
The Standard Model as effective field theory

Λ2
UV � 1TeVwith fundamental scale  



LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2



+
bij

ΛUV

LiLjHH

+
cijkl

Λ2
UV

F̄iFjF̄kF� +
cij

ΛUV

F̄iσµνFjG
µν + . . . d>4

+ . . .

LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2



+
bij

ΛUV

LiLjHH

+
cijkl

Λ2
UV

F̄iFjF̄kF� +
cij

ΛUV

F̄iσµνFjG
µν + . . . d>4

+ . . .

LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2

( pointlike limit ) nicely accounts for ‘what we see’ ΛUV � TeV



+
bij

ΛUV

LiLjHH

+
cijkl

Λ2
UV

F̄iFjF̄kF� +
cij

ΛUV

F̄iσµνFjG
µν + . . . d>4

+ . . .

LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2

( pointlike limit ) nicely accounts for ‘what we see’ ΛUV � TeV

d=4+ θ G̃µνG̃
µν



+ cΛ2
UV H

†
H d=2

+
bij

ΛUV

LiLjHH

+
cijkl

Λ2
UV

F̄iFjF̄kF� +
cij

ΛUV

F̄iσµνFjG
µν + . . . d>4

+ . . .

LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2

( pointlike limit ) nicely accounts for ‘what we see’ ΛUV � TeV

d=4+ θ G̃µνG̃
µν



d=0+Λ4
UV

√
g

the th
ree

 problem
s

+ cΛ2
UV H

†
H d=2

+
bij

ΛUV

LiLjHH

+
cijkl

Λ2
UV

F̄iFjF̄kF� +
cij

ΛUV

F̄iσµνFjG
µν + . . . d>4

+ . . .

LSM = d=4Lkin + gAµF̄γµF + YijF̄iHFj + λ(H†
H)2

( pointlike limit ) nicely accounts for ‘what we see’ ΛUV � TeV

d=4+ θ G̃µνG̃
µν



yij HF̄iFj

1

Λ2
UV

F̄iFjF̄kF� + . . .

Λ2
UV H

†
H

Standard Model up to some 

Hierarchy see-saw

Λ2
UV � 1TeV

☺☺☹



yij HF̄iFj

1

Λ2
UV

F̄iFjF̄kF� + . . .

Λ2
UV H

†
H

☺☺☹

Standard Model up to some 

Hierarchy see-saw

Λ2
UV � 1TeV



yij HF̄iFj

1

Λ2
UV

F̄iFjF̄kF� + . . .

Λ2
UV H

†
H

☺☺☹

m2
H

= �Λ2
UV � Λ2

UV

Tuning!

Standard Model up to some 

Hierarchy see-saw

Λ2
UV � 1TeV



yij HF̄iFj
1

Λ2
UV

F̄iFjF̄kF� + . . .Λ2
UV H

†
H

☺ ☺ ☹

Natural SM : Λ2
UV

<∼ 1TeV



The two possible microphysics scenarios

• B, L and Flavor: beautifully in accord with observation

• Hierarchy remains a mystery,  probably hinting that the question was not 
correctly  posed 

• anthropic principle
• failure of effective field theory ideology (UV/IR connection)

I.  The SM is the correct description up to

II.  The SM is not the correct description already at

• In the correct theory the hierarchy problem does not even arise (naturalness)
• What about B, L and Flavor?          In all models not nearly as nice as in SM

ΛUV � TeV

ΛUV ∼ 1TeV



��HH

Λ
mν ∼ v2

Λ
Λ ∼ 1014 GeV

A high scale scenario
Ld=4•     experimental success (some 2- 3-! glitches here and there)

•  "-QCD and Dark Matter   �������������axion  

• gauge couplings ready to unify around

fa ∼ 1012 GeV

1015 <∼ M <∼ MPlanck

• neutrino masses

• RG-evolution of   SM couplings, including          remarkably do 
not require lower scales

λh

1

αi

lnµ



1. Marginality

ΛUV

ΛIR

the fixed point theory does not 
possess scalar operators with
 dimension strictly less than 4

Lmass = cΛ�
UV O4−�

Λ�
IR = cΛ�

UV ΛIR = c1/� ΛUV

algebraica!y small        and        is enough to produce hierarchyc �

Ex: Yang-Mills, TechniColor, Randall-Sundrum model

see Strassler arXiv:hep-th/0309122



2. Symmetry

ΛUV

ΛIR

Lmass = �Λ2
UV O2

small parameter protected by symmetry

ΛIR =
√
�ΛUV

•  !  must be hierarchica!y small

•  how does this smallness originate?

