case. Again,
we will proceed in analogy to the pairing case. Eliminat-
ing there the anomalous Green’s function from the 2 × 2
set of Gorkov equations [43] leads to a mass operator in
the Dyson equation for the normal Green’s function of the
form

M1,1′ =
|∆1|2

ω + e1 − 2µ
δ1,1′ . (4)

with the gap defined by

∆1 =
∑
2

〈11̄|v|22̄〉〈c2c2̄〉 (5)

where ’1̄’ is the time reversed state of ’1’. Its graphical
representation is given in Fig. 3 (upper panel). In the case
of quartets, the derivation of a s.p. mass operator is more
tricky and we only want to give the final expression here
(for detailed derivation, see Appendix A and Ref. [44]):

Mquartet
1,1 (ω) =

∑
234

∆1234[f̄2f̄3f̄4 + f2f3f4]∆
∗
1234

ω + e2 + e3 + e4 − 4µ
, (6)

where f̄ = 1 − f and fi = Θ(µ − ei) is the Fermi step at
zero temperature and the quartet gap matrix is given by

∆1234 =
∑
1′2′

〈12|v|1′2′〉〈c1′c2′c3c4〉 (7)

This quartet mass operator is also depicted in Fig. 3 (lower
panel).

Though, as mentioned, the derivation is slightly intri-
cate, the final result looks plausible. For instance, the
three backward going fermion lines seen in the lower panel
of Fig. 3 give rise to the Fermi occupation factors in the nu-
merator of Eq. (6). This makes, as we will see, a strong dif-
ference with pairing, since there with only a single fermion
line f̄ + f = 1 and, thus, no phase space factor appears.
Once we have the mass operator, the occupation numbers
can be calculated via the standard procedure and the sys-
tem of equations for the quartet order parameter is closed.

Numerically it is out of question that one solves this
complicated nonlinear set of four-body equations brute
force. Luckily, there exists a very efficient and simplifying
approximation. It is known in nuclear physics that, be-
cause of its strong binding, it is a good approximation to

treat the α particle in mean field as long as it is projected
on good total momentum. We therefore make the ansatz
(see also [42])

〈c1c2c3c4〉 → ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)δ(k1+k2+k3+k4) ,
(8)

where ϕ is a 0S single particle wave function in momen-
tum space. Again the scalar spin-isospin singlet part of
the wave function has been suppressed. With this ansatz
which is an eigenstate of the total momentum operator
with eigenvalue K = 0, the problem is still complicated
but reduces to the selfconsistent determination of ϕ(k)
what is a tremendous simplification and renders the prob-
lem manageable. Below, we will give an example where
the high efficiency of the product ansatz is demonstrated.
Of course, with the mean field ansatz we cannot use the
bare nucleon-nucleon force. We took a separable one with
two parameters (strength and range) which were adjusted
to energy and radius of the free α particle. In Fig. 4, we
show the evolution with increasing chemical potential µ
(density) of the single particle wave function in position
and momentum space (two left columns). We see that
at higher µ’s, i.e., densities, the wave function deviates
more and more from a Gaussian. At slightly positive µ
the system seems not to have a solution anymore and self-
consistency cannot be achieved.

Very interesting is the evolution of the occupation num-
bers nk(≡ ρ(k)) with µ (density) also shown in Fig. 4
(right column). It is seen that at slightly positive µ where
the system stops to find a solution, the occupation num-
bers are still far from unity. The highest occuation number
one obtains lies at around nk=0 ∼ 0.35. This is completely
different from the BEC-BCS cross-over in the case of pair-
ing, where µ can vary from negative to positive values and
the occupation numbers saturate at unity when µ goes
well into the positive region. We therefore see that in the
case of quartetting, the system is still far from the regime
of weak coupling and large coherence length when it stops
to have a solution. One also sees from the extension of the
wave functions that the size of the α particles has barely
increased. Before we give an explanation for this behavior,
let us study the critical temperature where this breakdown
of the solution is seen more clearly.

In order to study the critical temperature for the onset
of quartet condensation, we have to linearise the equation
for the order parameter (3) in replacing the correlated oc-
cupation numbers by the free Fermi-Dirac distributions at
finite temperature n(p) → f(p) = [1 + e(ep−µ)/T ]−1 with
ep = p2/(2m). Determining the temperature T where the
equation is fullfilled gives the critical temperature T = Tα

c .
This is the Thouless criterion for the critical temperature
of pairing [45] transposed to the quartet case. In Fig. 5,
we show the evolution of Tα

c as a function of the chemical
potential (left panel) and of density (right panel) [46], see
also [47] for the case of asymmetric matter. This figure
shows very explicitly the excellent performance of our mo-
mentum projected mean field ansatz for the quartet order
parameter. The crosses correspond to the full solution of
Eq. (3) in the linearised finite temperature regime with the
rather realistic Malfliet-Tjohn bare nucleon-nucleon po-
tential [48] whereas the continuous line corresponds to the
projected mean field solution. Both results are litterally
on top of one another (the full solution is only available for
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Fig. 4: Single particle wave functions ϕ in momentum and position spaces (two left columns) and s.p. occupation numbers ρ(k)
(right column) [44].
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negative chemical potentials). One clearly sees the break-
down of quartetting at small positive µ (the fact that the
critical T breakdown occurs at a somewhat larger posi-
tive µ with respect to the full solution of the quartet gap
equation with the ansatz (8) at T=0 may be due to the
fact that here we are at finite temperature, see also discus-
sion below) whereas n-p pairing (in the deuteron channel)
continues smoothly into the large µ region. It is worth
mentioning that in the isospin polarised case with more
neutrons than protons, n-p pairing is much more affected
than quartetting (due to the much stronger binding of the
α particle) and finally loses against α condensation [47].
So, contrary to the pairing case, where there is a smooth
cross-over from BEC to BCS, in the case of quartetting
the transition to the dissolution of the α particles seems
to occur quite abruptly and we have to seek for an ex-
planation of this somewhat surprising difference between
pairing and quartetting.

The explanation is in a sense rather trivial. It has to
do with the different level densities involved in the two
systems. In the pairing case, the s.p. mass operator only
contains a single fermion (hole) line propagator and the
level density is given by

g1h(ω) = − 1

π
Im
∑
p

f̄(p) + f(p)

ω + ep + iη
=
∑
p

δ(ω + ep) (9)

In the case of three fermions, as is the case of quartet-
ting, we have for the corresponding level density ( see also
[49])

g3h(ω) = − 1

π
ImTr

f̄(p1)f̄(p2)f̄(p3) + f(p1)f(p2)f(p3)

ω + e1 + e2 + e3 + iη

= Tr[f̄(p1)f̄(p2)f̄(p3) + f(p1)f(p2)f(p3)]

×δ(ω + e1 + e2 + e3) . (10)

In Fig. 6, we give, for T = 0, the results for negative
and positive µ. The interesting case is µ > 0. We see that
phase-space constraint and energy conservation cannot be
fullilled simultaneously at the Fermi energy and the level
density is zero there. This is just the point where quar-
tetting should build up. Obviously, if there is no level
density, there cannot be quartetting. In the case of pair-
ing there is no phase space restriction and the level density
is finite at the Fermi energy. For negative µ, f(ek) van-
ishes at zero temperature and is exponentially small at
finite T . Then there is no fundamental difference between
1h and 3h level densities. This explains the striking differ-
ence between pairing and quartetting in the weak coupling
regime. The same reasoning holds in considering the in-
medium four body equation (3). The relevant in-medium
four-fermion level density is also zero at 4µ for µ > 0 even
for the quartet at rest. Actually the only case of an in-
medium n-fermion level density which remains finite at
the Fermi energy is (besides n =1) the n = 2 case when
the c.o.m. momentum of the pair is zero, as one may ver-
ify straightforwardly. That is why pairing is such a special
case, different from condensation of all higher clusters. Of
course, the level densities do no longer pass through zero,
if we are at finite temperature. Only a strong depres-
sion may occur at the Fermi energy. This is probably, as
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Fig. 6: 3h-level density for negative (left) and positive (right)
chemical potential [44].

mentioned, the reason why the break down of the critical
temperature is slightly less abrupt than at T = 0.

In conclusion of this nuclear matter section concerning
quartet condensation, we can say that for sure α particle
condensation happens in low density nuclear matter. It
may not be the only cluster which condenses because it
is not the strongest bound even-even nucleus. However,
in a dynamic process, it probably will be the first nucleus
which condenses because of its small number of particles
and its strong binding. A phenomenon of this type may
happen in compact stars, though further studies should be
undertaken to better constrain this.

Of course, like with pairing, it is now very tempting
to imagine that in finite nuclei precurser phenomena of α
particle condensation are present. This will be the subject
of the following sections.

3. Resonating Group Method (RGM) for α parti-
cle clustered nuclei

In finite nuclei special techniques have to be and have
been developed to treat clustering, for instance α particle
clustering.

The RGM is one of the most powerful microscopic clus-
ter approaches for finite nuclei. It has been introduced by
Wheeler [29] and used by Kamimura et al. in 1977 in his
fameous work [27] to explain the cluster structure of 12C
and, for instance, the Hoyle state. Let us shortly explain
the method.

We will demonstrate the principle with the example of
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three α particles, the generalisation to other numbers of
α’s being straightforward. The ansatz for the 3α RGM
wave function has a very transparent form

ΨRGM(r1....r12) ∝ Aχ(ξ1, ξ2)φα1φα2φα3 (11)

Please note that in (11), we suppressed the scalar spin-
isospin part of the wave function of the α particle for
brevity. Furthermore, we introduced the antisymmetriser
A, the Jacobi coordinates for the c.o.m. motion ξi, and
the intrinsic translationally invariant wave function for α
particle number i

φαi ∝ exp

[
−
∑
k<l

(ri,k − ri,l)
2/(8b2)

]
(12)

This α particle wave function contains the variational
parameter b leading to very reasonable α particle prop-
erties when used in modern energy density functionals
(EDF’s) [50]. Because of the use of Jacobi coordinates,
the total 3α wave function is, thus, translationally invari-
ant. Given a microscopic hamiltonian H, the Schrödinger
equation for the unknown function χ is given by∫

d3ξ′1

∫
d3ξ′2H(ξ1ξ2, ξ

′
1ξ

′
2)χ(ξ

′
1, ξ

′
2)

= E

∫
d3ξ′1

∫
d3ξ′2N (ξ1ξ2, ξ

′
1ξ

′
2)χ(ξ

′
1, ξ

′
2) (13)

where

H(ξ1ξ2, ξ
′
1ξ

′
2) = 〈Π2

i=1δ(ξi − si)φα1φα2φα3 |
(H − TG)A|Π2

i=1δ(ξ
′
i − si)φα1φα2φα3〉

(14)

and analogously for the so-called norm kernel N . The
elimination of the c.o.m. kinetic energy TG is performed
with substracting it from the Hamiltonian. In (14) the si
are again the Jacobi coordinates which have to be inte-
grated over. The delta-functions in (14) only serve for an
easy book keeping of the Jacobi coordinates ξ at the end
of the calculation. In order to make out of (13) a standard
Schrödinger equation, we have to take the square root of
the norm kernel, introduce a renormalised wave function
χ̃ =

√
Nχ and divide H from left and right by

√
N what

leads to H̃ = N−1/2HN−1/2. Of course the division is
only possible if we beforehand had diagonalised the norm
kernel and eliminated the configurations belonging to zero
eigenvalues. In the reduced space the Schrödinger equa-
tion then looks like

H̃χ̃ = Eχ̃ (15)

Since, for example in the case of two α’s (8Be) the nucle-
ons occupy 0S orbits and in pure HO Slater approxima-
tion 4h̄ω quanta are occupied from the four nucleons in
the P -shell, the relative wave functions must at least ac-
comodate 4h̄ω, if for overlapping configuration the Slater
determinant shall be recovered. States with occupation
lower than 4h̄ω are so-called Pauli forbidden states. These
Pauli forbidden states give rise to zero eigenvalues in the
norm kernel and are thus automatically eliminated within
the RGM formalism. On the other hand, the fact that the
relative wave function must not have HO quanta smaller
than four implies that it developes nodes in the region of

overlap of the two α’s. Since nodes generate kinetic en-
ergy, the amplitudes of oscillations at short distances will
be small. This is precisely what we will find below when
we treat 8Be in more detail. The above considerations
can obviously be extended to any number of α particles.
It should be mentioned, however, that the explicit evalu-
ation of the antisymmetrisation is very complicated and
the RGM equations have not been solved as they stand
beyond the three α particles (12C) case.

4. The Orthogonality Condition Model (OCM)
and other Boson Models

As we easily understand from eqs (11) and (15), the pro-
cedure to integrate out the internal coordinates of the α’s
leads to equations which are of bosonic type. It seems,
therefore, natural to apply some further approximations
to avoid the complexity with the antisymmetrisation. For
example it can be shown that the eigenfunctions uF (ξ) of
the norm kernel which belong to the zero eigenvalues are
just the Pauli forbidden states we discussed above. They
satisfy the condition A{uF (ξ)Πn

i=1φαi} = 0 for the case of
nα particles. This means that the antisymmetrised RGM
wave function where χ is replaced by the Pauli forbidden
uF ’s is exactly zero. This is a very strong boundary condi-
tion which is advised to incorporate into further approxi-
mation schemes. The idea of the OCM is, thus, the follow-
ing: replace H̃ = N−1/2HN−1/2 by an effective Hamilto-
nian H(OCM) which contains effective phenomenological
two and three body forces with adjustable parameters to
mock up, e.g., the repulsion when two α particles come
close

H(OCM) =
n∑

i=1

Ti − TG +
n∑

i<J=1

V eff
2α (i, j)

+

n∑
i<j<k=1

V eff
3α (i, j, k). (16)

The effective local 2α and 3α potentials are pre-

sented as V eff
2α (i, j) (including the Coulomb potential) and

V eff
3α (i, j, k), respectively. Then, the equation of the rela-

tive motion of the nα particles with H(OCM), called the
OCM equation, is written as

[H(OCM) − E]Φ(OCM)
nα = 0 (17)

〈uF |Φ(OCM)
nα 〉 = 0 (18)

where uF represents the Pauli forbidden states as men-
tioned above. They have to be orthogonal to the physical
states, a condition which is taken into account in (18). Of

course the wave function Φ
(OCM)
nα should be completely

symmetrised with respect to any exchange of bosons. It
has turned out that this approximate form of the RGM
equations is very efficient and represents a viable approach
for higher numbers of α particles. It has recently been suc-
cessfully applied to the low lying spectrum of 16O [14] as
we will discuss below.

Some authors go even further in the bosonisation of the
problem. They discard the condition (18) completely and
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incorporate this in adjusting appropriately the effective
forces. The two most recent ones are from i) Lazauskas
et al. [23] using the non-local Papp-Moszkowski poten-
tial [51]. Good description of the ground state and Hoyle
state positions was obtained. ii) Ishikawa [24] obtained
with local effective two and three body forces a similar
quality of the 12C spectrum. However, he, in addition,
calculated also the decay properties of the Hoyle state
concluding that the three body decay of three α’s is very
much hindered with respect to the sequential 2-body decay
α+8Be.

5. Brink and Generator Coordinate Wave Func-
tions

The GCM was used by Uegaki et al. [28] for the calcula-
tion of cluster states in 12C. The GCM wave function is
based on the so-called Brink wave function of the form

ΨBrink ∝ Ae−2(R1−S1)
2/b2e−2(R2−S2)

2/b2

×e−2(R3−S3)
2/b2φα1φα2φα3 (19)

with φαi as in (12). The Brink wave function is in fact
a perfect Slater determinant where always quadruples of
2 protons and 2 neutrons are placed on the same spatial
position Si. This can be seen in noticing that a product
of four Gaussians can be written as an intrinsic part φα
times a c.o.m. part. So, the Brink wave function places
each α particle at a definite position and, thus, desribes
clustering as some sort of α particle crystal. Below, we
will discuss the validity of this approach in more detail.

