The Standard Model as effective field theory

with fundamental scale A%, > 1TeV
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Natural SM : A2 < 1TeV
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The two possible microphysics scenarios

I. The SM is the correct descriptionup to A,y > TeV/
* B, L and Flavor: beautifully in accord with observation

* Hierarchy remains a mystery, probably hinting that the question was not
correctly posed
* anthropic principle
e failure of effective field theory ideology (UV/IR connection)

I1. The SM is not the correct description already at Ay ~ 1TeV

* In the correct theory the hierarchy problem does not even arise (naturalness)
* What about B, L and Flavor? In all models not nearly as nice as in SM



A high scale scenario

e £d=% experimental success (some 2- 3-0 glitches here and there)

e O-QCD and Dark Matter =2 high scale axion

f, ~ 10* GeV

e gauge couplings ready to unify around [10'° < M < Mpianck

1
Qg

In

WHH v’

® neutrino masses —_ My, ~ T
A

A ~ 10" GeV

* RG-evolution of SM couplings, including )\; remarkably do

not require lower scales




1. Marginality

AUV
the fixed point theory does not
) possess scalar operators with
dimension strictly less than 4
Arg

€
£mass — CAUV 04—6
€ _ € 1
AIR — CAUV Ar =c /e Ayy

algebraically small C and € is enough to produce hierarchy

see Strassler arXiv:hep-th/0309122

Ex: Yang-Mills, TechniColor, Randall-Sundrum model



2. Symmetry

AUV
2
} Liass = €AUV @
small parameter protected by symmetry
Arr
* € must be hierarchically small
AIR — \/E AUV )

* how does this smallness originate?

Ex: QCD, Supersymmetry



3. Sequestering

AUV
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3. Sequestering

AUV

D1 X D2 — D1_|_2

Dilations .
by small coupling €
Arg
AN;r ~ €Ay technically natural
* SFT2 =‘UV completion of gravity’ e = ANy /Mp
a-gravity
Ex. by * not clearly compatible with basic principles
a-strumia

* but imagine we find a gorgeous candidate for SFT'1?

Salvio, Strumia 2012



Lecture IV

Constraining the structure of RG flows in 4D

* Irreversibility of CF'I-to-CFT RG flows: a-theorem

* Ruling out non-CFT asymptotics in perturbation theory



conceivable RG flows

but all known examples asymptote to a CFT fixed point

e free (QED, massless QCD)
e strongly coupled (Supersymmetry)
e trivial (real QCD)

In particular: there are no known SFT asymptotics !



Scale Invariance versus Conformal Invariance

Wess 1960, Polchinski 1988

SET SH = TH, 3V 4 VH VHE £, L"H

* SFT examples, if any, necessarily entail quantum effects

Callan, Coleman, Jackiw 1970

Vu — genuine non-conserved current with scaling dimension
exactly equal to 3 even including quantum effects

* Often, there simply doesn’t exist a candidate for

Ex.: axial current in massless (S)QCD excluded by
parity selection rule



Exploring the structure of QFT by turning on an external metric

* Irreversibility of CF'IT-to-CFT RG flows: a-theorem

* Ruling out non-CFT asymptotics in perturbation theory



RG flow describes the change of the dynamics under a dilation

= change of the action under a dilation

Whenever we have some explicitly broken symmetry it proves useful to

e formally restore it by promoting couplings to sources
transforming non trivially

* gauge it by adding the suitable gauge field



We shall play various related games

A. mz >‘z — 9uv (55)7 )\z (33) + Weyl
symmetry

B. A; = const

—2
Ny  —= € T77/M/

e =0=14¢ background dilaton field



(Geometric picture

dilations ot — oH = kxt -
(dz)? = k*(dx)?
Ly VR | D —_ _,'LL
v ~ U — | L_
conformal z* — % 1+ 0222 1+ 25 - 2
- 1
(dac)2 = 5 (dx)2

(140222 +2b- x)



QFT in a gravitational background

g,ul/(x) — 6_2a(x)guv

Weyl Symmetry
Bo(x) — e Fo@P (1)

O(D,2) = subgroup of Weyl x Difts that leaves 1),,,, invariant

Slg, P Weyl invariant » S|n,®] Conformalinvariant

Converse is also true (at classical level)



