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ppc.inr.ac.ru/eng/uc.php



Causal structure of space-time in hot Big Bang theory (i.e.,
assuming that the Universe started right from the hot epoch)

Angular size of horizon at recombination ≈ 2o.
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There are perturbations which were superhorizon at the time of
recombination, angular scale & 2o. Causality: they could not be
generated at hot epoch!
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Planck + all: Scalar tilt vs tensor power



BICEP-2 claim r = 0.2

r = 0.2 is large: 10% contribution to δT at low multipoles,
l . 30.

BICEP2 and Planck with Planck + all
dns/d logk =−0.02 (very large)

Inflation: dns/d logk ≈−0.001



BAO in power spectrum



BAO in correlation function
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Effects of adaiabatic and entropy perturbations

adiabatic perturbations entropy perturbation



Effect of baryons



Effect of curvature (left) and Λ
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Problems for exam

1. Consider single field inflation in slow roll regime, at which the
slow roll parameter ε decreases in time. Take any inflaton potential
consistent with the CMB and galaxy distribution data. Show that
during the period at inflation, which is responsible for generating
the adiabatic perturbations, the inflaton field rolls down at least by

∆φ & 10r ·MPl ,

where r is the tensor-to-scalar ratio. [This means, in particular, that
the discovery of tensor modes with r ∼ 0.2, as originally claimed by
BICEP-2, would imply that the variation of the inflaton over the
relevant period of time at inflationary epoch was super-Planckian.]



2. Relatively short gravity waves, created at inflation, after horizon
re-entry at radiation domination can be viewed as a collection of
gravitons (just like electromagnetic waves emitted by antenna can
be viewed as a collection of photons). Assuming that the Hubble
parameter H some 60 e-foldings before inflation end is known,
calculate the average (over enesemble of universes) number of
gravitons 〈N(k,∆k)〉 in the present visible Universe in the interval of

momenta from k/a0 to (k+∆k)/a0, and relative variance of this

number
√

(〈N2(k,∆k)〉−〈N(k,∆k)〉2

〈N(k,∆k)〉
.

Dropping the assumption about the value of the Hubble parameter,

calculate these quantities for the inflaton potential V = m2φ 2/2.

Give numerical estimates in the latter case for k/a0 = 1 Mpc−1,
∆k = k.



3. Consider Minkowski space and generalized Galileon theory with
the Lagrangian

L = e4π F(Y )+ e2πK(Y )2π

where

Y = e−2π(∂π)2 .

Let F and K be chosen in such a way that there is a solution

eπ =
const

−t
, t < 0 .

Let this solution be healthy, i.e., there are neither ghosts nor
gradient instabilities among preturbations about this solution. Find
the power specrum of perturbations δπ about this solution in the
regime k|t| ≪ 1, where k is the spatial momentum of a mode.