The corresponding GCM wave function is a superposi-
tion of Brink ones with a weight function f which has to
be determined from a variational calculation,

ΨGCM ∝ P0

∫
d3S1

∫
d3S2

∫
d3S3 f(S1,S2,S3)

×ΨBrink(R1R2R3,S1S2S3). (20)

It is clear that the GCM wave function is much richer
than the single Brink one. Actually both wave functions,
for practical use, have to be projected on good linear mo-
mentum (K = 0) and on good angular momentum. To
take off of the Brink wave function the total c.o.m. part is
trivial because of the Gaussians in (19) and is formally in-
troduced by the projector P0 in (20). To project on good
angular momentum needs usually some numerical calcu-
lation but, for example for the case of 8Be it can be done
analytically [52]. Let us remember that the projector on
good angular momentum is given by

P I
MK =

∫
dΩDJ∗

MK(Ω)R(Ω). (21)

whereDJ
MK are the Wigner functions of rotation andR(Ω)

is the rotation operator [53].
As mentioned, Uegaki et al. applied this technique at
about the same time as Kamimura et al. with RGM to the
cluster states of 12C with great success. We will present
some details below.

6. Antisymmetrised Molecular and Fermion
Molecular Dynamics

In 2007 the Hoyle state was also newly calculated by
the practioneers of Antisymmetrized Molecular Dynamics
(AMD) (Kanada-En’yo et al. [54, 55, 56, 57, 58, 59, 60])
and Fermion Molecular Dynamics (FMD) (Chernykh et
al. [61]) approaches. In AMD one uses a Slater deter-
minant of Brink-type of wave functions where the center
of the packets Si are replaced by complex numbers. This
allows to give the center of the Gaussians a velocity as one
easily realises. In FMD in addition the width parameters
of the Gaussians are also complex numbers and, in prin-
ciple, different for each nucleon. AMD and FMD do not
contain any preconceived information of clustering. Both
approaches found from a variational determination of the
parameters of the wave function and a prior projection
on good total linear and angular momenta that the Hoyle
state has dominantly a 3-α cluster structure with no defi-
nite geometrical configurations. In this way the α cluster
ansaetze of the earlier approaches were justified. As a per-
formance, in [61], the inelastic form factor from the ground
to Hoyle state was successfully reproduced in employing
an effective nucleon-nucleon interaction VUCOM derived
from the realistic bare Argonne V18 potential (plus a small
phenomenological correction).

Kanada-En’yo et al. [56] pointed out that with AMD
some breaking of the α clusters can and is taken into ac-
count. The Volkov force [31] was employed in [56]. Again
all properties of the Hoyle state were explained with these
approaches. Like in the other works, the E0 transition
probability came out ∼ 20 % too high. No bosonic oc-
cupation numbers were calculated, see Sect.9. It seems
technically difficult to do this with these types of wave
functions. However, one can suspect that if occupation
numbers were calculated, the results would not be very
different from the THSR results. This stems from the high
sensitivity of the inelastic form factor (Sect.10) to the em-
ployed wave function. Nontheless, it would be important
to produce the occupation numbers also with AMD and
FMD.
In [56, 61] some geometrical configurations of α particles in
the Hoyle state are shown. No special configuration out of
several is dominant. This reflects the fact that the Hoyle
state is not in a crystal-like α configuration but rather
forms to a large extent a Bose condensate.

7. THSR wave function and 8Be

In 2001 Tohsaki, Horiuchi, Schuck, and Röpke (THSR)
proposed a new type of cluster wave function which has
shed novel light on the dynamics of cluster, essentially
α cluster motion in nuclei [62]. The new aspect came
from the assumption that for example the Hoyle state, but
eventually also similar states in heavier nα nuclei, may be
considered as a state of low density where the nucleus is
broken up into α particles which move practically freely
as bosons condensed into the same 0S orbit. This paper
appeared after about a quarter century of silence about
the Hoyle state and since then has triggered an enormous
amount of new interest testified by a large amount of pub-
lications, both experimental as theoretical, see the review
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articles in [35, 36, 37, 38, 39] and papers cited in there.
However, before we consider 12C and the Hoyle state, we
would like, for pedagogical reasons, to start out with 8Be
which, as we know, is (a slightly unstable) nucleus with
strong 2α clustering, see Fig.1. In this case the THSR
wave function reads

ΨTHSR ∝ A
{
e−

2
B2 [(R1−XG)2+(R2−XG)2)]φα1φα2

}
∝ A

{
e−

r2

B2 φα1φα2

}
. (22)

where the Ri are the c.o.m. coordinates of the two α par-
ticles , XG = (R1 + R2)/2 is the c.o.m. coordinate of
the total system, and r = R1−R2 is the relative distance
between the two α particles. The φαi are the same intrin-
sic α particle wave functions as in (12). We see that the
THSR wave function is totally translationally invariant.
Of course, (22) is just a special case of the general THSR
wave function for a gas of n α particles

ΨTHSR ∝ Aψ1ψ2 ... ψn ≡ A|B〉 (23)

with
ψi ∝ e−

2
B2 (Ri−XG)2φi (24)

and XG again the c.o.m. coordinate of the total system.
Also, this nα wave function is translationally invariant
and the c.o.m. part is usually expressed by the Jacobi
coordinates.

As a technical point let us mention that for practical
calculation the THSR wave function is rarely used in the
form (22). The point is that there has accumulated a lot
of know-how in dealing with the Brink wave function and
one wants to exploit this. To this purpose, the THSR wave
function (23) can be written as

ΨTHSR ∝
∫
d3R1...d

3Rn exp

[
−

n∑
i=1

R2
i

β2

]
ΨBrink (25)

with the relation for the width B2 = b2 + 2β2. Since the
c.o.m. part of each α particle in the Brink wave function
has a width b, the integral in (25) simply serves to trans-
form the c.o.m. wave function of the α with a small width
b into one with a large width B. Otherwise there is of
course strict equivalence of the two forms (23) and (25) of
the THSR wave function.

From (23), we see that the THSR wave function is anal-
ogous to a number projected BCS wave function in case
of pairing and, therefore, suggests α particle condensa-
tion. However, for a wave function with a fixed number of
particles, a bosonic type of condensation is not garanteed
and it has to be shown explicitly in how much the con-
densation phenomenon is realized. We will come to this
point later. The THSR wave function has two widths pa-
rameters B and b which are obtained from minimising the
energy. The former describes the c.o.m. motion of the α
particles which can extend over the whole volume of the
nucleus and should, therefore, have a large width if the α’s
are well formed at low density. The width b of the α parti-
cles should be much smaller and essentially stay at its free

space value b = 1.36 fm. However, if one squeezes the nu-
cleus, the α’s will strongly overlap and quickly loose their
identity, getting larger in size and finally, at normal nu-
clear densities dissolve completely into a Fermi gas. This
happens for b = B. The mechanism which leads to this
fast dissolution of the α particles was discussed in Sec-
tion 2 in the case of infinite matter. One can show that
the THSR wave function contains two limits exactly. For
b = B it becomes a pure Harmonic Oscillator Slater deter-
minant [39], whereas for B >> b the α particles are so far
apart from one another that the Pauli principle, i.e., the
antisymmetriser, can be neglected leading to a pure prod-
uct state of α particles, i.e., a condensate. These features
of the THSR wave function show again the necessity to
investigate to which end THSR is closer: to a Slater de-
terminant or to an α particle condensate. We will study
this in detail for the Hoyle state of 12C in the next section.

For the moment, let us continue with our study of 8Be.
Of course, we know that 8Be is strongly deformed. It
is straightforward to generalise the THSR wave function
to deformed systems [52]. We suppose that the α’s stay
spherical and only their c.o.m. motion becomes deformed.
This is easily achieved in adopting different width param-
eters Bi in the different spatial directions. For example
with B2

i = b2 + 2β2
i , we write for the c.o.m. part χ(r) of

the THSR wave function

χTHSR(r) ∝ exp

(
−

r2x + r2y
b2 + 2β2

⊥
− r2z
b2 + 2β2

z

)
(26)

Let us compare the deformed densities of 8Be one gets
from a single Brink (19) and the THSR wave functions.
Using the Volkov force [31], this is shown in Fig. 7. We
see that there is quite strong difference between the two
distributions. The THSR one is much more diffuse than
the one obtained from a single Brink wave function. Actu-
ally this physical crystal-like dumbell picture was the pre-
vailing opinion of cluster physics before the introduction
of the THSR wave function. We see that THSR offers a
much more smeared out, quantal aspect of clustering. We
will come back to this in more detail in Sect.18 where we
discuss ’cluster localisation’ versus ’delocalisation’.

One has to superpose many Brink wave functions (about
30) as done with the Brink-GCM approach to recover the
quality of the single THSR wave function. In the labora-
tory frame, i.e. after angular momentum projection, the
wave functions become almost identical [52, 63]. This is
shown in Fig. 8. Actually, it is interesting that the angu-
lar momentum projection can be performed in this case
analytically. With (21) we obtain

P̂ J=0χTHSR(r) ∝ exp(−r2/B2
⊥)

ir
Erf

(
i

√
B2

z −B2
⊥

B⊥Bz
r

)
(27)

where Erf(x) is the error function. With this projected
8Be THSR wave function, the results, e.g., for the ground
state energy, are identical up to the 4th digit with the
results from RGM [30].

After this relatively simple but instructive case of 8Be,
let us move onward to 12C.

9



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

-4 -2  0  2  4
-10

-5

 0

 5

 10

y [fm]

z [fm]

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

-4 -2  0  2  4
-10

-5

 0

 5

 10

y [fm]

z [fm]

Fig. 7: Comparison of single Brink and THSR densities for
8Be, from top to bottom.
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Fig. 8: Comparison of angular momentum projected (J = 0)
THSR wave function with a single “Brink” wave function for
8Be with S = 3.35 fm (denoted by n = 1). The convergence
rate with the superposition of several (n) “Brink” wave func-
tions à la Brink-GCM, is also shown. The line denoted by
n = 30 corresponds to the full RGM solution, see [63] for
more details.

8. The 12C nucleus and the Hoyle state

Compared to the 8Be case, the situation in 12C is consider-
ably more complex. First of all, the ground state of 12C is
not a low density α cluster state as in 8Be. However, there
exists a radially expanded state of about same low den-
sity as for 8Be which is a weakly interacting gas of three
α particles forming a 0+ state at 7.65 MeV which is the
fameous Hoyle state already mentioned in the Introduc-
tion. The reason why the Hoyle state, in analogy to the
case of 8Be is not the ground state of 12C is not absolutely
clear. However, one may speculate that some sort of extra
attraction acts between the three α’s which makes the α
gas state collapse to a much denser state of the Fermi gas
type, that is to good approximation describable, as prac-
tically all other nuclei, by a Slater determinant. In 12C
coexist, therefore, two types of quantum gases: fermionic
ones and bosonic ones. We will see later that one can sup-
pose that such is also the case in heavier self conjugate
nuclei like 16O, etc.

As already pointed out in the Introduction, the Hoyle
state and other states in 12C were explained in the 1970-
ties by two pioneering works from Kamimura et al. [27]
and Uegaki et al. [28]. They used the RGM and Brink-
GCM approaches, respectively. In 2001 the THSR wave
function explained the Hoyle state with the α condensate
type of wave function (23) [62]. It was shown later that,
taken the same ingredients, the THSR wave function has
almost 100% squared overlap for the Hoyle state with the
wave function of Kamimura et al. (and by the same token
also of Uegaki et al.) [34, 28]. Before we come, however,
to a detailed presentation of the results, we have to explain
how to use the THSR wave function in the case where the
α gas state is not the ground state as in 8Be but an excited
state. Two possibilities exist. Either one takes the large
width parameter B as Hill-Wheeler coordinate [30] and
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superposes a couple of THSR wave functions with different
B-values leading to an eigenvalue equation which yields
several eigen values including ground and Hoyle state [62],
or one minimises the energy under the condition that the
excited state is orthogonal to the ground state [63].

We will adopt the latter strategy because it has been
shown, as already mentioned, that a single wave function
of the THSR type is able to describe the Hoyle state with
very good accuracy.
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Fig. 10: Expectation value of the antisymmetrization operator
in the product state |B〉. The value at the optimal B values, Bg

for the ground state and BH for the Hoyle state, are denoted
by a circle and a cross, respectively.

It is very interesting to consider the energy curves as a
function of B-paramter for the ground state

E(B) =
〈ΨTHSR(B)|H|ΨTHSR(B)〉
〈ΨTHSR(B)|ΨTHSR(B)〉

(28)

and the first excited 0+ state in 12C

EP (B) =
〈P̂ (g.s.)

⊥ ΨTHSR(B)|H|P̂ (g.s.)
⊥ ΨTHSR(B)〉

〈P̂ (g.s.)
⊥ ΨTHSR(B)|P̂ (g.s.)

⊥ ΨTHSR(B)〉
(29)

with P̂
(g.s.)
⊥ = 1 − |0+1 〉〈0

+
1 |, the projector making the

excited state orthogonal to the ground state.

The corresponding energy curves are shown in Fig. 9.
We see that the excited state has a minimum for a B-
value almost three times as large as the one for the ground
state. This study allows us to make a first investigation
about the importance of the Pauli principle, i.e., of the
antisymmetriser in the THSR wave function, in the ground
state and in the Hoyle state. For this we define

N(B) =
〈B|A|B〉
〈B|B〉

(30)

where |B〉 is the THSR wave function in (23) without the
antisymmetriser. For B → ∞ the quantity in (30) tends
to one, since, as already mentioned, the α particles are
in this case so far apart from one another that antisym-
metrisation becomes negligeable. The result for N(B) is
shown in Fig. 10 as a function of the width parameter
B. We chose as optimal values of B for describing the
ground and Hoyle states, B = Bg = 2.5 fm and B = BH=
6.8 fm, for which the normalised THSR wave functions
give the best approximation of the ground state 0+1 and
the Hoyle state 0+2 , respectively (obtained by solving the
Hill-Wheeler equation). We find that N(BH) ∼ 0.62 and
N(Bg) ∼ 0.007. These results indicate that the influence
of the antisymmetrisation is strongly reduced in the Hoyle
state compared with the ground state. This study gives us
a first indication that the Hoyle state is quite close to the
quartet condensation situation rather than being close to
a Slater determinant. We will be more precise with this
statement in the next section.

9. Alpha particle occupation probabilities

In the preceding section, we have seen a first indication
that the influence of antisymmetrisation between the α
particles in the Hoyle state is strongly weakened. A more
direct way of measuring the degree of quartet condensa-
tion is to calculate the single α particle density matrix
ρα(ξ1, ξ

′
1) where from the density matrix formed with the

fully translationally invariant THSR wave function all in-
trinsic α coordinates as well as all α c.o.m. Jacobi coor-
dinates ξi besides one have been integrated out. A more
detailed description of the procedure can be found in [64].
The eigenvalues of ρα correspond to the bosonic occupa-
tion numbers of the α particles. For example in the ideal
boson condensate case, one will get for the Hoyle state one
eigenvalue equal three (for the 0S state) and zero for all
the others. However, we have seen that the Pauli principle,
though being weak in the Hoyle state, it is not entirely in-
active. This leads, besides from the action of the two body
interaction, to a depletion of the lowest α state. Alpha
particles are scattered out of the condensate, as one says.
The calculation of this single α density matrix is tech-
nically complicated, even with the THSR wave function.
There exist two older approximate (though quite reliable)
calculations. The first one was performed by Suzuki et al.
[65]. In this work, the correlated Gaussian basis was used
for the construction of the c.o.m. part of the RGM wave
function. With an accurate approximation of the norm
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kernel, the amount of α condensation was calculated to
be about 70%. Afterwards, this problem was studied by
Yamada et al. [66] using the 3α OCM approach. The
result for the percentage of α condensation was equally
about 70% and the distribution of the various occupation
probabilities in the Hoyle state and the ground state of
12C is shown in Fig. 11. We clearly see that the Hoyle
state has a 0S occupancy of over 70% whereas all other
occupancies are down by at least a factor of ten. On the
other hand the occupancies of the ground state are demo-
cratically distributed over the configurations compatible
with the shell model. We thus see that the Hoyle state is
quite close to the ideal Bose gas picture. More recently
Funaki et al. [39] have achieved a calculation of the occu-
pation numbers for the Hoyle state with the THSR wave
function. It is found that the 0S wave is occupied with
over 80%. With the same technique the 0S occupation of
the 15.1 MeV state in 16O was calculated to be over 60%
[67].
It is interesting to compare those numbers with typical
fermionic occupation numbers. In this case a pure Slater
determinant has fermion occupation numbers one or zero
according to the Fermi step function. However, in real-
ity measurements and also theories which go beyond the
mean field approximation show that the occupancies are
depleted and that the occupancies instead of being one are
reduced to values ranging in the interval 0.7 to 0.8 [68, 69].
Therefore the nuclei in their ground states are as far away
from an ideal Fermi gas as the Hoyle state (and possibly
other Hoyle-analog states in heavier self-conjugate nuclei)
is away from an ideal Bose gas.
It is also known from the interacting Bose gas that at
zero temperature the Bose condensate is less than 100%.
For instance, in liquid 4He, the condensate fraction is less
than 11%. Calculations for α matter indicate a reduction
of the Bose condensate with increasing density, see [69]
where the suppression of the condensate fraction with in-
creasing density is shown. In that paper, performing an
artificial variation of the radius of the Hoyle state, the
0S occupancy is reduced with decreasing radius that in-
dicates increasing density. This nice correspondence be-
tween the condensate fraction in homogeneous matter and
single-state occupancy in nuclei underlines the analogy of
α correlations in the Hoyle state with the Bose-Einstein
condensate in homogeneous matter.