Ex.: free massless scalar field

T,ul/ — a,ugaaugp _ 77—;1/(890)2

T} = —(09)" # 0

1
Litar = 5 (8¢)?



Ex.: free massless scalar field

1
Litar = 5 (8¢)?

1w

Ouipduip — “2%(Dp)?
—(0p)* # 0

T

0

U

1
v = (000 - N 0)o”

|

improvement



Ex.: free massless scalar field

p—
=3
R

I

Oupyp — 77_;1/(890)2
2
T, = —(0¢)” # 0

1
Ou = T — E(auav — 77WD)802

=0 )

improvement

1 2, 1,3 |

Leurved = V95 [(09)" + cRe™| = g\/§R(9)
@,W = QOQQIW Y e_ia Weyl symmetry

Guv = € 7 Gu manifest



) J
Weyl symm: /O'(ZU) (29’“’ & + ko @y > ) =0

g (x) 0P, (x)
o (CE) arbitrary ®, on-shell
-
0S5
TH = gt — 0
8 6gHv ()

With only global Weyl, o = constant, we would instead deduce

/T;j:o — T = 91V,



QFT in gravity background

4 quantum effective action eWlgnvl — / D[q)]eis[g,@]

* need regulation
e diff invariant

* finite by adding suitable local counterterms

In general the introduction of a regulator in curved background
breaks explicitly Weyl invariance even when flat space theory is
conformally invariant



In ordinary QFT  0,W = non-local
In CFT oW = / o(x)\/gA(x) = Weyl Anomaly
(local!)
also written as (T) = (T ! ) = A(x) Christensen, Duff 74



The structure of the Weyl anomaly in a CFT



A(x) is a scalar function of the metric

in general

A(x) = aFE4 — bR* — cW? — dOR

E, = RM" R, —4R" R, + R
1
W? = RMP’ R0 —2R"R,, + §R2

/a(x)\fg (—dOR+ eA’R + fA*) = 6, /(—1)\@ (%RQ + §A2R + £A4)

the last three terms can be written as variation of local functional

they can be eliminated by a choice of counterterms
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A(x) is a scalar function of the metric

in general

A(z) = aE; — bR* —cW? —dOR -+
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Wess-Zumino consistency condition

5. W = / o (2)v/G Al)

Weyl symmetry is abelian

[502,501] W = 502 (/ d43310'1\/§¢4) — 501 (/ Cl43320'2\/§./4) =0

A(z) = aEy — bR* —cW?* —  aFE4—cW?



Wess-Zumino consistency condition

5. W = / o (2)v/G Al)

Weyl symmetry is abelian

[502,501] W = 502 (/ d43310'1\/§¢4) — 501 (/ Cl43320'2\/§./4) =0

Al(z) = aBy —bR* —cW? — aE,—cW?



Easy to check using

0\/g
5

OR
SE,4
SW*2
0G .

—40./g

2001 — 2V, o V#
20 R 4 6o
4o b4 — 8G"V V0
4oW?

2(V,V, —gu,0)o




4+ In general CFT

C

Ty ()T, (0)) = Lo ()

8
(T (2)Tpo (0)Tys(y)) = cClvpoys(T,y) + aApwpoys(T,y)

Stanev 88
Osborn, Petkou ’94

4+ In a free field theory one has
Christensen, Duft 79

! + H + 62
a/ — ns _n nv
576072 9

1
— 3ng +9 30m,,
c 5760#2( ns + 9ns + 36n,)

both @ and ¢ are a weighted measure of the number of degrees of freedom



Cardy’s Conjecture (1988) : @ decreases monotonically along the RG flow

CFTuv
ayv > arr

CFTIR

In 2D there was already Zamolodchikov’s c-theorem (1986) stating the
monotonicity of the unique coefhicient in the 2D Weyl anomaly

S W = /d2x gcR(g) = /d2w gcEs(g)



Proof of Cardy’s Conjecture: the a-theorem

Komargodski and Schwimmer 2011



CFTuv regime

CFTir regime

Consider now putting this system in an extermal metric



AL, = metric (curvature) dependent counterterms needed
to define a renormalized quantum action Wig}

AL;r = metric dependent terms associated with positive powers of m



The general structure of ALyy and  ALjr  is the same:

local scalar functions of dimension < 4

In the classification of these terms it is crucial to consider what
happens for the case of a conformally flat background metric

Guv = Q(x)Q Nuv



Counterterms
d > 4 in sensible theories

VRO do < 2 VIV.RJI" N GRu, TV

Vi VIR VR VIEs  gW?