Ex: QCD, Supersymmetry
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SFT2

SFT1
O(�)

ΛIR

ΛUV

3. Sequestering

Dilations
D1 ×D2 → D1+2

by small coupling �

ΛIR ∼ �ΛUV technically natural

   a-gravity  
by   

   a-strumia

• SFT2  = ‘UV completion of gravity’

• not clearly compatible with basic principles

• but imagine we find a gorgeous candidate for SFT1?

Ex.

� = ΛUV /MP

Salvio, Strumia 2012



Lecture IV

Constraining the structure of RG flows in 4D

• Irreversibility of CFT-to-CFT RG flows: a-theorem

• Ruling out non-CFT asymptotics in perturbation theory



but all known  examples asymptote to  a CFT fixed point

conceivable RG flows

• free  (QED, massless QCD)
• strongly coupled (Supersymmetry)
• trivial (real QCD)

In particular: there are no known SFT asymptotics !



Scale Invariance  versus  Conformal Invariance
Wess 1960,  Polchinski 1988

Sµ = Tµ
ν x

ν + V µSFT V µ �= ∂νL
νµ

• SFT examples, if any,  necessarily entail quantum effects

genuine non-conserved current with scaling  dimension 
exactly equal to 3 even including quantum effects

Vµ ≡

•  Often, there simply doesn’t exist a candidate for 

Ex.:  axial current in massless (S)QCD excluded by
         parity selection rule 

Callan, Coleman, Jackiw 1970



Exploring the structure of  QFT by turning on an external metric

• Irreversibility of CFT-to-CFT RG flows: a-theorem

• Ruling out non-CFT asymptotics in perturbation theory



RG flow describes the change of the dynamics under a dilation

! change of the action under a dilation

Whenever we have some explicitly broken symmetry it proves useful to

• formally restore it by promoting couplings to sources  
   transforming non trivially

• gauge it by adding the suitable gauge field



We shall play various related games

ηµν , λi −→ gµν(x), λi(x) + Weyl 
             symmetry

A.

B. λi = const

ηµν −→ e−2τηµν

e−τ ≡ Ω ≡ 1 + ϕ background dilaton field



Geometric picture

dilations xµ → x̃µ = kxµ

conformal xµ → x̃µ =
xµ + bµx2

1 + b2x2 + 2b · x

(dx̃)2 = k2(dx)2

(dx̃)2 =
1

(1 + b2x2 + 2b · x)2 (dx)2



Weyl Symmetry

QFT in a gravitational background

gµν(x) → e−2σ(x)gµν

Φa(x) → e−kaσ(x)Φa(x)

S[g,Φ] S[η,Φ]Weyl invariant Conformal invariant 

Converse is also true (at classical level)

O(D,2)    =   subgroup of  Weyl !"Diffs that leaves             invariantηµν



Ex.: free massless scalar field

Tµν = ∂µϕ∂νϕ− ηµν
2
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µ = −(∂ϕ)2 �= 0

Lflat =
1

2
(∂ϕ)2
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1

2
(∂ϕ)2

Lcurved =
√
g
1

2

�
(∂ϕ)2 +

1

6
Rϕ2

�
=

1

6

�
ĝR(ĝ)

ĝµν ≡ ϕ2gµν
ϕ → eσϕ

gµν → e−2σgµν

Weyl symmetry 
manifest

Θµ
µ = 0

improvement

Θµν = Tµν − 1

6
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Weyl  symm:

on-shellarbitraryσ(x)

Tµ
µ ≡ gµν

δS

δgµν(x)
= 0

Φa

With only global Weyl, #"= constant, we would instead deduce
�

Tµ
µ = 0 Tµ

µ = ∂µVµ

�
σ(x)

�
2gµν

δS

δgµν(x)
+ kaΦa

δS

δΦa(x)

�
= 0



QFT in gravity background

• need regulation

• diff invariant

• finite by adding suitable local counterterms

! quantum effective action

In general the introduction of a regulator in curved background  
breaks explicitly  Weyl invariance even when flat space theory is 

conformally invariant 

eiW [gµν ] =

�
D[Φ]eiS[g,Φ]



δσ ≡
�

d4x 2σ(x) gµν
δ

δgµν(x)

In ordinary QFT δσW = non-local

In CFT Weyl Anomaly
(local!)

