Exercises on Inflation

- 1. Consider a FRW metric in conformal coordinates, $ds^2 = a(\eta)^2(-d\eta^2 + d\vec{x}^2)$. The scale factor in front of the whole metric does not affect the propagation of light rays and therefore does not affect causality. So why the condition $d^2a/dt^2 > 0$ solves the horizon problem?
- 2. Suppose all matter fields photons for example are coupled not directly to the metric $g_{\mu\nu}$, but to $h(\phi)g_{\mu\nu} \equiv \tilde{g}_{\mu\nu}$, where ϕ is a scalar field, evolving in time and h is a given function. We are assuming to be in 'Einstein frame', i.e. that the action for $g_{\mu\nu}$ is just the standard Einstein-Hilbert action. Is it enough to have acceleration of the "effective" scale factor \tilde{a} of the metric \tilde{g} to solve the horizon problem? Why?
- 3. In a matter dominated Universe, show that Ω equals, in a Newtonian treatment, the ratio between (the absolute value of) potential and kinetic energy. The curvature problem is thus interpreted as the tuning of these two quantities.
- 4. In a bouncing model, the scale factor is initially contracting, then reaches a minimum (the bounce) and then starts a (decelerated) expansion. Compare the diagram $k^{-1}a$ vs H^{-1} for inflation and for bouncing models. Discuss how to realize a bounce.
- 5. The ratio between pressure and energy density is usually called w: $w \equiv p/\rho$. What are the possible values of w for a scalar field, with standard kinetic term and potential, which evolves in time, assuming $\rho > 0$? And if we assume a positive definite potential?
- 6. Prove that a coupling $f(\phi)R$ between the inflaton and the metric can be set to zero by an appropriate conformal transformation: $\tilde{g}_{ab} = \Omega^2(x)g_{ab}$.
- 7. Assuming instantaneous reheating after inflation at temperature $T_{\rm rh}$ show, using entropy conservation, that we need at least

$$N = 46 + \log \frac{T_{\rm rh}}{10^{10} {\rm GeV}} + \frac{1}{2} \log |\Omega_i - 1|$$
(1)

e-folds of inflation to solve the flatness problem. Here Ω_i is the curvature parameter when inflation begins.

8. Consider a scalar field with action

$$S = \int d^4x \sqrt{-g} P(X,\phi) \qquad X \equiv -g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi .$$
 (2)

Write the stress energy tensor. What is the condition to have inflation, $\ddot{a} > 0$, assuming that the scalar only depends on time? Models with this kind of Lagrangian are called k-inflation.

9. Let us verify that an action of the form

$$S = \int d^4x \sqrt{-g} F(R) \tag{3}$$

is equivalent to GR + a scalar with standard kinetic term. Show that the action above is equivalent to

$$\int d^4x \sqrt{-g} \left[F'(A)(R-A) + F(A) \right] \tag{4}$$

once the equation of motion for the auxiliary field A is used. Now we can make a conformal transformation to demix A from the metric; this will give a kinetic term to A. After dust has settled you should get

$$\int d^4x \sqrt{-g} \left[R - \frac{3}{2} g^{\mu\nu} \partial_\mu \sigma \partial_\nu \sigma - V(\sigma) \right]$$
(5)

with

$$V(\sigma) = \frac{A}{F'(A)} - \frac{F(A)}{F'(A)^2} \quad \text{with } \sigma = -\log F'(A) .$$
(6)

10. An harmonic oscillator of frequency ω_i is in its vacuum state. Its frequency is instantaneously changed to ω_f . Write the state of the system in terms of the new eigenstates and calculate its energy. [This integral of Hermite polynomials may be useful:

$$\int_{-\infty}^{+\infty} e^{-x^2} H_{2m}(xy) dx = \sqrt{\pi} \frac{(2m)!}{m!} (y^2 - 1)^m .$$
 (7)

- 11. An harmonic oscillator of frequency ω_i is in its first excited state and its frequency is instantaneously changed to $\omega_f \ll \omega_i$. What is its final energy? [No long calculation is needed.]
- 12. Photons are massless, but they are not produced during inflation. Why?
- 13. Calculate the equal time 2-point function of a massless scalar in a fixed de Sitter background in real space. What is the physical meaning of the IR divergence?
- 14. Using symmetry arguments, calculate the tilt of the spectrum of a scalar with small mass, $m^2 \ll H^2$, in a fixed de Sitter background.
- 15. Calculate the spectrum of a scalar with small mass, $m^2 \ll H^2$, in a fixed de Sitter background.
- 16. Calculate the spectrum of ζ in the spatially flat gauge.
- 17. Consider a model of inflation based on the potential $V = \lambda \phi^4$. Find the value of λ required to get the right normalization of the power spectrum. Find the tilt of the scalar spectrum and the tensor to scalar ratio.
- 18. A Goldstone boson, like an axion, with decay constant f_a lives during inflation and therefore gets quantum perturbations. Estimate the corrections you expect to the free field theory calculation from self interactions, i.e. the deviation from gaussianity. What happens if $H > 4\pi f_a$?
- 19. Using symmetry arguments, show that the *n*-point function of ζ in Fourier space in a generic model of inflation is of the form

$$\langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_n} \rangle = (2\pi)^3 \delta(\sum \vec{k}_i) F(k_i) , \qquad (8)$$

where F is an homogeneous function of the k's of degree -3(n-1).

20. Consider a massless scalar φ in de Sitter space with an interaction $\frac{M}{6}\varphi^3$. Calculate the 3-point function $\langle \varphi_{\vec{k}_1}\varphi_{\vec{k}_2}\varphi_{\vec{k}_3}\rangle$.

- 21. de Sitter is maximally symmetric, i.e. it has 10 isometries. In inflation, the correlation functions of ζ are translationally, rotationally and scale invariant. These are 7 symmetries. What happened to the other 3?
- 22. Calculate (numerically) $f_{\rm NL}^{\rm loc.}$ in a model of modulated reheating coming from the non-linear relation $\zeta(\Gamma)$ as a function of Γ/H , where H is the Hubble parameter at the end of inflation.