I1.

VRO

V9

Counterterms

do < 2

ViR

ViR

d > 4 in sensible theories

ViV RJE=\/GR,, J"

irrelevant

ViEL A GW?



Counterterms
d > 4 in sensible theories

L. VRO  do <2 VIV LRI GR, T
* irrelevant
QU0

II. /i ViR v §R? ViE: W2
v v v \ 2 /

0 QOO Q%(00)? 0 0



Counterterms
d > 4 in sensible theories
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* irrelevant
QU0
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On shell dilaton: [ = 0
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Counterterms
d > 4 in sensible theories

L. VIRO  do <2 VIV LRI GR, T
* irrelevant
QU0

II. /i VR VGR? VIE, /gW?
v v v \ 2 /

04 QO Q~%(00)? 0 0

On shell dilaton: [ =0




schematically =

consider from here on WiQ] = WiQ] ‘

J J
0Qx1)  0Q(x,)

W|Q:1 — ./\/l($1, ce ,ZIZ’n)

M can be interpreted as the n-dilaton scattering amplitude



QCD analogy

Effective QCD action in background photon field: WA, |

) )
5 (@) 5A, (2,)

W = QCD mediated n-photon amplitude

light-by-light

scattering




The analogue QFT mediated dilaton-by-dilaton scattering

affords a remarkable insight into the structure of our QFT

Like for all on-shell n-point dilaton amplitudes the only
renormalization needed to define this amplitude concerns a constant
term associated with the cosmological constant

M = MAgrr, Ace)



4-point amplitude

§/W — Q($)277,u1/

]
_ g —
50 - Q5ma oo e =T

B 5w
..,p4) a 59(191) . "59(194)

= (T'(p1)T (p2)T(p3)T (pa)) + (T'(p1 + p2)T (p3)T(pa)) + permutations
+ (T (p1 + p2)T(ps + pa)) + permutations
+ (T'(p1 + p2 + p3)T (psa)) + permutations







@= -

_|_ —|— permutations

-+ @ —+  permutations



InaCFT W] islocal and fully determined by the Weyl anomaly

up to cosmological constant term

| on shell Q a AW o Acc Q4

neglecting momentarily CC term

Cappelli, Coste 1988
Tomboulis 1990
Schwimmer, Theisen ’11

1 _
— 4(R" (g) — ig“”R(g))Q 0,00,

— 40Q73(90)200 + 29—4(39)4]

—c anW2(g)}.



Juv = Nuv A
WerrlQ] —  —2a Q74(00)%(09)? + 0 Q4
(1 =0 '

@ A(s,t) = —da [s"+ 2+ (s+1)°] +A

this basic result leads to a simple proof of the a-theorem

Komargodski, Schwimmer ’11



CFluv

CFTir



L= Lyy+) em* 40,

d; < 4

CFluv

CFTir






Can relate UV to IR via dispersive argument

Using
e A(s) = A(s,0) is analitic with cut on real s axis
ecrossing A(s) = A(—s) (t=0,su = 54 —5)

“reality A*(s) = A(s™)

eoptical theorem  —i|A(s + i€) — A(—s + i€)]
= ImA(s +ie) = so(QQ — QFT)



CC term drops !
Iyy = —4dayy
1 /ImA 1 /O‘(QQ% QFT)
[RG — 3 - 2
7 S 7 S

Arrp — Quyv — ZIRG < Qpvy

> 0



® J[rg =auv-ar is nicely finite in CFT-to-CFT flows

* can check directly that convergence of Irg in both UV and
IR corresponds to convergence of RG flow to a CFT

It had to be so, since {2 A / ds® is finite; just a function of
the renormalized QFT couplings

* Finiteness of Irc ==  constraint on QFT asymptotics



a-theorem implies the deep notion of irreversibility of RG flow

CFTuyv
CFTuyvy
18
given impossible

CFTir
CFTr

however I do not know of insightful applications in particle physics



Does a-theorem constrains phases of N¢,Nr QCD ?