The above mentioned figure of 70-80% α condensate is
confirmed by other less microscopic calculations which are
based on a complete bosonisation of the three α problem
with effective forces mocking up the Pauli principle. These
approaches are also capable to find a quite good reproduc-
tion of the spectrum of 12C including the Hoyle state and
they also result in a 70-80% realisation of the condensate.
Such a study exists by Ishikawa [24] . A similar study
has been performed by Lazauskas et al. [23]. The lat-
ter authors only concluded (in agreement with Ishikawa
[24]) that the α particles interact to 80 percent in relative
0S waves. However, there is a strong correlation between
these numbers and the occupancies. We thus can con-
clude from all these studies that, indeed, the Hoyle state
can be considered to be in an α particle condensate for
70-80% of its time. One may view this as a third α par-
ticle orbiting in a 0S wave around the ground state of a
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Fig. 11: Occupation of the single α orbitals of the Hoyle state
of 12C compared with the ground state.

8Be-like object being also in a 0S state. We talk about a
8Be-like object, since the Coulomb force between two α’s
in the Hoyle state is not the one of free space and also
the Pauli principle with the third α particle perturbs the
pure 8Be aspect. Nonetheless the picture that the three
α’s in the Hoyle state have a more or less correlated two
α state in relative 0S state around which the third α is
orbiting also in a 0S state is very likely adequate. These
two α correlations and the Pauli principle are responsible
for the fact that the Hoyle state is not entirely an ideal
Bose condensate.

This situation may be compared with a practically
100 percent occupancy in the case of cold bosonic atoms
trapped in electro-magnetic devices. There the density is
so low that the electron cloud of the atoms do not get
into touch with one another and, therefore, an ideal Bose
condensate state can be formed [70].

10. Spacial Extension of the Hoyle state

We have argued above that the Hoyle state has a simi-
lar low density as 8Be. Let us see what the THSR wave
function tells us in this respect. First of all we give in Ta-
ble 1 the rms radii of ground and Hoyle state calculated
with THSR comparing it also with the RGM solution of
Kamimura et al. [27] as well as with experimental data.
We see that the rms radius of the Hoyle state is about 50%
larger than the one of the ground state of 12C (Rrms ∼ 2.4
fm). This leads to 3-4 times larger volume of the Hoyle
state with respect to the ground state. In Fig. 12, we
show the the single α 0S wave orbit corresponding to the
largest occupancy of the Hoyle state. We see (lower panel)
that this orbit is quite extended and ressembles a Gaussian
(drawn with the broken line, for comparison). There ex-
ist no nodes, only slight oscillations indicating that the
Pauli principle is still active. There is no comparison
with the oscillations in the ground state where the α’s
strongly overlap and effects from antisymmetrisation are
very strong. Also the extension of the ground state orbits
is much smaller than the one from the Hoyle state. In Ta-
ble 1 are also given the monopole transition probabilities
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between Hoyle and ground state. Again there is agree-
ment with the RGM result and also reasonable agreement
with the experimental value though the theoretical values
are larger by about 20%. This transition probability is
surprisingly large, a fact which can be explained with the
Bayman-Bohr theorem [71] and also from the fact that
extra α-like correlations are present in the ground state as
will be discussed in section 14.

A very sensitive quantity is the inelastic form factor
from ground to Hoyle state. In Fig. 13 we show a compar-
ison of the result obtained with the THSR wave function
and experimental data. We see practically perfect agree-
ment. We want to stress that this result is obtained with-
out any adjustable parameter what is a quite remarkable
result for the following reason. Contrary to the position of
the minimum, the absolute values of the inelastic form fac-
tor are very sensitive to the extension of the Hoyle state.
In Fig. 14 we show the dependence of the hight of the first
maximum as a function of an artificial variation of the ra-
dius of the Hoyle state [72]. We see that a 20% variation
of the Hoyle radius gives a factor of two variation in the

Fig. 13: Inelastic form factor claculated with the THSR wave
function (BEC) and the one of Kamimura et al. (Cluster). The
two results are on top of one another.
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height of the maximum. A very strong sensitivity indeed!

Let us also mention that the result of the RGM calcula-
tion [27] in Fig. 13 (denoted by “Cluster”) cannot be dis-
tinguished on the scale of the figure from the THSR one
(BEC) demonstrating again the equivalence of both ap-
proaches. This strong sensitivity lends high credit to the
THSR approach and to all conclusions which are drawn
from it concerning the Hoyle state. This concerns for in-
stance the α particle condensation aspect discussed above.
One is also tempted to conclude that any theory which re-
produces this inelastic form factor describes implicitly the
same properties as the THSR approach. One recent very
successful Green’s function Monte Carlo (GFMC) calcu-
lation can also be interpreted in this way. We show in
Fig. 15 the result for the inelastic form factor from the
GFMC approach by Pieper et al. [73] . We see that the
agreement with experiment is practically the same as with
the THSR one. A further quantity which can be compared
between THSR and GFMC results is the nucleon density
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Table 1: Comparison of the total energies, r.m.s. radii (Rr.m.s.), and monopole strengths (M(0+2 → 0+1 )) for 12C
given by solving Hill-Wheeler equation [30] and from Ref. [27]. The effective two-nucleon force Volkov No. 2 [31] was
adopted in the two cases for which the 3α threshold energy is calculated to be −82.04 MeV.

THSR w.f.
3α RGM [27] Exp.(Hill-Wheeler)

E (MeV)
0+1 −89.52 −89.4 −92.2
0+2 −81.79 −81.7 −84.6

Rr.m.s. (fm)
0+1 2.40 2.40 2.44
0+2 3.83 3.47

M(0+2 → 0+1 ) (fm
2) 6.45 6.7 5.4

0 1 2 3 4
10-4

10-3

10-2

10-1

k (fm-1)

f pt
(k

)

VMC

GFMC

Experiment

0 0.2 0.4
0
1
2
3
4
5
6

k2 (fm-2)

6 
Z

 f tr
(k

) 
/ k

2  
  (

fm
2 )

Fig. 15: Inelastic form factor (full dots) from GFMC [73]. The
open circles correspond to Variational Monte Carlo (VMC).
The insert allows to extract the monopole transition probabil-
ity.

distribution rρ(r). This is displayed in Fig. 16. It is seen
that there is very good agreement between the two calcu-
lations for r-values below about 5 fm. For instance there
exists in both results a plateau like region approximately
between 1.5 fm and 4 fm what seems to be a quite char-
acteristic feature. Beyond 5 fm the density of the GFMC
calculation falls off much quicker than the one of THSR.
This may be due to difficulties with the convergence in the
asymptotic region in the Monte Carlo calculation and/or
because of the use of a more realistic force in the case of
GFMC. The Rr.m.s. has not been calculated with GFCM,
only an estimate that it is greater than 3 fm is given. In
any case one can conclude that there is consistency be-
tween the GFCM results and the α gas-like structure of
the Hoyle state with a large radius leading to the α con-
densation interpretation outlined above. We should also
mention that there exists another very recent, so-called
lattice QM approach by Eppelbaum et al. [74]. This is
claimed to be an ab initio calculation. It yields an excel-
lent spectrum of 12C, however, no inelastic form factor has
been calculated so far.

11. Hoyle family of states in 12C

In 12C, there exists besides the Hoyle state a number of
other α gas states above the Hoyle state which one can
qualify as excited states of the Hoyle state. For the de-

scription of those states it is indispensable to generalise
the THSR ansatz. Indeed, it is possible to make a nat-
ural extension of the 3α THSR wave function. The part
of the 3α THSR wave function which contains the c.o.m.
motion of the α particles contains two Jacobi coordinates
ξ1 and ξ2. To take account of α− α correlations, that is,
e.g., of the fact that two of the three α’s can have a closer
distance than the distance to the third α particle, it is pos-
sible to associate two different width parameters B1, B2 to
the two Jacobi coordinates. In this case the translationally
invariant THSR wave function has the following form

Ψtshr
3α = A

[
exp

(
− 4

3B2
1

ξ21 −
1

B2
2

ξ22

)
φ1φ2φ3 (31)

Of course, the Bi may assume different values in the three
spatial direction (Bi,x, Bi,y, Bi,z) to account for deforma-
tion and then the wave function should be projected on
good angular momentum. With this type of generalised
THSR wave function, one can get a much richer spectrum
of 12C. In [75] by Funaki, axial symmetry has been as-
sumed and the four B parameters taken as Hill-Wheeler
coordinates. In Fig. 17, the calculated energy spectrum is
shown. One can see that besides the ground state band,
there are many Jπ states obtained above the Hoyle state.
All these states turn out to have large rms radii (3.7 ∼
4.7fm ), and therefore can be considered as excitations
of the Hoyle state. The Hoyle state can, thus be consid-
ered as the ’ground state’ of a new class of excited states
in 12C. In particular, the nature of the series of states
(0+2 , 2

+
2 , 4

+
2 ) and the 0+3 and 0+4 states have recently been

much discussed from the experimental side. The 2+2 state
which theoretically has been predicted at a few MeV above
the Hoyle state already in the early works of Kamimura et
al. [27] and Uegaki et al. [28] was recently confirmed by
several experiments, see [32, 33] and references in there.
A strong candidate for a member of the Hoyle family of
states with Jπ = 4+ was also reported by Freer et al. [76].
Itoh et al. recently pointed out that the broad 0+ reso-
nance at 10.3 MeV should be decomposed into two states:
0+3 and 0+4 [77, 32]. This finding is consistent with the-
oretical predictions where the 0+3 state is considered as a
breathing excitation of the Hoyle state [78] and the 0+4
state as the bent arm or linear chain configuration [56].

In Fig. 17, the E2 transition strengths between J and
J ± 2 states and monopole transitions between 0+ states
are also shown with corresponding arrows. We can note
the very strong E2 transitions inside the Hoyle band,
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B(E2; 4+2 → 2+2 ) = 591 e2fm4 and B(E2; 2+2 → 0+2 ) = 295
e2fm4. The transition between the 2+2 and 0+3 states is
also very large, B(E2; 2+2 → 0+3 ) = 104 e2fm4. In Fig. 18,
the calculated energy levels are plotted as a function of
J(J + 1), together with the experimental data. There
have been attempts to interpret this as a rotational band
of a spinning triangle as this was successfully done for the
ground state band [76]. However, the situation may not
be as straightforward as it seems.

Because the two transitions 2+2 → 0+2 and 2+2 → 0+3 are
of similar magnitude, no clear band head can be identi-
fied. It was also concluded in Ref. [61] that the states
0+2 , 2

+
2 , 4

+
2 do not form a rotational band. The line which

connects the two other hypothetical members of the ro-
tational band, see Fig. 18, has a slope which points to
somewhere in between of the 0+2 and 0+3 states. However,
to conclude from there that this gives raise to a rotational
band, may be premature. One should also realise that
the 0+3 state is strongly excited from the Hoyle state by
monopole transition whose strength is obtained from the
extended THSR calculation to be M(E0; 0+3 → 0+2 ) = 35
fm2. So, the 0+3 state seems to be a state where one α
particle has been lifted out of the condensate to the next
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higher S level with a node. This is confirmed in Fig. ??
where the probabilities, S2

[I,l], of the third α orbiting in

an l wave around a 8Be-like, two α correlated pair with
relative angular momentum I, are displayed. One sees
that except for the 0+4 state, all the states have the largest
contribution from the [0, l] channel. So, the picture which
arises is as follows: in the Hoyle state, the three α’s are all
in relative 0S states with some α-pair correlations (even
with I 6= 0, see [23, 24]), responsible for emptying the α
condensate by 20-30%. This S-wave dominance, found by
at least half a dozen of different theoretical works, see,
e.g., [26, 28, 27, 65, 66, 23, 24], is incompatible with the
picture of a rotating triangle. As mentioned, the 0+3 state
is one where an α particle is in a higher nodal S state and
the 0+4 state is built out of an α particle orbiting in a D-
wave around a (correlated) two α pair, also in a relative
0D state, see Fig. ??. The 2+2 and 4+2 states are a mix-
ture of various relative angular momentum states (Fig. 5).
Whether they can be qualified as members of a rotational
band or, may be, rather of a vibrational band or a mixture
of both, is an open question.

12. Alpha cluster states in 16O

The situation with respect to α clustering was still rela-
tively simple in 12C. There, one had to knock loose from
the ground state one α particle to stay with 8Be which is
itself a loosely bound two α state. So, immediately, knock-
ing loose one α leads to the α gas, i.e., the Hoyle state. In
the next higher self conjugate nucleus, 16O, the situation
is already substantially more complex. Knocking loose one
α from the ground state leads to 12C +α configurations.
Contrary to the situation in 12C, here the remaining clus-
ter 12C can be in various compact states describable by
the fermionic mean field approach before one reaches the
four α gas state. Actually, as we will see, only the 6-th
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0+ state in 16O is a good candidate for α particle conden-
sation. This state is well known since long [79] and lies
at 15.1 MeV. The situation is, therefore, quite analogous
to the one with the Hoyle state. The latter is about 300
keV above the 3α disintegration threshold. In 16O, the
4α disintegration threshold is at 14.4 MeV. Thus, the 15.1
MeV state is 700 keV above the threshold. Not so differ-
ent from the situation with the Hoyle state. On the other
hand the width of the Hoyle state is, like the one of 8Be,
in the eV region, whereas the width of the 15.1 MeV state
in 16O is 160 keV. This is large in comparison with the
Hoyle state but still small considering that the excitation
energy is about twice as high. It is tempting to say that
the width is surprisingly small because the states to which
it can decay, if we suppose that the 15.1 MeV state is an α
condensate state, have radically different structure being
either of the 12C+α type with 12C in a compact form or
other shell model states. Let us see what the theoretical
approaches tell us more quantitatively.

In the first application of THSR [62], the spectrum
was calculated not only for 12C but also for 16O. Four
0+ states were obtained. Short of two 0+ states with re-
spect to the experimental situation if the highest state,
as was done in [62] is interpreted as the 4α condensate
state. Actually Wakasa, in reaction to our studies, has
searched and found a so far undetected 0+ state at 13.6
MeV which in [62] was interpreted as the α condensate
state. The situation with the missing of two 0+ states from
the THSR approach is actually quite natural. In THSR
the α particles are treated democratically whereas, as we
just discussed, this is surely not the case in reality. The
best solution would probably be, in analogy to the pro-
posed wave function in (31), to introduce for each of the
three Jacobi coordinates of the 4α THSR wave function a
different B parameter. This has not been achieved so far.
As a matter of fact, the past experience with OCM is very
satisfying. For example for 12C it reproduces also very well
the Hoyle state, see Fig. 24 below. It was, therefore, nat-
ural that, in regard of the complex situation in 16O, first
the more phenomenological OCM method was applied to
obtain a realistic spectrum. This was done by Funaki et
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al. [14] . We show the spectrum of 16O obtained with
OCM together with the result from the THSR approach
and the experimental 0+ spectrum in Fig. 20. The mod-
ified Hasegawa-Nagata nucleon-nucleon interaction [80]
has been used. We see that the 4α OCM calculation gives
satisfactory reproduction of the first six 0+ states. Inspite
of some quite tolerable discrepancies, this can be consid-
ered as a major achievement in view of the complexity of
the situation. The lower part of the spectrum is actually in
agreement with earlier OCM calculations [81, 82, 83, 84].
However, to reproduce the spectrum of the first six 0+

states, was only possible in extending considerably the
configuration space with respect to the early calculations.
Let us interpret the various states. The ground state is,
of course, more or less a fermionic mean field state. The
second state has been known since long to represent an α
particle orbiting in an 0S wave around the ground state
of 12C. In the third state an α is orbiting in a 0D wave
around the first 2+ state in 12C. This 2+1 state is well de-
scribed by a particle-hole excitation and is, therefore, a
non-clustered shell model state. The fourth state is repre-
sented by an α particle orbiting around the ground state
of 12C in a higher nodal S-state. The fifth state is analysed
as having a large spectroscopic factor for the configuration
where the α orbits in a P wave around the first 1− state
in Carbon. The 0+6 state is identified with the state at
15.1 MeV and as we will discuss, is believed to be the 4α
condensate state, analogous to the Hoyle state.
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Fig. 20: Comparison of the 0+ spectra of 16O between experi-
ment and theory (OCM, middle, and THSR, right).