δσW =

�
σ(x)

√
gA(x) =

also written as �T � ≡ �Tµ
µ � = A(x) Christensen, Duff ’74



The structure of the Weyl anomaly in a CFT



is a scalar function of the metricA(x)

A(x) = aE4 − bR2 − cW 2 − d�R

in general

E4 = RµνρσRµνρσ − 4RµνRµν +R2

W 2 = RµνρσRµνρσ − 2RµνRµν +
1

3
R2

the last three terms can be written as variation of local functional

they can be eliminated by a choice of counterterms

�
σ(x)

√
g
�
−d�R+ eΛ2R+ fΛ4

�
= δσ

�
(−1)

√
g

�
d
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e

2
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f

4
Λ4

�
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Wess-Zumino consistency condition

δσW =

�
σ(x)

√
gA(x)

Weyl symmetry is abelian

[δσ2 , δσ1 ]W = δσ2

��
d4x1σ1

√
gA

�
− δσ1

��
d4x2σ2

√
gA

�
= 0

A(x) = aE4 − bR2 − cW 2 −→ aE4 − cW 2
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Easy to check using

δ
√
g = −4σ

√
g

δ� = 2σ�− 2∇µσ∇µ

δR = 2σR+ 6�σ

δE4 = 4σE4 − 8Gµν∇µ∇νσ

δW 2 = 4σW 2

δGµν = 2 (∇µ∇ν − gµν�)σ



! In a free field theory one has

a =
1

5760π2

�
ns +

11

2
nf + 62nv

�

c =
1

5760π2
(3ns + 9nf + 36nv)

both a and c are a weighted measure of the number of degrees of freedom

�Tµν(x)Tρσ(0)� =
c

x8
Iµνρσ(x)

!  In general CFT

�Tµν(x)Tρσ(0)Tγδ(y)� = cCµνρσγδ(x, y) + aAµνρσγδ(x, y)

Stanev ’88
Osborn, Petkou ’94

Christensen, Duff ’79



Cardy’s Conjecture (1988) :  a  decreases monotonically along the RG flow

CFTUV

CFTIR

aUV aIR>

In 2D there was already  Zamolodchikov’s  c-theorem (1986) stating the 
monotonicity of the unique coefficient in the 2D Weyl anomaly

δσW =

�
d2x

√
g cR(g) ≡

�
d2x

√
g cE2(g)



Proof of Cardy’s Conjecture: the a-theorem
Komargodski and Schwimmer 2011



E CFTUV  regime

CFTIR regime

E ∼ O(m)

E � m

E � m
L = LIR +

�

i

m−daÕa

L = LUV +
�

i

mdiOi

Consider now putting this system in an extermal metric



E ∼ O(m)

E � m

E � m

L = LUV +
�

i

mdiOi +∆LUV (g)

L = LIR +
�

a

m−daÕa +∆LIR(g)

∆LUV ≡ metric (curvature) dependent counterterms needed 
to define a renormalized quantum action W[g]

∆LIR ≡ metric dependent terms associated with positive powers of m



∆LIR∆LUVThe general structure of                  and                        is the same:

local scalar functions of dimension  ≤  4

In the classification of these terms it is crucial to consider what 
happens for the case of a conformally flat background metric

ĝµν = Ω(x)2 ηµν
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ĝRµν J

µν�
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ĝRµν J

µν�
ĝRO dO ≤ 2

in sensible theories

Ω4 Ω�Ω Ω−2(�Ω)2 0 0

Ω�ΩO

I.

d > 4

irrelevant



Counterterms 

�
ĝ
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ĝ

�
ĝR
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W
��
Ω : �Ω=0

= W [Ω,λQFT ,Λcc]



�Ω = 0

Ω

schematically

δ

δΩ(x1)
. . .

δ

δΩ(xn)
W

��
Ω=1

= M(x1, . . . , xn)

W [Ω] ≡ W [Ω]
���
�Ω=0

consider from here on

can be interpreted as the n-dilaton scattering amplitudeM



QCD analogy

Effective QCD action in background photon field : W [Aµ]

δ

δAµ1(x1)
. . .