a X Ng+ 11Ngp + 62Ny

UV: quarks and gluons ayy X 11Np + 62(]\% — 1)

IR: assume chiral symmetry breaking vacuum and mass gap

Nz —1 NG-bosons arp < N& — 1

easy to check that arp < ayv

for any asymptotically free choice of Nr and Nc¢



Lecture 111

Constraining

* RG asymptotics in weakly coupled deformations of CFTs
e SF'T asymptotics

Thursday, August 22, 2013



Goal: study RG flows (perturbatively) near CFT fixed point

Ex: free field theory with small marginal couplings

! A

\o

< > Or = bryAjAKg + ...
A

y&

7] < 1

Thursday, August 22, 2013



basic idea: A(S) is finite, modulo CC term

more precisely: all UV divergences encountered in its computation
must get reabsorbed in the running QFT couplings

A(s) = af(s)s? a(s) = a(A(s))

a(s) = —8&a in CFT limit

Thursday, August 22, 2013



s

a(s) = ! /O7T df a(se®)

1 ' > > (0 by unitarity

absence of divergences lim Ima(s) = 0
§—F00

Thursday, August 22, 2013



quickly drawing conclusions

Thursday, August 22, 2013



z:z: H +>Q+ X K+ crossed

Thursday, August 22, 2013



o=

Im a(s)

K

{ X

1+ ><!)< —

g2

LS T ()T () + T(or + p2) [0))

W



o=

Im a(s)

K

{ X

1+ ><!)< —

g2

LS T ()T () + T(or + p2) [0))

W

= Z G107
T



W= Y Y- ><!>< —

= & S TG)T(p2) + s+ p2) 0)]

Im a(s) 2
v

subleading if - } : B;0
i Y1
)\Ia 5J < 1

qualification needed !

Thursday, August 22, 2013



W= Y Y- ><!>< —

= & S TG)T(p2) + s+ p2) 0)]

Im a(s) 2
v

subleading if — Z brOr
)\Ia 6J < 1

qualification needed !

Im o« 1s dominated by >< >< like in 2D proof !!

Thursday, August 22, 2013



+ o)

positive definite by unitarity

d
/ “ Ima finite <= 3; — (0  asymptotically

S

The theory necessarily asymptotes a CFT'!

Thursday, August 22, 2013



Non perturbative argument contra 4D SFTs

(' = const

Im a(s)

absence of ¢ L™ (W[ T(py)T(pa) + T(ps + p2) [0)]]

2
divergences $° 5

Thursday, August 22, 2013



by unitarity T{T(pl)T(pg)} +T(p1 +p2) =0

e D1 et D2 arenotarbitrary: p® = p3 = 0
cannot yet directly infer T{T(x1)T(x2)} + 6*(x1 — z2) T(2z1) = 0

and conclude T is trivial

* yet the matrix elements should be very peculiar

(| T(p1)T(p2) + T(p1 + p2)|0) = 0

0 =0,1,2,... ¢ =0

(W, £ > 1] T(p1)T(p2) |0) = 0O

Thursday, August 22, 2013



The importance of Unitarity

* Non-unitary SFT: massless vector without gauge invariance

~ 1 v h Coleman, Jackiw 1971
S = /d4CE’\/ —g <1FMVFM + §(VMAM)2) Riva, Caeryzoo?7

virial current VH = hA FH¥
}I‘P’V o~
/é"v\,, >C‘L:"

partial cross section 7= 0 (U| T(p1)T(p2) + T(p1 + p2)|0) # 0

total cross section = () > (@ T(p1)T(p2) + T(p1 + p2) 0)]* = 0
v

Thursday, August 22, 2013



Summary

*Finiteness of RG flow of dilaton scattering amplitude Powerful
constraint
eUnitarity on RG-flow

4 Perturbative theories
4 Small deformations of strongly coupled CFTs

Ao | Xa “
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Summary

*Finiteness of RG flow of dilaton scattering amplitude Powerful
constraint
eUnitarity on RG-flow

4 Perturbative theories
4 Small deformations of strongly coupled CFTs

the only possible asymptotics are CFTs

Thursday, August 22, 2013