On the rhs of the spectrum we show in Fig. 20, the re-
sult with the THSR approach. As mentioned two states
are missing. However, we will claim that at least the high-
est state and the lowest state, i.e., the ground state, have
good correspondence between the OCM and THSR ap-
proaches. For this let us consider the so-called reduced

width amplitude (RWA)

Y[L,l]J = NRWA〈[δ(r
′ − r)

r′2
[ΦL(

12C), Yl(r̂
′]Jφ(α)]|ΦJ (

16O)〉
(32)

where ΦL(
12C) and ΦJ (

16O)〉 are the states of 12C and
16O obtained by the THSR and OCM methods, respec-

tively. The norm NRWA is
√

16!
12!4! and

√
4!
3!1! for THSR

and OCM, respectively. These RWA amplitudes are very
close to spectroscopic factors and tell to which degree one
state can be described as a product of two other states.
In Fig. 21 and Fig. 22, we show these amplitudes for the
highest state with THSR and with OCM, respectively. Be-
sides an overall factor of about two, we notice quite close
agreement. The large spatial extension of the highest state
in both calculations can qualify this state of being the 4
α condensate state. The other two states in THSR may
describe the intermediate states in some average way.
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Table 2: Binding energies E measured from the 4α threshold energy, r.m.s. radii Rrms, monopole matrix elements
M(E0), and α-decay widths Γ, in units of MeV, fm, fm2, and MeV, respectively.

THSR 4α OCM Experiment
E Rrms M(E0) Γ E Rrms M(E0) Γ E Rrms M(E0) Γ

0+1 −15.1 2.5 −14.4 2.7 −14.4 2.71
0+2 −4.7 3.1 9.8 −8.00 3.0 3.9 −8.39 3.55
0+3 −4.41 3.1 2.4 −2.39 4.03
0+4 1.03 4.2 2.5 1.6 −1.81 4.0 2.4 ∼ 0.6a −0.84 0.6
0+5 −0.25 3.1 2.6 ∼ 0.2a −0.43 3.3 0.185
0+6 3.04 6.1 1.2 0.14 2.08 5.6 1.0 ∼ 0.14a 0.66 0.166

a: Present calculated values taken from Ref. [85] are larger than those shown in Ref. [67] by a factor
√
4!/(3!1!)

2
= 4,

since the factor
√
4!/(3!1!), which should be added to the RWA for the 4α OCM, was missing in Ref. [67].

We show in Table 2 the comparison of energy E, rms ra-
dius Rrms, monopole matrix element to the ground state
M(E0), and α-decay width Γ between THSR, OCM, and
experimental data. The α-decay width is calculated based
on the R-matrix theory. The most striking feature in Ta-
ble 2 is the fact that the decay-widths of the highest state
agree perfectly well between theory and experiment. For
instance, the two theoretical approaches are quite differ-
ent. So, this good agreement, very likely, is not an accident
and shows that the physical content of the corresponding
wave functions is essentially correct, that is a very ex-
tended gas of 4α particles. The result for the occupation
probability given in [14, 67] shows that again the 15.1
MeV state can, to a large percentage, interpreted as a 4α
condensate state, i.e., as a Hoyle analog state. There are
also experimental indications that the picture of Hoyle ex-
cited states which we have discussed above repeats itself,
to a certain extent, for 16O [86]. If all this will finally be
firmly established by future experimental and theoretical
investigation, this constitutes a very exciting new field of
nuclear physics.

13. Summary of approaches to Hoyle and Hoyle-
analog states: the α condensation picture,
where do we stand after 15 years?

As already mentioned several times, the hypothesis that
the Hoyle state and other Hoyle-like states are to a large
extent α particles condensates has started with the publi-
cation of Tohsaki et al. in 2001 [62]. It got a large echo
in the community. After 15 years, it is legitimate to ask
the question what remains from this hypothesis. To this
end, let us make a compact summary of all the approaches
which are dealing or have dealt in the past with the Hoyle
or Hoyle like states discussing the for or contra of the α
condensate picture.

The first correct, nowadays widely accepted point of
view, has been given in the work of Horiuchi et al. in
1974 [26]. For the first time, employing the OCM ap-
proach, it was concluded that the Hoyle state is a state
of three α particles interacting weakly in relative S-states.
From there to jump to the idea of the Hoyle state being
a condensate, it is only a small step. Next came the fully
microscopic approaches solving RGM respectively GCM
equations by Kamimura et al. [27] and Uegaki et al. [28]
for 12C. Concerning the Hoyle state the conclusions were

the same as the one of Horiuchi. We cite from Uegaki et
al. [28]: In a number of excited states which belong to the
new “phase”, the 12C nucleus should be considered to dis-
sociate into 3 α clusters which interact weakly with each
other and move almost freely over a wide region. And fur-
ther: The 0+2 state is the lowest state which belongs to the
new “phase”, and could be considered to be a finite system
of α-boson gas. This is practically the same language as
we use now with the THSR approach, only that we use
the more modern term of ’Bose-condensation’ which came
much into vogue after the advent of Bose-Einstein Con-
densation (BEC) in cold atom physics [70]. We want to
stress the point that these early OCM, RGM, and GCM
approaches are not just any sketchy model calculations
for α clustering. On the contrary, they are very powerful
and even to day not by-passed theories for the 12 nucleon
problem of 12C. The point of THSR is that a more direct
ansatz of the α particle condensation type is made which
at the same time makes the numerics less heavy and what
allowed to confirm the α condensate picture. Otherwise,
as it was mentioned above, the squared overlap of a THSR
wave function with, e.g., the one of Kamimura et al. is
close to 100 %! The merit of THSR also is that the hy-
pothesis of α gas states being a general feature in self-
conjugate nuclei has been advanced for the first time.

Let us continue with the enumeration of theoreti-
cal descriptions of the Hoyle state. In 2007 Kanada-
En’yo achieved to confirm the Hoyle state intepretation
of [27, 28] with the AMD method which does not contain
any preconceived element of α clustering. Later in 2007
Chernyk et al. achieved the same with a variant of AMD,
the so-called ’ fermionic molecular dynamics’ (FMD) [61].
Also the inelastic form factor was calculated with reason-
able success. With not much risk to be wrong, one may
say that any microscopic theory which reproduces with-
out adjustable parameters the inelastic form factor (see
our discussion about this in Sect.10), implicitly deals with
a wave function which has the same or very close proper-
ties as the one of Kamimimura et al. and Uegaki et al.
and, thus, as the one of THSR. There are also the pure
bosonic approaches which put all the antisymmetrisation
and Pauli principle effects into an effective boson-boson in-
teraction. The most recent approaches of this type are the
ones of Lazauskas et al. [23] and of Ishikawa et al. [24].
Both studies reproduce the Hoyle state quite well. In [24]
also the bosonic occupations have been calculated with
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about 80% occupancy of the 0S state, similar to what was
obtained earlier in [66]. Lazauskas et al. [23] did not cal-
culate the bosonic occupation numbers but concluded that
in the Hoyle state wave function pairs of bosons are to 80
% in a relative two boson 0S configuration. Since there is a
strong correlation between relative 0S states of two bosons
in the three boson wave function and the 0S bosonic oc-
cupancy, one may say that the works of Lazauskas et al.
and the one of Ishikawa et al. give mutually consistent
results. Ishikawa et al. also calculate the simultaneous
3α decay versus the two body decay into α+8Be. They
find, in agreement with other estimates [87, 88] that the
three body decay with respect to the two body one is sup-
pressed by a factor of at least 10−4. This, however, does
not speak against the α condensation interpretation of the
Hoyle state. It only states that the three body decay is
much suppressed with respect to two body decay what is
a quantity difficult to calculate from first principles. As
mentioned, very recently there exists a GFMC result from
Wiringa, Pieper et al. with very good reproduction of the
inelastic form factor [73]. The quality thereof is com-
parable to the one obtained by RGM [27], GCM [28],
and THSR [62]. As we mentioned already, if one could
calculate with GFMC the bosonic occupancies, the results
very likely would be in agreement with the ones mentioned
above.

An algebraic approach was plublished recently by Freer
et al. [76] which is originally due to Iachello et al. [89].
The model is based on the assumption that the 12C ground
state is an equilateral triangle formed by three α par-
ticles and that this configuration can undergo coupled
rotational-vibrational excitations. Indeed the model can
very well explain the ground state band. This interpreta-
tion of equilateral triangle is reinforced by the fact that
for such a situation the 4+ and 4− states should be de-
generate what is effectively the case experimetally [76].
The authors then tried to repeat their reasoning tenta-
tively for the ’rotational’ band with the Hoyle state as
band head. However, as we discussed in Sect. 11, the fact
that the Hoyle state forms a bandhead is not at all estab-
lished since the 0+3 could be the band head as well in view
of the fact that its B(E2) transition to the 2+2 state is of
the same order as the one from the Hoyle state. So no
well defined band head exists. The 2+2 and 4+2 states lie
as a fucntion of J(J + 1) on a straight line which points
to somewhere in between the 0+3 and 0+4 states. Thus, it
seems to us that the rotational band interpretation of a
hypothetical ’Hoyle band’ is on uncertain grounds. More
theoretical and experimental investigations are certainly
necessary to fully elucidate the situation.

Last but certainly not least, let us mention α conden-
sation in nuclear matter. Nobody contests the fact that
infinite matter at low density becomes unstable with re-
spect to cluster formation. A good candidate for a clus-
ter phase is certainly given by α particles. As a matter
of fact, as with pairing, quartetting has started in infi-
nite matter with the work of Röpke et al. [46]. We
have learned in Section 2 about the particular features
of quartet condensation versus pair condensation. Most
importantly we should remember that quartet condensa-

tion, contrary to what happens with pairing, only exists
at low density where the chemical potential is still nega-
tive, i.e., the quartets are still bound (BEC). There does
not exist a long coherence length, weak coupling phase for
quartets. In other words quartet condensation only exist
for densities where they do not overlap strongly. There-
fore it is legitimate to think that the low density Hoyle
and other Hoyle-like states are just a finite size manifesta-
tion of what happens in infinite matter. The dense ground
states of nuclei cannot be considered as an α condensate.
The existence of α cluster condensation was critisized by
Zinner and Jensen [90]. The main arguments are that the
De Broglie wave length is too short and that the α con-
densates decay too fast. However, in [63] it was demon-
strated that the de Broglie wave length is by factors larger
than the extension of, e.g., the Hoyle state and in what
concerns the decay of α condensate states, we argued al-
ready that the life times of those states is much longer
than what could be expected from their excitation energy.
The width of a condensate merely is small because of the
exotic structure of the condensate states having very little
overlap with states underneath. In [90] it was also stated
that a condensate wave function should cover the whole
nuclear volume what is actually the case with the large
values of the B parameters in the THSR wave functions.
Another criterion namely that, besides a trivial norm fac-
tor, the condensate wave function should not change from
one nucleus to the other is also very well fullfilled [63]. The
bosonic occupation numbers which in our mind constitute
the best signature of condensate states were not calculated
in [90].

In conclulsion of this section, we can say that several
consistent and reliable microscopic approaches are in fa-
vor of the α condensate interpretation of the Hoyle state,
either from direct calculations of the occupancies [65] [66]
or from the fact that wave functions, obtained from differ-
ent approaches, are mutually consistent in as far as their
squared overlaps approach the 100 %. We do not see any
work which clearly speaks against the condensate interpre-
tation. α particle condensation is therefore a very useful
new concept. Should the condensate picture be further
confirmed by future studies, e.g., by the Monte Carlo ap-
proaches, this constituted a very exciting and rich novel
feature of nuclear physics revealing that both Bose and
Fermi gases can exist, at least in self conjugate nuclei, on
equal footing.

14. Alpha-type of correlations in ground states.

So far, we mostly have considered strong α correlations
in the Hoyle-family of states. However, even in the
ground states of the lighter selfconjugate nuclei non-
negligeable α-type of correlations are revealed from the
calculations. Since in the ground states the α’s strongly
overlap, they are strongly deformed and extended and one
cannot talk of real α particles anymore. Also these de-
formed entities, contrary to the pairing case as we have
learned from the infinite matter section 2, cannot con-
densate because the 4-body in medium level densities
pass through zero at the Fermi energy where the corre-
lations should build up. Nevertheless that 4-body corre-
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Fig. 23: Energy contourlines of 8Be, 12C, 16O, 20Ne in the space of the two width parameters b,B of the THSR wave function
(B2 = b2 + 2R2

0).

lations are there can best be seen with our two param-
eter (b and B) THSR wave function tracing the energy
E(b,B) = 〈THSR|H|THSR〉/〈THSR|THSR〉 as a function
of those width parameters. We recall that for B = b we
are in the Slater determinant limit, whereas for B >> b a
pure Bose condensate appears.
In Fig. 23, we show the contour maps of the energy land-
scape of 8Be, 12C, 16O, and 20Ne (the B parameter is
related to R0 by B2 = b2 + 2R2

0). We clearly see that en-
ergies are not minimal at the Slater limit b = B. Rather
substantial energy is gained in going to higher B values.
For example for 16O, we have an energy gain from ∼ -120
MeV down to ∼ -126 MeV. That corresponds to a gain
of binding of ∼ 5%. In 12C the gain in energy is some-
what stronger. However, we should not forget that this
is a spherical calculation whereas 12C is deformed in its
ground state. In 20Ne the situation is even more exager-
ated because this nucleus has already a pronounced 16O
+α structure in its ground state which is not at all ac-
counted for in a spherical calculation. Unfortunately, it is
difficult to go to heavier nα nuclei with the THSR wave
function because the explicit antisymmetrization becomes
more and more difficult. In any case one can say that sub-
stantial α like correlations are present in the ground states
of these nuclei which should not be neglected, e.g., when
one establishes nuclear mass tables. It is an open but im-
portant question how these α-like correlations evolve with
mass number and/or with asymmetry. At least for nuclei
smaller than 40Ca, the consideration of such correlations

could substantially improve present mass tables which al-
ways show their greatest uncertainties precisely for lighter
nuclei.
These extra α-like correlations in the ground state also
help to excite these nuclei into the Hoyle or Hoyle analog
states, since in the groundstates contain already the seeds
of the α’s.

15. Alpha cluster states and monopole excitations
in 13C

It is a very intriguing issue to study what kinds of struc-
tures appear in 13C when an extra neutron is added into
12C, which has the shell-model-like (0+1 ), 3α-gas-like (0

+
2 ),

higher-nodal 8Be(0+)+α cluster (0+3 ), and linear-chain-
like (0+4 ) states as well as the 2+2 , 4

+, 3−, and 1− states
etc., where the 0+3 , 0

+
4 , 2

+
2 , and 4+ states have been re-

cently observed above the Hoyle state [76, 77, 32]. How do
we identify cluster states in 13C? Isoscalar (IS) monopole
transition strengths are very useful to search for cluster
states in the low-energy region of light N ≡ Z nuclei as
well as in neutron rich nuclei [91, 92, 85]. The IS monopole
excitations to cluster states in light nuclei are in general
strong, comparable with single particle strengths. [92, 85].
. Their experimental strengths share about 20% of the
sum rule value in the case of 4He, 11B, 12C, and 16O
etc. They are very difficult to be reproduced by mean-
field calculations [93, 94, 95]. Quite recently the en-
hanced monopole strengths in 12Be, predicted by the clus-
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ter model [96, 97, 98], have been observed in the breakup-
reaction experiment using a 12Be beam [99], and the en-
hanced monopole state observed corresponds to the 0+

state at Ex = 10.3 MeV with an α+8He cluster structure.
Thus the IS monopole transition strengths indicate to be
a good physical quantity to explore cluster states in light
nuclei. In the case of 13C, there is a long-standing prob-
lem that the C0 transition matrix elements to the 1/2−2,3
states measured by the 13C (e, e′) experiments [100], which
are of the same order as that of the Hoyle state [101],
are very difficult to be reproduced within the shell-model
framework [102], where C0 denotes a longitudinal electric
monopole transition. There are no papers reproducing the
experimental C0 matrix elements with the (0+2)h̄ω shell-
model calculations as far as we know. In addition to the
experimental C0 matrix elements, the IS monopole tran-
sition rates of 13C for the lowest three excited 1/2− states
have been reported with inelastic α scattering on the tar-
get of 13C by Kawabata et al. [103], and their experimental
values are comparable to the single particle one [92]. These
experimental facts suggest that the two 1/2−2,3 states have
cluster structure.
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Fig. 24: Energy spectra of 12C obtained from the 3α OCM
calculation [104, 103] with the 3-body force V3α, compared with
the experimental data.