δ

δAµn(xn)
W = QCD mediated n-photon amplitude

δ

δAµ1(x1)
. . .

δ

δAµ4(x4)
W = QCD

light-by-light
scatteringEx.



The analogue QFT mediated dilaton-by-dilaton scattering

QFT

affords a remarkable insight into the structure of our QFT

Like for all on-shell n-point dilaton amplitudes the only 
renormalization needed to define this amplitude concerns a constant 

term associated with the cosmological constant

M ≡ M(λQFT ,Λcc)



ĝµν = Ω(x)2ηµν

− δ

δ lnΩ
W = Tµ

µ ≡ T

4-point amplitude

δ

δΩ
=

1

Ω

δ

δ lnΩ

p21 = p22 = p23 = p24 = 0

= �T (p1)T (p2)T (p3)T (p4)� + �T (p1 + p2)T (p3)T (p4)�+ permutations

+ �T (p1 + p2)T (p3 + p4)�+ permutations

+ �T (p1 + p2 + p3)T (p4)�+ permutations

M(p1, . . . , p4) =
δ4W

δΩ(p1) · · · δΩ(p4)

M(p1, . . . , p4) ≡ (2π)4δ4(p1 + p2 + p3 + p4)A(s, t)



QFT

permutations

permutations

= +

+

+

+

+



QFT

permutations

permutations

= +

+

+

+

+



In a CFT                  is local and fully determined by the Weyl anomalyW [Ω]

up to cosmological constant term 

on shell Ω

Cappelli, Coste 1988
Tomboulis 1990

Schwimmer, Theisen ’11
WCFT [Ω

2gµν ] = WCFT [gµν ]− SWZ[gµν ,Ω; a, c]

SWZ [gµν ,Ω; a, c] =

�
d4x

√
−g

�
a
�
lnΩE4(g)

− 4
�
Rµν(g)− 1

2
gµνR(g)

�
Ω−2∂µΩ∂νΩ

− 4Ω−3(∂Ω)2�Ω+ 2Ω−4(∂Ω)4
�

− c lnΩW 2(g)
�
.

neglecting momentarily CC term

∆W =
Λcc

4!
Ω4



Komargodski, Schwimmer ’11

this basic result leads to a simple proof of the a-theorem

CFT

gµν = ηµν

�Ω = 0

+Λ

WCFT [Ω] −→ −2 a Ω−4(∂Ω)2(∂Ω)2 +
Λ

4!
Ω4

A(s, t) = −4 a
�
s2 + t2 + (s+ t)2

�



CFTUV

CFTIR



CFTUV

CFTIR

L = LUV +
�

i

cim
4−diOi

di < 4

L = LIR +
�
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ba
1

mda−4
Õa

da > 4



CFTUV

CFTIR

L = LUV +
�

i

cim
4−diOi

di < 4

L = LIR +
�

a

ba
1

mda−4
Õa

da > 4

A(s, 0) = −8aUV s2
�
1 +

�
m√
s

�#
�
+ ΛUV

cc

A(s, 0) = −8aIR s2
�
1 +

�√
s

m

�#
�
+ ΛIR

cc



Can relate UV to IR via dispersive argument

Using

•                                     is analitic with cut on real s axis

•crossing

•‘reality’

•optical theorem

A(s) ≡ A(s, 0)

A(s) = A(−s) (t = 0, s ↔ u ≡ s ↔ −s)

A∗(s) = A(s∗)

−i[A(s+ i�)−A(−s+ i�)]

= ImA(s+ i�) = sσ(ΩΩ → QFT)



CFT
UV              CFT

IR

IUV

IIR

IRG

IIR + IUV + IRG = 0

1

2πi

�

C

A(s, 0)

s3
ds = 0

IIR = 4 aIR

IUV = −4 aUV

IRG =
1

π

�
ImA

s3
=

1

π

�
σ(ΩΩ → QFT)

s2
> 0

aIR = aUV − 1

4
IRG < aUV

CC term drops !