Fig. 25: Energy levels of the 1/2− and 1/2+ states of 12C
obtained from the 3α + n OCM calculation [104], compared
with the experimental data. The threshold of the 9Be(5/2−)+α
channel at Ex = 13.1 MeV, located between the 9Be(5/2−)+α
and 9Be(1/2−)+α channels, is presented by the dashed arrow
on the left hand side of the panel.

The structure of the 1/2± states of 13C up to around
Ex ∼ 16 MeV has been investigated with the full four-
body 3α+n OCM [104]. The 3α OCM, the model space
of which is the subspace of the 3α + n model, describes
well the structure of the low-lying states of 12C including
the 2+2 , 0

+
3 , and 0+4 states above the Hoyle state, as shown

in Fig. 24. According to the 3α OCM calculations [78,
104, 105], the 0+3 state of 12C has a prominent 8Be(0+)+α
structure with a higher nodal behavior, while the 0+4 state
is characterized by a linear-chain-like structure having the
dominant configuration of 8Be(2+)+α with a relative D-
wave motion. On the other hand, the low-lying states of
9Be, 8Be, and 5He are also described well by the 2α+n, 2α,
and α+n OCM’s, respectively (see Ref. [104]). It should
be recalled that their model spaces are also subspaces of
the 3α+ n OCM calculation.

Figure 25 shows the calculated energy levels of the 1/2±

states with the 3α+nOCM. The five 1/2− states and three
1/2+ states observed up to Ex ∼ 16 MeV are reproduced
successfully. The 1/2−1 state, located at E = −12.3 MeV
measured from the 3α+n threshold, is the ground state of
13C, which has a shell-model-like structure. Its calculated
r.m.s. radius is RN = 2.4 fm (see Table 3), the value of
which agrees with the experimental data (2.46 fm). The
calculated Gamow-Teller transition rates B(GT) between
the 13C ground state (1/2−1 ) and

13N states (1/2−1 , 3/2
−
1 ),

together with the E1 transition rate B(E1) between the
ground state and first 1/2+ state of 13C are given as fol-
lows: Bcal(GT) = 0.332 vs. Bexp(GT) = 0.207 ± 0.002
for the transition from the 13C(1/2−1 ) state to 13N(1/2−1 ),
Bcal(GT) = 1.27 vs. Bexp(GT) = 1.37 ± 0.07 from
13C(1/2−1 ) to 13N(3/2−1 ). The calculated results are in
agreement with the experimental data within a factor of
1.5. On the other hand, the calculated value of B(E1 :
1/2−1 → 1/2+1 ) is 2.0 × 10−3 fm2 in the present study,
while the experimental value is 14 × 10−3 fm2. This en-
hanced E1 transition rate has been pointed out by Millener
et al. [102], where the result of the shell model calculation
is B(E1) = 9.1 × 10−3 fm2, which is about two-third of
the experimental value. This discrepancy between cluster
and shell model can be solved in the future with a mixed
cluster-shell-model approach, see also [104].

The four excited 1/2− states, 1/2−2 , 1/2
−
3 , 1/2

−
4 , and

1/2−5 , have larger nuclear radii (3.0, 3.1, 4.0 and 3.7 fm,
respectively) than that of the ground state (see Table 3).
It was found that the 1/2−2 and 1/2−3 states have mainly
9Be(3/2−)+α and 9Be(1/2−)+α cluster structures, re-
spectively. The 1/2−4 and 1/2−5 states are character-
ized by the dominant structures of 9Be(3/2−)+α and
9Be(1/2−)+α with higher nodal behaviors, respectively.

The present 3α+ n OCM calculations for the first time
have provided reasonable agreement with the experimental
data on the C0 matrix elements M(C0) of the 1/2−2 (Ex =
8.86 MeV) and 1/2−3 (Ex = 11.08 MeV) states obtained
by the 13C(e, e′) reaction [100], and isoscalar monopole
matrix elements M(IS) of the 1/2−2 (Ex = 8.86 MeV),
1/2−3 (Ex = 11.08 MeV), and 1/2−4 (Ex = 12.5 MeV)
states by the 13C(α, α′) reaction [103]. As mentioned
above, they are very difficult to be reproduced in the shell
model framework [102]. The mechanism why the 9Be+α
cluster states are populated by the isoscalar monopole
transition and C0 transition from the shell-model-like
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Table 3: Excitation energies (Ex), r.m.s. radii (R), C0 transition matrix elements [M(C0)], isoscalar monopole tran-
sition matrix elements [M(IS)] of the excited 1/2− states in 13C obtained by the 3α+ n OCM calculation, in units of
MeV, fm, fm2, and fm2, respectively. The experimental data are taken from Refs. [101, 100] and from Ref. [103] for
the 1/2−4 state.

Experiment 3α+ n OCM
Ex R M(C0) M(IS) Ex R M(C0) M(IS)

1/2−1 0.00 2.4628 0.0 2.4
1/2−2 8.86 2.09± 0.38 6.1 11.7 3.0 4.4 9.8
1/2−3 11.08 2.62± 0.26 4.2 12.1 3.1 3.0 8.3
1/2−4 12.5 No data 4.9 15.5 4.0 1.0 2.0
1/2−5 14.39 No data No data 16.6 3.7 2.0 3.3

ground state is common to those in 16O, 12C, 11B, and
12Be etc., originates from the dual nature of the ground
state [92, 85, 106]: The ground states in light nuclei have in
general both the mean-field degree of freedom and cluster
degree of freedom, the latter of which is activated by the
monopole operator and then cluster states are excited from
the ground state. The present results indicate that the α
cluster picture is unavoidable to understand the structure
of the low-lying states of 13C. The C0 transitions together
with the isoscalar monopole transitions are also useful to
explore cluster states in light nuclei.

From the analyses of the spectroscopic factors and over-
lap amplitudes of the 9Be+α and 12C+n channels in the
1/2− states, dominant 12C(Hoyle)+n states do not appear
in the 1/2− states in the present study. This is mainly due
to the effect of the enhanced 9Be+α correlation induced
by the attractive odd-wave α-n force: When an extra neu-
tron is added into the Hoyle state, the attractive odd-wave
α-n force reduces the size of the Hoyle state with the 3α
gas-like structure and then the 9Be+α correlation is signif-
icantly enhanced in the 3α+n system. Consequently the
9Be(3/2−)+α and 9Be(1/2−)+α states come out as the
excited states, 1/2−2 and 1/2−3 , respectively. On the other
hand, higher nodal states of the 1/2−2,3 states, in which the
9Be-α relative wave function has one node higher than that
of the 1/2−2,3 states, emerge as the 1/2−4 and 1/2−5 states,

respectively, in the present study. It is recalled that the 0+3
state of 12C has a 8Be+α structure with higher nodal be-
havior. Thus, the 9Be+α cluster states with higher nodal
behavior, 1/2−4,5, are regarded as the counterpart of the

0+3 state in 12C.

As for the 1/2+ states, the 1/2+1 state appears as a
bound state lying 1.9 MeV below the 12C(0+1 )+n threshold
(see Fig. 25). This state dominantly has a loosely bound
neutron structure, in which the extra neutron moves
around the 12C(0+1 ) core in a 1S orbit, shown in Fig. 26(a).
The calculated radius of the 1/2+1 state (R = 2.6 fm),
slightly larger than that of the ground state (R = 2.4 fm),
is consistent with the experimental suggestion [107]. It
was found that the 1/2+2 and 1/2+3 states have mainly
9Be(3/2−)+α and 9Be(1/2+)+α structures, respectively,
and their radii are around R = 3 fm. These two states
are characterized by strong isoscalar monopole excitations
from the 1/2+1 state. On the other hand, we found that
the 1/2+4 and 1/2+5 states have dominantly a 9Be(3/2−)+α
structure with higher nodal behavior and 3α+n gas-like
structure, respectively, although experimentally the two

Fig. 26: Overlap amplitudes of the 12C+n channels and 9Be+α
channels for (a) the 1/2+1 state of 13C with a loosely bound
neutron structure and (b) the 1/2+5 state with an α-condensate-
like structure [104]. In the panels we present only the overlap
amplitudes with the S2 factor larger than 0.2.

states have not been identified so far. The 1/2+5 state
with a larger radius (R ∼ 4 fm) has the dominant config-
urations of 12C(Hoyle)+n and 9Be(1/2+)+α as shown in
Fig. ??(b). According to the analyses of the single-cluster
density matrix for α clusters with an extra neutron, this
state is described by the product states of constituent clus-
ters, having a configuration of (0S)3α(S)n, with the prob-
ability of 52 %. Thus, the 1/2+5 state can be regarded as
an α-condensate-like state with one extra loosely bound
neutron. The probability of 52 % is comparable to that of
the Hoyle state, (0S)3α (70 %) [66] and that of the 1/2+2
state of 11B just above the 2α + t threshold, (0S)2α(0S)t
(60 %) [106].

22



Fig. 27: Coincident γ-spectra gated with the α particles hitting randomly three different detectors (upper panel) in comparison
with the case where three α’s hit same detector (lower panel). Note the additional lines for 36Ar in the lower panel.

16. Experimental evidences ?

Unfortunately, contrary to pairing, the experimental evi-
dences for α condensation are rare and only indirect. The
most prominent feature is the inelastic form factor which,
as stated above, is very sensitive to the extension of the
Hoyle state and shows that the Hoyle state has a volume
3-4 times larger than the one of the ground state of 12C. A
state at low density is, of course, very favorable to α con-
densation as we have seen from the infinite matter study.
Nevertheless, this does not establish a direct evidence for
an α condensate. Other attempts to search for signatures
of α condensate structures are heavy ion collisions around
the Fermi energy where a condensate structure may be
formed as intermediate state and correlations between the
final α particles may reveal this structure.

For example von Oertzen re-analized old data [108] of
the 28Si +24Mg →52Fe →40Ca +3α reaction at 130 MeV
which, at that time, could not be explained with a Hauser-
Feshbach approach for the supposedly statistical decay of
the compound nucleus 52Fe. Analysing the spectrum of
the decaying particles via γ-decay, obtained in combina-
tion with a multi-particle detector, it was found that the
spectrum is dramatically different for events where the
three α’s are emitted randomly hitting various detectors
under different angles from the ones where the three α
were impinging on the same detector. This is shown in
Fig. 27 where the upper panel corresponds to the case of
the 3α’s in different detectors and lower panel, 3α’s in

same detector. A spectacular enhancement of the 36Ar
line is seen in the lower panel. This is then explained
by a strong lowering of the emission barrier, due to the
presence of an α gas state, for the emission of 12C(0+2 ).
This fact explains that the energies of the 12C(0+2 ) are
concentrated at much lower energies as compared to the
summed energy of 3α particles under the same kinematical
conditions [109]. In this way, the residual nucleus (40Ca)
attains a much higher excitation energy which leads to a
subsequent α decay and to a pile up of 36Ar in the γ spec-
trum. One could also ask the question whether four α’s
have not been seen in the same detector. However, this
only will happen at somewhat higher energies, an impor-
tant experiment to be done in the future.
The interpretation of the experiment is, thus, the follow-
ing, we cite v. Oertzen: due to the coherent properties of
the threshold states consisting of α particles with a large
de-Broglie wave length, the decay of the compound nucleus
52Fe did not follow the Hauser-Feshbach assumption of
the statistical model: a sequential decay and that all de-
cay steps are statistically independent. On the contrary,
after emission of the first α particle, the residual α parti-
cles in the nucleus contain the phase of the first emission
process. The subsequent decays will follow with very short
time delays related to the nuclear reaction times. Actually,
a simultaneous decay can be considered. Very relevant for
this scenario is, as mentioned, the large spacial extension
of the Bose condensate states, as discussed in [109].

However, as the saying goes: ’one swallow does not yet
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Fig. 28: Break-up of 20Ne at 3.65 GeV/nucleon with the emis-
sion of 5 α’s (again partially as 8Be), registered in an emul-
sion. Different stages of the decay, registered down stream in
the emulsion are shown in three panels on top of each other.
P. Zarubin, private communication, see also [110].

Fig. 29: Break-up of 16O at 4.5 GeV/nucleon with the emission
of 4 α’s, registered in an emulsion. Details of the decay can be
seen, e.g., with the narrow cone of two α’s, due to the emission
of 8Be. Different stages of the decay, registered down stream
in the emulsion are shown in consecutive panels. P. Zarubin,
private communication, see also [110].

make spring’. It may become a rewarding research field
to analyse heavy ion reactions more sytematically for non-
statistical, coherent α decays.
A promising route may also be Coulomb excitation. In
Fig.28, we show emulsion images of coherent α decay of
20Ne into three α’s and one 8Be, or into 5 α’s with remark-
able intensity from relativistic Coulomb excitation at the
Dubna Nucletron accelerator [109], see also [110]. The
Coulomb break-up being induced by heavy target nuclei,
Silver (Ag). The break-up of 16O into 4α’s, or into 2α’s
and one 8Be is shown in Fig.29. The presence of 8Be in the
two reactions shows that the α’s travel coherently, other-
wise the 8Be-resonance could not be formed.

A dream could be to Coulomb excite 40Ca to over 60
MeV and observe a slow coherent α particle Coulomb ex-
plosion, see Fig. 30 for an artist’s view.

Coulomb explosions have been observed in highly
charged atomic van der Waals clusters, see [111].
Coulomb excitation is insofar an ideal excitation mech-
anism as it transfers very little angular momentum and
the projectile essentially gets into radial density expan-
sion mode.

Next, we want to argue that the 8Be decay of the 6th
0+ state at 15.1 MeV in 16O can eventually show Bose
enhancement, if the 15.1 states is an α condensate.

We know that a pick-up of a Cooper pair out of a super-

 

 
 

 

 

 

 

 

 

 

Fig. 30: Artist’s view of a Coulomb explosion of 40Ca

fluid nucleus is enhanced if the remaining nucleus is also
superfluid [112]. For example 120Sn → 118Sn + Cooper
pair. Of course same is true for pick up of 2 Cooper pairs
simultaneously. We want to make an analogy between this
and 8Be-decay of the 15.1 MeV state. In the decay prob-
ability of coincident two 8Be, the following spectroscopic
factor should enter

S = 〈8Be +8 Be|15.1MeV〉 (33)

The reduced width amplitude y is roughly related to the
spectroscopic factor as y = 2−1/2(4!/2!2!)1/2S. Adopt-
ing the condensation approximation of 8Be and 15.1 MeV
states, this yields

S = 〈B2B2|(B+)4〉/(2!2!4!)1/2 = (4!/2!2!)1/2 = 61/2

entailing y = 6/(21/2)(y2 = 18). In above expression for
S, B+(B) stands for an ideal boson creator (destructor),
representing the α particle.

When we say that S is large, we need to compare this
S with some standard value. So we consider the case that
the 15.1 MeV state is a molecular state of 8Be-8Be. We
have

S = 〈8Be(I)8Be(II)|8Be(I)8Be(II)〉 = 1

and, therfore, y = 31/2(y2 = 3).
This result shows that the condensation character of the
15.1 MeV state gives a 8Be decay width which is 6 times
larger than the molecular resonance character.

We should be aware that above estimate is extremely
crude and one rather should rely on a microscopic calcula-
tion of the reduced width amplitude y what seems possible
to do in the future. Nevertheless, this example shows that
the decay of the 15.1 MeV state into two 8Be’s may be a
very rewarding subject, experimentally as well as theoret-
ically, in order to elucidate further its α cluster structure.

17. Parity doublet rotational bands in 20Ne with
the THSR wave function and its α+16O cluster
structure.

In Section 2., we have treated the 8Be nucleus and have
seen that the THSR wave function yields a very differ-
ent picture of the intrinsic deformed two α cluster state
than the one from the traditional Brink approach. Though
in both cases a clear two α cluster structure is seen, the
Brink solution ressembles the classical dumbell picture of
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8Be which was prevailing since the early days of cluster
physics. On the other hand, the THSR approach yields a
much more diffuse quantal image of 8Be. We should be
aware of the fact that it is in the intrinsic state where
the physics lies. On the other hand, we have seen in
Sect.7 that Brink-GCM and THSR give practically the
same spherical density after angular momentum projec-
tion, that is in the laboratory frame. However, the intrin-
sic state is a superposition of many eigenstates of angular
momentum and projection means to filter out of this wave
packet the component which has the angular momentum
of interest, that is J = 0 of the ground state in our case.
So, different wave functions of 8Be may contain different
superpositions of practically same eigenstates of angular
momentum.

After this short recapitulation of the situation in 8Be, we
will now turn to other two cluster systems where the above
considerations about 8Be may again be useful. In particu-
lar we want to study the α + 16O cluster structure of 20Ne
in this section. It is, indeed, well known since long that in-
spite of the fact that 20Ne can be described with the well
known mean field approaches of, e.g., Skyrme or Gogny
types, one nevertheless sees a relatively well pronounced
16O +α structure. This may not be entirely surprising,
since we have seen already in the Introduction that mean
field theory can reveal clustering. The only question is
whether mean field correctly describes the cluster features.
That 20Ne shows a 16O +α cluster structure even in the
ground state may be due to the fact that both, 16O as well
as 4He are very stiff doubly magic nuclei. So, the melting
into one spherical Fermi gas state can be strongly hin-
dered. The situation likely is similar for all doubly magic
nuclei plus an α particle. We will later treat the situation
of 212Po = α+208Pb but nuclei like 44Ti = α+40Ca or
100Sn +α may show similar features.

Since the two clusters in 20Ne have different masses, the
intrinsic cluster configuration has no good parity and one
has to consider even and odd parity configurations for the
16O plus α system. Let us write down the THSR ansatz
for 20Ne generalising in a rather obvious way the one for
8Be in (22)

ΨTHSR(20Ne) ∝ Ae−
8

5B2 r2φ(16O)φα (34)

where r = R16 −R4 is the realtive distance between the
c.o.m. positions of 16O and the α particle and φ(16O) and
φα are the intrinsic translationally invariant mean field
wave functions for 16O and α. Usually, one takes, e.g.,
for φ(16O) a harmonic oscillator Slater determinant where
the c.o.m. part has been eliminated for translational in-
variance. The α particle wave function φα is the same as
in (12).

It is clear that the THSR function (34) has positive par-
ity as all other THSR wave functions treated so far. This
also holds if one generalizes (34) as in the 8Be case to
the deformed intrinsic situation. How to generate a parity
odd THSR wave function? The answer comes from apply-
ing the same trick as is used to demonstrate that a two
particle state consisting of an antisymmetrised product of
two Gaussians can lead to the correct P-wave harmonic

Fig. 31: Parity doublet spectrum of 20Ne.

oscillator wave function. For this one displaces the two
Gaussians slightly from one another, normalises the wave
function and takes the limit of the displacement going to
zero. Translated to our situation here this leads to

Ψthsr
hyb (

20Ne) = NSzAe
− 8

5B2 (r−Szez)
2

φ(16O)φα (35)

where NSz is the normalisation constant and ez the unit
vector in z-direction. This ansatz means that the two
clusters are displaced by the amount Sz. The cross term
in the exponential containing the displacement vector can
be expanded into partial waves. Projecting on even or odd
parities, that is taking even or odd angular momenta and
the limit Sz → 0, one obtains THSR functions with good
angular momenta and good ± parities (more details can be
found in [113]). Proceeding now exactly as in the case of
8Be, we obtain the following rotational spectrum of 20Ne
for even and odd parity states as shown in Fig. 31. We see
that the parity doublet spectrum is very nicely reproduced
demonstrating again the flexibility and efficiency of the
single THSR wave function.

Fig. 32: Energy curves of Jπ = 0+, 1− states with different
widths B2 = b2 + 2β2 of Gaussian relative wave functions in
the hybrid model.

Let us analyse the content of α clustering in 20Ne com-
paring again the Brink and THSR approaches. As a mat-
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ter of fact, if in (35) one takes B = b, one obtains a single
Brink wave function, see Eq. (22) for the 8Be case. In
Fig. 32, we compare the energies for the 0+ and 1− states
obtained with this single Brink wave function as a func-
tion of Sz with corresponding THSR wave functions but
with optimised width parameters B. We see that in the
latter case the minimum of energy is obtained for Sz = 0
whereas with the Brink wave function the minimum is ob-
tained with a finite value of Sz lying higher in energy. We,
thus, conclude that B is a more efficient variational param-
eter than S. It is to be pointed out that for Sz = 0 the
wave function in (35) is just the THSR one. The one with
Sz 6= 0 is called the hybrid Brink-THSR wave function,
since it contains the wave functions of Brink and THSR
as specific limits.

What about the cluster structure of the ground state of
20Ne ? To this end, we consider the following deformed
intrinsic state

Φ
hyb
20 ∝ A

[
exp

(
−

8(r2x + r2y)

5B2
x

− 8(rz − Sz)
2

5B2
z

)
φ(16O)φα

]
(36)

Fig. 33: Density distribution of the 16O + α hybrid-Brink-
THSR wave function with Sz = 0.6 fm and (βx, βy, βz) =
(0.9, 0.9, 2.5 fm).

In Fig. 33 we show the density distribution of 16O +α
corresponding to the wave function in (36) with Sz = 0.6
fm and (βz, βy, βz) = (0.9, 0.9, 2.5 fm) where B2

k = b2 +
2β2

k. For numerical convenience a small but finite value
of 0.6 fm for Sz was taken which has to be compared to
the large inter-cluster distance of about 3.6 fm. Clearly,
this large inter-cluster distance cannot be atributed to the
small value of Sz, rather the density distribution in Fig. 33
reflects the amount of α clustering on top of the doubly
magic nucleus, 16O contained in the THSR aproach.

The situation of 20Ne has some similarity with the 8Be
case but is nevertheless quite distinct, see Fig. 7. Appar-
ently the 16O nucleus attracts the α much stronger than
this is the case in 8Be, so that 20Ne is quite compact in its
ground state with more or less usual saturation density.

One may also argue that 16O is much less stiff than an α
in 8Be. The first excited state in 4He is at about 20 MeV
whereas in 16O it is the 0+2 state at 6.33 MeV.

One can consider this as the preformation of an α par-
ticle, a notion which is for instance used in spontaneous α
decay in heavy nuclei. We will precisely discuss this issue
in Sect. 19.

So far we have discussed two different binary cluster sit-
uations, one with two equal clusters (8Be) and one with
two un-equal ones (20Ne). We may suspect that the fea-
tures which have been revealed for these two cases essen-
tially will repeat themselves in other binary cluster sys-
tems. This may, e.g., be the case with the molecular res-
onances found in 32S=16O +16O [114, 115] or in other
hetero-binary cluster systems.

18. More on localised versus delocalised cluster
states

Several times in this review, we alluded already to the
fact that the physical picture of cluster motion delivered
by the THSR ansatz is very different from the Brink ap-
proach. Let us elaborate somewhat more on this aspect.
As already mentioned, it was and, may be, still is the pre-
vailing opinion of the cluster community that clusters in
nuclear systems are localised in space. This opinion stems
from Brink’s ansatz for his cluster wave function ( see (35)
for B = b) where, e.g., the α particle is explicitly placed at
a definite position in space. Even though, later, the fixed
position is smeared in the Brink-GCM approach, the pic-
ture of an essentially localised α remained. In the THSR
wave function, there is a priori absolutely no spacial local-
isation visible. The parameter B which enters the THSR
wave function is a quantal width parameter which makes
the c.o.m. distribution, centered around the origin, of an
α particle wider or narrower. Nevertheless, one sees lo-
calisation of α particles as, e.g., in 8Be or in 20Ne as seen
in Fig.33. This localisation can only come from the Pauli
principle, i.e., the antisymmetriser A in the THSR wave
function. So localisation, like seen in 8Be is entirely an ef-
fect of kinematics, that is the α’s cannot be on top of one
another because of Pauli repulsion. In an α chain state,
and 8Be is the smallest chain state, the α’s are, therefore,
always quite well localised, see Fig. 7. In other spatial
configurations of α’s like in the Hoyle state, the freedom
of motion of the α particles is much greater, inspite of the
fact that they mutually avoid each other. The emerging
picture of an α gas state is then the following: the α’s
freely move as bosons in a large container (the mean field
of the clusters) but avoid to come too close to one another
due to the Pauli principle inspite of the fact that there is
also some attraction between two α’s at not so close dis-
tance. This picture is well born out in an α−α correlation
function study of the Hoyle state [65]. The situation is
similar to the more phenomenological one of the excluded
volume.
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19. 212Po seen as 208Pb +α .

The formation of α particle-like clusters in nuclear systems
and the description of its possible condensate properties
is a challenge to present many-body theory. Whereas in
the case of two-nucleon correlations efficient approaches to
describe pairing are known, no first-principle formalism is
available at present to describe quartetting. The THSR
approach may be considered as an important step in this
direction. A more general approach should also describe
α-like clustering in arbitrary nuclear systems.

An interesting example where the formation of α
particle-like clusters is relevant is radioactive decay by α
particle emission. The radioactive α decay occurs, in par-
ticular, near the doubly magic nuclei 100Sn and 208Pb, and
in superheavy nuclei. The standard approach to the de-
cay width considers the transition probability for the α
decay as product of the preformation probability Pα, a
frequency factor, and an exponential factor. Whereas the
tunneling of an α particle across the Coulomb barrier is
well described in quantum physics, the problem in under-
standing the α decay within a microscopic approach is the
preformation Pα of the α cluster in the decaying nucleus.

In the case of four nucleons moving in a nuclear environ-
ment, we obtain from a Green function approach [116] an
in-medium wave equation which reads in position space

[E4 − ĥ1 − ĥ2 − ĥ3 − ĥ4]Ψ4(r1r2r3r4)

=

∫
d3r′1 d

3r′2〈r1r2|B VN−N |r′1r′2〉Ψ4(r
′
1r

′
2r3r4)

+

∫
d3r′1 d

3r′3〈r1r3|B VN−N |r′1r′3〉Ψ4(r
′
1r2r

′
3r4)

+ four further permutations. (37)

The single-particle Hamiltonian ĥ1 contains the mean
field that may be dependent on position, in contrast to
our former considerations for homogeneous matter. The
six nucleon-nucleon interaction terms contain besides the
nucleon-nucleon potential VN−N also the blocking opera-
tor B which can be given in quasi-particle state represen-
tation. For the first term on the r.h.s. of Eq. (37), the
expression

B(1, 2) = [1− f1(ĥ1)− f2(ĥ2)] (38)

results which is the typical blocking factor of the so-called
particle-particle Random-Phase Approximation (ppRPA)
[53]. The phase space occupation (we give the internal
quantum state ν = σ, τ explicitly)

fν(ĥ) =
occ.∑
n

|n, ν〉〈n, ν| (39)

indicates the phase space which according to the Pauli
principle is not available for an interaction process of a
nucleon with internal quantum state ν.

As worked out in the previous chapters, the formation
of a well-defined α-like bound state is possible only at
low density of nuclear matter because Pauli blocking sup-
presses the in medium four particle level density at the
Fermi level and, thus, the interaction strength necessary
for the bound state formation. For homogeneous symmet-
ric matter, α-like bound states can exist if the nucleon

density is comparable or below 1/5 of saturation density
ρ0 = 0.16 fm−3. With the density dependence of Pauli
blocking at zero temperature given in [117], a value for
the Mott density nMott

B = 0.03 fm−3 results for the critical
density. For nB > nMott

B , the four nucleons which may
form the α-like particle are in continuum states which are
approximated by independent single-nucleon quasiparticle
states, as known from shell model calculations. Adopting
a local-density approach, this argument confines the pre-
formation of α-like bound states to the tails of the density
distribution of the heavy nuclei.

As a typical example, 212Po has been considered in [117]
which decays into the doubly magic 208Pb core nucleus and
an α particle, the half life being 0.299 µs andQα = 8954.13
keV. The proton density as well as the total nucleon den-
sity have been measured [118]. Outside of a critical radius
rcluster = 7.44 fm, the baryon density nB(r) falls below
the critical value, nB(r) < nMott

B , so that α particle pre-
formation is possible [119].

Another issue we discussed in the previous chapters is
the treatment of the c.o.m. motion of the α-like clus-
ters, in contrast to the localized Brink states. It is trivial
that the state of the preformed α particle and its decay
process demands the treatment of the c.o.m. motion like
in the gas-like motion in the Hoyle state. However, this
is not a simple task because only in homogeneous mat-
ter the c.o.m. motion can be separated from the intrinsic
motion describing the four nucleons inside the α particle.
For inhomogeneous systems such as the case of 212Po, the
intrinsic wave function of the α-like clusters depends on
the nuclear matter density nB(r) and, consequently, on
the position r, the distance from the center of the core
nucleus. In the previous chapters this problem was not
analyzed any further and, within a variational approach,
a rigid internal structure of the α particle was assumed
with fixed rms point radius 1.36 fm.

At short distances between the α particles, the anti-
symmetrization of the nucleon wave function within the
THSR approach gives also the transition to single-nucleon
shell model states. However, the treatment of heavy nu-
clei like 212Po is not possible within THSR at present so
that we use a hybrid approach where the core nucleus
208Pb is described by an independent nucleon approach
(Thomas-Fermi or shell model) whereas the full antisym-
metrization with the additional α particle is realized by
the Pauli blocking terms. It is a challenge to future re-
search to formulate a full consistent approach where also
the four-nucleon correlations in the core nucleus 208Pb are
taken into account. As a step in this direction, we can
consider the THSR treatment of 20Ne as a system where
an α particle is moving on top of the double magic 16O
core [113, 120].

We shortly review the treatment of 212Po within a quar-
tetting wave function approach [117]. Similar to the case
of pairing, we derive an effective α particle equation [117]
for cases where an α particle is bound to the 208Pb. Ne-
glecting recoil effects, we assume that the core nucleus
is fixed at r = 0. The core nucleons are distributed
with the baryon density nB(r) and produce a mean field
V mf
τ (r) acting on the two neutrons (τ = n) and two pro-

tons (τ = p) moving on top of the lead core. We give
not a microscopic description of the core nucleons (e.g.,
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Thomas-Fermi or shell model calculations) but consider
both nB(r) and V mf

τ (r) as phenomenological inputs. Of
interest is the wave function of the four nucleons on top
of the core nucleus which can form an α-like cluster.

The four-nucleon wave function (quartetting state)

Ψ(R, sj) = ϕintr(sj ,R)Φ(R) (40)

can be subdivided in a unique way in the (normalized)
center of mass (c.o.m.) part Φ(R) depending only on the

c.o.m. coordinate R and the intrinsic part ϕintr(sj ,R)
which depends, in addition, on the relative coordinates sj
(for instance, Jacobi-Moshinsky coordinates) [117]. The
respective c.o.m. and intrinsic Schrödinger equations are
found from a variational principle, in particular the wave
equation for the c.o.m. motion

− h̄2

2Am
∇2

RΦ(R)− h̄2

Am

∫
dsjϕ

intr,∗(sj ,R)

[∇Rϕ
intr(sj ,R)][∇RΦ(R)]

− h̄2

2Am

∫
dsjϕ

intr,∗(sj ,R)[∇2
Rϕ

intr(sj ,R)]Φ(R)

+

∫
dR′W (R,R′)Φ(R′) = E Φ(R) (41)

with the c.o.m. potential

W (R,R′) =

∫
dsj ds

′
j ϕ

intr,∗(sj ,R)[T [∇sj ]

δ(R−R′)δ(sj − s′j) + V (R, sj ;R
′, s′j)]ϕ

intr(s′j ,R
′) .