• IRG  = aUV - aIR     is nicely finite in CFT-to-CFT flows

• can check directly that convergence of IRG in both UV and  
IR corresponds to convergence of RG flow to a CFT 

•It had to be so, since                       is finite;  just a function of 
the renormalized QFT couplings

•  Finiteness of  IRG                          constraint on QFT asymptotics

d2A/ds2



a-theorem implies the deep notion of irreversibility of RG flow

CFTUV

CFTIR

CFTUV

CFTIR

given
is

impossible

however I do not know of insightful applications in particle physics



Does a-theorem constrains phases of NC,NF QCD ?

a ∝ NS + 11NF + 62NV

aUV ∝ 11NF + 62(N2
C − 1)

aIR ∝ N2
F − 1

IR: assume chiral symmetry breaking vacuum and mass gap                        

UV: quarks and gluons

N2
F − 1 NG-bosons

easy to check that                      aIR < aUV

for any asymptotically free choice of NF and NC



Lecture III

Constraining

• RG asymptotics in weakly coupled deformations of CFTs

• SFT asymptotics

Thursday, August 22, 2013



Goal: study RG flows (perturbatively) near CFT fixed point

λ

βI = bIJKλJλK + . . .

Ex: free field theory with small marginal couplings

|λI | � 1

Thursday, August 22, 2013



basic idea:                is finite, modulo CC termA(s)

more precisely: all UV divergences  encountered in its computation
must get reabsorbed in the running QFT couplings

A(s) = α(s)s2 α(s) ≡ α(λ(s))

α(s) = −8a in CFT limit
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s2

s1

absence of divergences

≥ 0 by unitarity

ᾱ(s) ≡ 1

π

� π

0
dθ α(seiθ)

ᾱ(s2) − ᾱ(s1) =
2

π

� s2

s1

ds

s
Imα(s)

lim
s→±∞

Imα(s) = 0
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quickly drawing conclusions
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= + + + crossed
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= + + + crossed

2

= = 1

s2

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2Imα(s)
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= + + + crossed

=
�

I

βIOI

2

= = 1

s2

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2Imα(s)
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= + + + crossed

=
�

I

βIOI
subleading if

λI , βJ � 1

qualification needed !

2

= = 1

s2

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2Imα(s)
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= + + + crossed

=
�

I

βIOI
subleading if

λI , βJ � 1

qualification needed !

2

= = 1

s2

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2Imα(s)

is dominated by like in 2D proof !!Imα
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⎨ ⎧⎧

CIJ positive definite by unitarity

finite βI → 0 asymptotically

The theory necessarily  asymptotes a CFT ! 

βIOI βJOJ

Imα =
�

IJ

βIβJ

�
Im �OIOJ�

s2
+ O(λ)

�

�
ds

s
Imα
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Non perturbative argument contra 4D SFTs

absence of
divergences

C =
1

s2

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2 = 0

=Im a(s)

2

= C = const
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T
�
T (p1)T (p2)

�
+ T (p1 + p2) = 0

•             et             are not arbitrary:p1 p2 p21 = p22 = 0

cannot  yet directly infer T
�
T (x1)T (x2)

�
+ δ4(x1 − x2)T (x1) = 0

and conclude T is trivial

by unitarity

•  yet the matrix elements should be very peculiar

�Ψ|T (p1)T (p2) + T (p1 + p2) |0� = 0

� = 0, 1, 2, . . . � = 0

�Ψ, � ≥ 1|T (p1)T (p2) |0� = 0
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The  importance of  Unitarity

• Non-unitary SFT:    massless vector without gauge invariance

virial current V µ = hAνF
µν

 partial cross section �= 0

= 0  total cross section 

S =

�
d4x

�
−ĝ

�
1

4
FµνF

µν +
h

2
(∇µA

µ)2
�

Coleman, Jackiw 1971
Riva, Cardy 2005

�Ψ|T (p1)T (p2) + T (p1 + p2) |0� �= 0

�

Ψ

���Ψ|T (p1)T (p2) + T (p1 + p2) |0�
��2 = 0
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Summary

•Finiteness of RG flow of dilaton scattering amplitude

•Unitarity

Powerful 
constraint

on RG-flow

! Perturbative theories
! Small deformations of strongly coupled CFTs
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Summary

•Finiteness of RG flow of dilaton scattering amplitude

•Unitarity

Powerful 
constraint

on RG-flow

! Perturbative theories
! Small deformations of strongly coupled CFTs

 the only possible asymptotics are CFTs
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