(42)

A similar wave equation is found for the intrinsic motion,
see Ref. [117].

The c.o.m. and intrinsic Schrödinger equations
are coupled by contributions containing the expression

∇Rϕ
intr(sj ,R) which will be neglected in the present dis-

cussion. In contrast to homogeneous matter where this
expression disappears, in finite nuclear systems such as
212Po this gradient term will give a contribution to the

wave equations for Φ(R) as well as for ϕintr(sj ,R). Up
to now, there are no investigations of such gradient terms.

The intrinsic wave equation describes in the zero density
limit the formation of an α particle with binding energy
Bα = 28.3 MeV. For homogeneous matter, the binding
energy will be reduced because of Pauli blocking. In the
zero temperature case considered here, the shift of the
binding energy is determined by the baryon density nB =
nn + np, i.e. the sum of the neutron density nn and the
proton density np. Furthermore, Pauli blocking depends
on the asymmetry given by the proton fraction np/nB and
the c.o.m. momentum P of the α particle. Neglecting the
weak dependence on the asymmetry, for P = 0 the density
dependence of the Pauli blocking term

WPauli(nB) = 4515.9nB − 100935n2B + 1202538n3B (43)

was found in [117]. In particular, the bound state is dis-
solved and merges with the continuum of scattering states
at the Mott density nMott

B = 0.02917 fm−3. The intrin-
sic wave function remains nearly α-particle like up to the
Mott density (a small change of the width parameter b

of the four-nucleon bound state is shown in Fig. 2 of
Ref. [117]), but becomes a product of free nucleon wave
functions (more precisely the product of scattering states)
above the Mott density. This behavior of the intrinsic
wave function will be used below when the preformation
probability for the α particle is calculated. Below the Mott
density the intrinsic part of the quartetting wave function
has a large overlap with the intrinsic wave function of the
free α particle. In the region where the α-like cluster pen-
etrates the core nucleus, the intrinsic bound state wave
function transforms at the critical density nMott

B into an
unbound four-nucleon shell model state.

In the case of 212Po considered here, an α particle is
moving on top of the doubly magic 208Pb core. The tails
of the density distribution of the Pb core where the baryon
density is below the Mott density nMott

B , is relevant for the
formation of α-like four-nucleon correlations. Simply spo-
ken, the α particle can exist only at the surface of the
heavy nucleus. This peculiarity has been considered since
a long time for the qualitative discussion of the preforma-
tion of α particles in heavy nuclei [121].

Using the empirical results for the nucleon densities ob-
tained recently [118] which are parametrized by Fermi
functions, the Mott density nMott

B = 0.02917 fm−3 occurs
at rcluster = 7.4383 fm, nB(rcluster) = nMott

B . This means
that α-like clusters can exist only at distances r > rcluster,
for smaller values of r the intrinsic wave function is char-
acterized by the nearly uncorrelated motion of the four
nucleons. Note that this transfer of results obtained for
homogeneous matter to finite nuclei is based on a local
density approach. In contrast to the weakly bound di-
nucleon cluster, the α particles are more compact so that a
local-density approach seems to be better founded. How-
ever, the Pauli blocking term is non-local. As shown in
[117], the local density approach can be improved system-
atically. It is expected that non-local interaction terms
and gradient terms will make the sudden transition at
rcluster from the intrinsic α-like cluster wave function to
an uncorrelated four-nucleon wave function more smooth
but will not change the general picture.

Our main attention is focussed on the c.o.m. motion
Φ(R) of the four-nucleon wave function (quartetting state
of four nucleons n↑, n↓, p↑, p↓). Because the lead core nu-
cleus is very heavy, we replace the c.o.m. coordinate R
by the distance r from the center of the 208Pb core. Ne-
glecting the gradient terms, the corresponding Schrödinger
equation (41) contains the kinetic part −h̄2∇2

r/8m as well
as the potential part W (r, r′) which, in general, is non-
local but can be approximated by an effective c.o.m. po-
tential W (r). The effective c.o.m. potential

W (r) =W intr(r) +W ext(r) (44)

consists of two contributions, the intrinsic partW intr(r) =

E
(0)
α +WPauli(r) and the external part W ext(r) which is

determined by the mean-field interactions.

The intrinsic part W intr(r) approaches for large r the

bound state energy E
(0)
α = −Bα = −28.3 MeV of the α

particle. In addition, it contains the Pauli blocking effects
WPauli(r). Since the distance from the center of the lead
core is now denoted by r, we have for r > rcluster the shift
of the binding energy of the α-like cluster. Here, the Pauli
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Fig. 34: Effective c.o.m. potential W (r). The empirical baryon
density distribution [118] for the 208Pb core is also shown.
The chemical potential µα coincides with the binding energy
Etunnel.
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Fig. 35: Intrinsic part W intr(r) of the effective potential W (r).
The empirical density distribution [118] for the 208Pb core has
been used. The four-nucleon Fermi energy for r < rcluster is
taken in Thomas-Fermi approximation and rcluster = 7.44 fm.

blocking part has the formWPauli[nB(r)] given above (43).
For r < rcluster, the density of the core nucleus is larger
than the Mott density so that no bound state is formed.
As lowest energy state, the four nucleons of the quartet-
ting state are added at the edge of the continuum states
which is given by the chemical potential. In the case of
the Thomas-Fermi model, not accounting for an external
potential, the chemical potential coincides with the sum of
the four constituting Fermi energies. For illustration, the
intrinsic part W intr(r) in Thomas-Fermi approximation,
based on the empirical density distribution, is shown in
Fig. 35. The repulsive contribution of the Pauli exclusion
principle is clearly seen.

The external part W ext(r) is given by the mean field of
the surrounding matter acting on the four-nucleon system.
It includes the strong nucleon-nucleon interaction as well
as the Coulomb interaction. It is given by a double-folding
potential using the intrinsic α-like cluster wave function,
see [117]. For r > rcluster the simple Woods-Saxon poten-
tial used in [117] can be improved [119] using the M3Y
double-folding potential [122]. This M3Y potential con-

tains in addition to the Coulomb interaction the direct
nucleon-nucleon interaction VN (r) and the exchange terms
Vex(r) + VPauli(r) [122].

The Coulomb interaction is calculated as a double-
folding potential using the proton density np(r) of the
208Pb core [118] and a Gaussian density distribution for
the α cluster, with the charge r.m.s. radius 1.67 fm. The
direct nucleon-nucleon interaction is obtained by folding
the measured nucleon density distribution of the 208Pb
core nB(r) [118] and the Gaussian density distribution for
the α cluster (point r.m.s. radius 1.36 fm) with a param-
eterized nucleon-nucleon effective interaction

v(s) = c exp(−4s)/(4s)− d exp(−2.5s)/(2.5s) (45)

describing a short-range repulsion and a long-range attrac-
tion, s denotes the nucleon-nucleon distance.

In principle, the nucleon mean field should reproduce
the empirical densities of the 208Pb core. For r < rcluster
a local-density (Thomas-Fermi) approach will give a con-
stant chemical potential µ4 which is the sum of the mean-
field potential and the Fermi energy of the four nucleons,

µ4 =W ext(r) + 2EF,n(nn) + 2EF,p(np) (46)

with
EF,τ (nτ ) = (h̄2/2mτ )(3π

2nτ )
2/3. (47)

The chemical potential µ4 is not depending on position.
Additional four nucleons must be introduced at the value
µ4. We consider this property as valid for any local-density
approach, the continuum edge for adding quasiparticles to
the core nucleus is given by the chemical potential, not
depending on position. In a rigorous Thomas–Fermi ap-
proach for the core nucleus, this chemical potential co-
incides with the bound state energy Etunnel of the four-
nucleon cluster, Etunnel = µ4. For r < rcluster, the ef-
fective c.o.m. potential W (r) describes the edge of the
four-nucleon continuum where the nucleons can be intro-
duced into the core nucleus. Note that we withdraw this
relation for shell model calculations where all states below
the Fermi energy are occupied, but the next states (we
consider the states above the Fermi energy as ”continuum
states” with respect to the intrinsic four-nucleon motion)
are separated by a gap so that Etunnel > µ4. We come
back to this issue below.

The effective interaction v(s) is designed according to
this simple local-density approach, see Fig. 34. The two
parameter values c = 13866.30 MeV and d = 4090.51
MeV fm in Eq. (45) are determined by the conditions
µ4 = Etunnel = −19.346 MeV, see Fig. 34. The tun-
neling energy is identical with the energy at which the
four nucleons are added to the core nucleus. The total
c.o.m. potential is continuous at r = rcluster and is con-
stant for r < rcluster, where the effective c.o.m. poten-
tial is W (r) = µ4. We solve the effective Schrödinger
equation for the c.o.m. potential W (r) to find the the
c.o.m. wave function Φ(r). In simplest approximation we
assume that the intrinsic four-nucleon wave function co-
incides with the free α-particle wave function for matter
density below the Mott density nMott

B but the overlap is
zero for nB(r) > nMott

B where the intrinsic wave function
is a product of single-nucleon states,

Pα =

∫ ∞

0

d3r|Φ(r)|2Θ
[
nMott
B − nB(r)

]
(48)
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with the step function Θ(x) = 1 for x > 0 and = 0
else. From the solution of the the effective Schrödinger
equation follows the tunneling energy Etunnel = −19.346
MeV. The corresponding values for the preformation fac-
tor Pα = 0.367 and the decay half-life 2.91 × 10−8 s are
found [119].

In a better approximation, the simple local-density
(Thomas-Fermi) approach for the 208Pb core nucleus has
to be replaced by a shell model calculation. Then, the
single-particle states are occupied up to the Fermi energy,
and additional nucleons are introduced on higher energy
levels according to the discrete structure of the single en-
ergy level spectrum. The condition Etunnel = µ4 is with-
drawn. If the nucleon-nucleon potential Eq. (45) is deter-
mined to reproduce not only the correct energy −19.346
MeV of the α decay but also the decay half-life 2.99×10−7

s, the value Etunnel−µ4 = 0.425 MeV results [119] so that
the additional four nucleons forming the α-like cluster are
above the Fermi energy of the 208Pb core.

Clearly these calculations have to be improved with the
aim of the THSR ansatz where all nucleons are treated
on the same footings. Shell model calculations are im-
proved by including four-particle (α-like or BCS-like) cor-
relations that are of relevance when the matter density
becomes low. A closer relation of the calculations to the
THSR calculations is of great interest, see the calculations
for 20Ne [113, 120]. Related calculations are performed in
Ref. [123]. Note that the problem with the gradient terms
in inhomogeneous nuclear systems can also be treated this
way. The comparison with THSR calculations would lead
to a better understanding of the microscopic calculations,
in particular the c.o.m. potential, the c.o.m. wave func-
tion, and the preformation factor.

20. Outlook and Conclusions

In this review, we tried to summarize where we presently
stand with α particle clustering and α particle condensa-
tion in lighter nuclei. We mostly considered N = Z nuclei
but also studied successfully the case of 13C, that is 3 α’s
plus one neutron. We have seen that the α condensate in
this even-odd nucleus is only born out around the thresh-
old energy for 3 α’s plus one neutron. At lower energies we
identified cluster states with 5He bound states due to the
strong neutron-α attraction. The study of analog states in
12C + proton and cluster states of 12C plus two nucleons
may be an interesting subject for the future. First suc-
cessful investigations of 14C have already been performed
[124] employing a generalized THSR wave function. How-
ever, the more phenomenological OCM approach as ap-
plied here to 13C also turns out to be very useful for the
description of clustering.
Concerning the α particle condensation aspect, we con-
cluded that there are no serious objections which would
invalidate this novel and exciting aspect of nuclear physics,
inspite of the fact that direct proofs of condensation
are difficult to obtain experimentally. Analysis of heavy
ion collisions (HIC’s) and relativistic Coulomb excitations
may be promising fields of future investigations both the-
oretically as well as experimentally. An interesting study
in this respect may be the 8Be decay of the 6-th 0+ state

at 15.1 MeV in 16O where one eventually may see an en-
hancement if the 15.1 MeV state is an α condensate state
as predicted from our studies. Extremely important fu-
ture investigations concern the Hoyle excited states and
and Hoyle analog states in 16O and heavier N = Z nuclei.
Already some experimental result show that the situation
in 16O may have some similarity with the 12C case [86].
Confirmation of this fact would further give credit to the
α condensate and α gas hypothesis for states around the
α disintegration threshold. The condensate states may be
considered as the ground states on top of which α parti-
cles may be lifted into higher nodal states. Whether α gas
states can be deformed or not will need further studies, ex-
perimentally and theorectically. For this, it may be useful
to consider cranked THSR wave functions corresponding
to a Hamiltonian of the form

HΩ = H − ΩLX

with LX = [R×P]X where R,P are c.o.m. positions and
corresponding momenta of the α particles. In this case
the c.o.m. part of one α in the THSR wave function is of
the following form

|THSRrot〉 = A[e
− R2

x
2b2x e

−
R2

2
2B2

2 e
−

R2
3

2B2
3 φα1φα2φα3 ] (49)

where bx = 1/
√
h̄mωx; B2/3 = 1/

√
h̄mΩ2/3 with

Ω2
2/3 = ω2

r +ω2
+ ±

√
ω4
− + 4ω2

rω
2
+ and ω± = 1

2 (ω
2
y ±ω2

z) as

well as R2 = α2(Ry +βPz); R3 = α3(Rz +βPy). Crank-
ing a condensate state fast may align the α’s into a chain
state [125]. There have been speculations that up to 6 α
chain states may exist [126]. One should be aware of the
fact that one dimensional Bose condensates do not exist
and that, when the bosons are in-interprenetrable, a so-
called Tonks-Giradeau boson gas forms where the bosons
act like fermions because they cannot be at the same spa-
cial point (as spinless fermions). Since our α particles can
practically not penetrate one another, it would be interest-
ing to investigate how much linear α chain states resemble
a Tonks-Girardeau Bose gas.

Other time dependent cluster processes could qualita-
tively be studied with time-dependent THSR wave func-
tions where the width parameters B(t) and b(t) are consid-
ered time-dependent. For example from a time-dependent
variational principle δ〈THSR(t)|i∂/∂t−H|THSR(t)〉 = 0,
one could let start a compressed nα nucleus and follow its
expansion as a function of time, that is its clusterisation
into α particles. This may give some qualitative insight
into the dynamics of α particle clustering when the nuclei
reach a low density phase during their expansion. It may
numerically within reach to perform such a study with the
THSR wave function.

The THSR approach also has shed a completely new
light on the question of the spacial localisation of the al-
pha particles in states like 8Be or the Hoyle state. Since
the much employed Brink and Brink-GCM wave function
suggest a crystal arrangement of the α’s, a dumbell picture
for 8Be or an equilateral triangle for the Hoyle state was in
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the past the common idea. However, the THSR wave func-
tion provides quite some other image of the situation. The
α particles move freely in their common cluster mean field
potential, except for mutual overlaps which are prevented
by the Pauli principle. Therefore, in linear chain states
still some localisation can be seen, even with the THSR
wave function, see Fig.3, this being a purely kinematical
effect. However, in essentially spherical condensates, as,
e.g., the Hoyle state, localisation is much suppressed and
the α’s most of their time (over 70%) move as free bosons,
that is they perform a delocalised motion. The situation
is actually not far from the old phenomenological idea of
the excluded volume. This can nicely be seen with the
α − α correlation function in the Hoyle state studied by
Suzuki et al. in [65].
It is tempting to try to treat in the future nucleons as
clusters of three quarks with a similar THSR ansatz

ΨTHSR,Fermi ∝ Aψ1...ψn ≡ A|F 〉 (50)

with ψi ∝ exp[−2(Ri−XG)
2/B2φi,nucleon where φi,nucleon

is the intrinsic translationally invariant three quark wave
function of the i-th nucleon. Of course, the nucleons form
a Fermi gas of three quark clusters, opposite to the case
of α’s which are bosons. The antisymmetriser A should
take care of the fermionic aspect of the quark clusters.
Of course, this fermion-THSR approach is very hypothet-
ical and much will depend on whether an effective quark-
quark interaction can be modeled which describes well
the nucleon-nucleon scattering data. This in analogy to
the effective nucleon-nucleon force which was invented by
Tohsaki [127] to successfully describe α−α scattering data.
For heavier nuclei where the THSR approach is inapplica-
ble, one also could think of some fermionic OCM descrip-
tion which eases the solution of the many fermion systems.
Gases of trimers in atomic traps [128] or triton and 3He
gases may be other fields of applications of (50).

We also discussed and showed that the THSR wave func-
tion not only is well adopted for the description of conden-
sate states. It also is apt to describe α-type of correlations
in ground states. A paradigmatical case is 20Ne where two
doubly magic nuclei quite unsuccessfully try to fuse. In-
deed in Fig. 33 we show the ground state density distri-
bution of 20Ne where still a pronounced 16O + α struc-
ture can be seen. As well known, this left-right asymmtric
shape gives raise to the so-called parity doublet rotational
spectrum. It is quite remarkable that a single THSR wave
function can account for the experimental situation.
Another case of binding of two doubly magic nuclei is
212Po = 208Pb + α. This case is much more difficult
to treat than 20Ne because of its high mass. Indeed the
THSR wave function which needs explicit antisymmetrisa-
tion could, so far, not handle nuclei beyond 20Ne because
antisymmetrisation of heavy systems engenders very small
difference of huge numbers, as is well known. However, in
the case of 212Po, just because of its high mass, it actu-
ally shows also an advantage: the underlying core 208Pb
can be considered as a fixed center, i.e., recoil effects, still
essential in 20Ne, can be neglected here. Because of the
compact size of the α particle, barely larger than the sur-
face thickness of 208Pb, we then calculated the effective
208Pb + α potential with the Local Density Approxima-

tion (LDA). A very genuine effect, revealed in our study
of α condensation in infinite matter, comes into play here.
This concerns the fact that no BEC to BCS like continu-
ous cross-over exists for four fermion clusters, see Sect.2.
Therefore, when the α particle is approaching the 208Pb
core from the outside, it first, at very low density, feels
the strong attraction from the usual fermionic mean field.
However, very soon, still at very low density of about a
5-th of saturation density in the tail of the 208Pb density
distribution the α particle dissolves into 2 neutron-2 pro-
ton shell model states on top of the 208Pb core. Thus,
a potential pocket forms at the point where the α dis-
solves revealing the preformation of the α particle. This is
contrary to what happens for example for a two fermion
cluster on top of the 208Pb core. One could, for example,
think of 210Bi with a deuteron as the cluster. The effective
deuteron-Pb potential should reveal a substantially differ-
ent behavior from the α-Pb case. Of course, the LDA has
its limitations. However, since we have the quantal THSR
solution for the analogue situation of 20Ne at hand, we
can investigate the effective α-Oxygen potential fully mi-
croscopically. Again, one may study the difference with
the deuteron + Oxygen case of 18F and see in how much
this case is different from the α cluster case. These very
important and interesting studies remain for the future.

All in all, we feel that nuclear cluster physics will still
make tremendous progress in the future. It may be a
fore-runner of other cluster systems, like they are already
produced with trimers in cold atoms or as one suspects
to exist with bi-excitons in semi-conductors. Other yet
unexpected cluster problems may pop up in the future.

21. Appendix

Let us try to set up a BCS analogous procedure for quar-
tets. Obviously we should write for the wave function

|Z〉 = e
1
4!

∑
k1k2k3k4

Zk1k2k3k4
c+
k1

c+
k2

c+
k3

c+
k4 |vac〉 (51)

where the quartet amplitudes Z are fully antisymmetric
(symmetric) with respect to an odd (even) permutation
of the indices. The task will now be to find a killing op-
erator for this quartet condensate state. Whereas in the
pairing case the partitioning of the pair operator into a
linear combination of a fermion creator and a fermion de-
structor is unambiguous, in the quartet case there exist
two ways to partition the quartet operator, that is into a
single plus a triple or into two doubles. Let us start with
the superposition of a single and a triple. As a matter of
fact it is easy to show that ( in the following, we always
will assume that all amplitudes are real)

qν = uνk1
ck1 −

1

3!

∑
vνk2k3k4

c+k1
c+k2
c+k3

(52)

kills the quartet state under the condition

Zk1k2k3k4 =
∑
ν

(u−1)νk1
vνk2k3k4

(53)

However, so far, we barely have gained anything, since
above quartet destructor contains a non-linear fermion
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transformation which, a priory, cannot be handled. There-
fore, let us try with a superposition of two fermion pair
operators which is, in a way, the natural extension of the
Bogoliubov transformation in the pairing case, i.e. with
Q =

∑
[XP − Y P+] where P+ = c+c+ is a fermion pair

creator. We will, however, find out that such an opera-
tor cannot kill the quartet state of Eq. (51). In analogy
to the so-called Self-Consistent RPA (SCRPA) approach
[129], we will introduce a slightly more general operator,
that is

Qν =
∑
k<k′

[Xν
kk′ckck′ − Y ν

kk′c+k′c
+
k ]

−
∑

k1<k2<k3k4

ηνk1k2k3k4
c+k1
c+k2
c+k3
ck4 (54)

with X,Y antisymmetric in k, k′. Applying this opera-
tor on our quartet state, we find Qν |Z〉 = 0 where the
relations between the various amplitudes turn out to be

∑
k<k′

Xν
kk′Zkk′ll′ = Y ν

ll′ and ηνl2l3l4;k′ =
∑
k

Xν
kk′Zkl2l3l4

(55)
These relations are quite analogous to the ones which hold
in the case of the SCRPA approach [129]. One also notices
that the relation between X,Y, Z amplitudes is similar in
structure to the one of BCS theory for pairing. As with
SCRPA, in order to proceed, we have to approximate the
additional η-term. The quite suggestive recipe is to replace
in the η-term of Eq. (54) the density operator c+k′ck by its
mean value 〈Z|c+k′ck|Z〉/〈Z|Z〉 ≡ 〈c+k′ck〉 = δkk′nk, i.e.
c+k1
c+k2
c+k3
ck4

→ c+k1
c+k2
nk3

δk3k4
where we supposed that we

work in the basis where the single particle density matrix
is diagonal, that is, it is given by the occupation probabil-
ities nk. This approximation, of course, violates the Pauli
principle but, as it was found in applications of SCRPA
[129], we suppose that also here this violation will be quite
mild (of the order of a couple of percent). With this ap-
proximation, we see that the η-term only renormalises the
Y amplitudes and, thus, the killing operator boils down to
a linear super position of a fermion pair destructor with
a pair creator. This can then be seen as a Hartree-Fock-
Bogoliubov (HFB) transformation of fermion pair oper-
ators, i.e., pairing of ’pairs’. Replacing the pair opera-
tors by ideal bosons as done in RPA, would lead to a
standard bosonic HFB approach [53], ch.9 and Appendix.
Here, however, we will stay with the fermionic descrip-
tion and elaborate an HFB theory for fermion pairs. For
this, we will suppose that we can use the killing property
Qν |Z〉 = 0 even with the approximate Q-operator. As
with our experience from SCRPA, we assume that this vi-
olation of consistency is weak.

Let us continue with elaborating our just defined frame.
We will then use for the pair-killing operator

Qν =
∑
k<k′

[Xν
kk′ckck′ − Y ν

kk′c+k′c
+
k ]/N

1/2
kk′ (56)

with (the approximate) property Q|Z〉 = 0 and the first
relation in (55). The normalisation factor Nkk′ = |1−nk−
nk′ | has been introduced so that < [Q,Q+] >= 1

2

∑
(X2−

Y 2) = 1, i.e., the quasi-pair state Q+|Z〉 and the X,Y
amplitudes being normalised to one. We now will minimise
the following energy weighted sum rule

Ων =
〈Z|[Qν , [H − 2µN̂,Q+

ν ]]|Z〉
〈Z|[Qν , Q

+
ν ]|Z〉

(57)

The minimisation with respect to X,Y amplitudes leads
to

(
H ∆(22)

−∆(22)+ −H∗

)(
Xν

Y ν

)
= Ων

(
Xν

Y ν

)
(58)

with (we eventually will consider a symmetrized double
commutator in H)

Hk1k2,k′
1k

′
2

= 〈[ck2ck1 , [H − 2µN̂, c+k′
1
c+k′

2
]]〉/(N1/2

k1k2
N

1/2
k′
1k

′
2
)

= (ξk1 + ξk2)δk1k2, k
′
1k

′
2

+N
−1/2
k1k2

N
−1/2
k′
1k

′
2
{Nk1k2 v̄k1k2k′

1k
′
2
Nk′

1k
′
2

+[(
1

2
δk1k′

1
v̄l1k2l3l4Cl3l4k′

2l1
+ v̄l1k2l4k′

2
Cl4k1l1k′

1
)

−(k1 ↔ k2)]− [k′1 ↔ k′2]} (59)

where

Ck1k2k′
1k

′
2
= 〈c+k′

1
c+k′

2
ck2ck1〉−nk1nk2 [δk1k′

1
δk2k′

2
−δk1k′

2
δk2k′

1
]

(60)
is the two body correlation function and

∆
(22)
k1k2,k′

1k
′
2

= −〈[ck2ck1 , [H − 2µN̂, ck′
1
ck′

2
]]〉/(N1/2

k1k2
N

1/2
k′
1k

′
2
)

= N
−1/2
k1k2

[(∆k1k′
2;k

′
1k2

− k1 ↔ k2)− (k′1 ↔ k′2)]N
−1/2
k′
1k

′
2

(61)

with
∆k1k′

2;k
′
1k2

=
∑
l<l′

v̄k1k′
2ll

′〈ck′
1
ck2cl′cl〉 (62)

In (58) the matrix multiplication is to be understood as∑
k′
1<k′

2
for restricted summation (or as 1

2

∑
k′
1k

′
2
for unre-

stricted summation ) . We see from (61) and (62) that the
bosonic gap ∆(22) involves the quartet order parameter
quite in analogy to the usual gap field in the BCS case.
The H operator in (58) has already been discussed in [130]
in connection with SCRPA in the particle-particle channel.
Equation (58) has the typical structure of a bosonic HFB
equation but, here, for fermion pairs, instead of bosons. It
remains the task to close those HFB equations in express-
ing all expectation values involved in the H and ∆(22)

fields by the X,Y amplitudes. This goes in the following
way. Because of the HFB structure of (58), the X,Y am-
plitudes obey the usual orthonormality relations, see [53].
Therefore, one can invert relation (56) to obtain

c+k′c
+
k = N

1/2
kk′

∑
ν

[Xν
kk′Q+

ν + Y νQν ] (k < k′) (63)
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and by conjugation the expression for cc. With this rela-
tion, we can calculate all two body correlation functions
in (61) and (59) in terms of X,Y amplitudes. This is
achieved in commuting the destruction operators Q to
the right hand side and use the killing property. For ex-
ample, the quartet order parameter in the gap-field (62)

is obtained as 〈ck′
1
ck2cl′cl〉 = N

1/2
k′
1k2

∑
ν X

ν
k2k′

1
Y ν
ll′N

1/2
ll′ .

Remains the task how to link the occupation numbers
nk = 〈c+k ck〉 to the X,Y amplitudes. Of course, that
is where our partitioning of the quartet operator into sin-
gles and triples comes into play. Therefore, let us try to
work with the operator (52). First, as a side-remark, let
us notice that if in (52) we replace c+k1

c+k2
by its expecta-

tion value which is the pairing tensor, we are back to the
standard Bogoliubov transformation for pairing. Here we
want to consider quartetting and, thus, we have to keep
the triple operator fully. Minimising, as in (57) an average
single particle energy, we arrive at the following equation
for the amplitudes u, v in (52)

(
ξ ∆(13)

∆(13)+ −NH∗

)(
u
v

)
= E

(
1 0
0 N

)(
u
v

)
(64)

with (we disregard pairing, i.e., 〈cc〉 amplitudes)

∆
(13)
k;k1k2k3

= ∆kk3;k2k1 − [(k2 ↔ k3)− (k1 ↔ k2)] (65)

and

(NH∗)k1k2k3;k′
1k

′
2k

′
3
= 〈{c+k3

c+k2
c+k1
, [H − 3µN̂, ck′

1
ck′

2
ck′

3
]}〉

(66)

Nk1k2k3;k′
1k

′
2k

′
3
= 〈{c+k3

c+k2
c+k1
, ck′

1
ck′

2
ck′

3
}〉

(67)

with {.., ..} an anticommutator. We will not give H in
full because it is a very complicated expression involving
self-consistent determination of three-body densities. To
lowest order in the interaction it is given by

Hk1k2k3;k′
1k

′
2k

′
3
= (ξk1 + ξk2 + ξk3)δk1k2k3,k′

1k
′
2k

′
3

+[(1− nk1 − nk2)v̄k1k2k′
1k

′
2
δk3k′

3
+ permutations]

(68)

where δk1k2k3,k′
1k

′
2k

′
3

is the fully antisymmetrised three
fermion Kronecker symbol. Even this operator is still
rather complicated for numerical applications and mostly
one will replace the correlated occupation numbers by
their free Fermi- Dirac steps, i.e., nk → n0k. To this order
the three body norm in (67) is given by

Nk1k2k3;k′
1k

′
2k

′
3
' [n̄0k1

n̄0k2
n̄0k3

+ n0k1
n0k2

n0k3
]δk1k2k3,k′

1k
′
2k

′
3

(69)

with n̄0 = 1 − n0. In principle this effective three-body
Hamiltonian leads to three-body bound and scattering
states. In our application to nuclear matter given be-
low, we will make an even more drastic approximation
and completely neglect the interaction term in the three-
body Hamiltonian. Eliminating under this condition the

v-amplitudes from (64), one can write down the following
effective single particle equation

ξku
(ν)
k +∑

k1<k2<k3k′

∆
(13)
k,k1k2k3

(n̄0k1
n̄0k2

n̄0k3
+ n0k1

n0k2
n0k3

)∆
(13)∗

k3k2k1k′

Eν + ξk1 + ξk2 + ξk3

u
(ν)
k′

= Eνu
(ν)
k (70)

The occupation numbers are given by

nk = 1−
∑
ν

|u(ν)k |2 (71)

The effective single particle field in (70) is grapphically
interpreted in Fig. 3, lower panel. The gap-fields in (70)
are then to be calculated as in (65) and (62) with (63)
and the system of equations is fully closed. This is quite
in parallel to the pairing case. In cases, where the quartet
consists out of four different fermions and in addition is
rather strongly bound, as this will be the case for the α
particle in nuclear physics, one still can make a very good
but drastic simplification: one writes the quartic order
parameter as a translationally invariant product of four
times the same single particle wave function in momen-
tum space. We have seen, how this goes when we apply
our theory to α particle condensation in nuclear matter
(Sect.2). Comparing the effective single particle field in
(70) with the one of standard pairing [43], we find strong
analogies but also several structural differences. The most
striking is that in the quartet case Pauli factors figure in
the numerator of (70) whereas this is not the case for pair-
ing. In principle in the pairing case, they are also there,
but since n̄k + nk = 1, they drop out. This difference has
quite dramatic consequences between the pairing and the
quartetting case. Namely when the chemical potential µ
changes from negative (binding) to positive, the implicit
three hole level density

g3h(ω) =
∑

k1k2k3

(n̄0k1
n̄0k2

n̄0k3
+n0k1

n0k2
n0k3

)δ(ω+ξk1+ξk2+ξk3)

(72)
passes through zero at ω − 3µ = 0 because phase space
constraints and energy conservation cannot be fullfilled
simultaneously at that point.
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[44] Röpke G, Schnell A, Schuck P, Nozières P 1998 Phys.
Rev. Lett. 80, 3177; Sogo T, Röpke G, Schuck P 2010
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G, Schuck P 2010 Phys. Rev. C 82, 024312

[68] Pandharipande V R, Sick I, de Witt Huberts P K A
1997 Rev. Mod. Phys. 69, 981 (1997)

[69] Funaki Y, Horiuchi H, G. Roepke, Schuck P, Tohsaki
A, Yamada T 2008 Phys. Rev. C 77, 064312

[70] Pitaevskii L, Stringari S 2003 Int. Series of Mono-
graphs on Physics (Oxford University Press)

[71] Bayman B F, Bohr A 1958/59 Nucl. Phys. 9, 596

[72] Funaki Y, Tohsaki A, Horiuchi H, Schuck P, Röpke
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