The Standard Model and (some of) its extensions

R. Barbieri GGI, Florence, January 9–27, 2017

Program

I. The SM and its status, as of 2016 II. Problems of (questions for) the SM

III. Minimal Mirror Twin Higgs (2 lectures)

- IV. Anomalies in B-decays
- V. Axion searches by way of their coupling to the spin

I. The Standard Model and its status summarized

$$\mathcal{L}_{\sim SM} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\Psi} \not D \Psi \qquad (~1975-2000)$$
$$+ |D_{\mu}h|^{2} - V(h) \qquad (~1990-2012)$$
$$+ \psi_{i}\lambda_{ij}\psi_{j}h + h.c. \qquad (~2000-\text{ now})$$

In () the approximate dates of the experimental shining of the various lines (at different levels)

The synthetic nature of PP exhibited

QCD in full strength

(see Maltoni's lectures)

even though in the strong coupling regime...

Precision in ElectroWeak Physics

(a story that goes on from about 1970 on and still keeps its relevance)

	APV	$(g-2)_e$	$(g-2)_{\mu}$	W, Z	$ m_{top}$
$\Delta O/O$	10^{-3}	10^{-8}	10^{-6}	$10^{-(3\div 5)}$	10^{-2}
d(cm)	10^{-5}	10^{-11}	10^{-13}	10^{-16}	10^{-16}

precision at work at many different scales

The ante-LEP knowledge

(about 1970 - 1990)

Experiments:

polarized eN scattering at $q^2 = O(1)GeV^2$ Atomic Parity violation

$$R_{\nu} = \frac{\sigma(\nu_{\mu} \ N \to \nu_{\mu} \ X)}{\sigma(\nu_{\mu} \ N \to \mu \ X)} \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu}_{\mu} \ N \to \bar{\nu}_{\mu} \ X)}{\sigma(\bar{\nu}_{\mu} \ N \to \mu \ X)}$$

$$\sigma(\nu_{\mu} \ e), \ \sigma(\bar{\nu}_{\mu} \ e) \qquad \text{elastic}$$

$$e^{+}e^{-} \to e^{+}e^{-}, \mu^{+}\mu^{-}, \tau^{+}\tau^{-} \qquad \text{at low} \quad q^{2}$$

W-mass measurements

Defining: $\mathcal{L}_{q^2 < < M_Z^2}^{NC} = 4 \frac{G_F}{\sqrt{2}} \rho J_{\mu}^{NC} J^{\mu NC} \qquad J_{\mu}^{NC} = J_{\mu}^3 - \sin^2 \theta_W J_{\mu}^{em}$

 $\Rightarrow
ho pprox 1, \quad \sin^2 heta_W pprox 0.22$ within few %

The ante-LEP knowledge $\Rightarrow \rho \approx 1$, $\sin^2 \theta_W \approx 0.22$ within few %

Theory:

– at tree level $\,\rho=1$ from Higgs being a doublet

$$V(H) = |H_1|^2 + |H_2|^2 + |H_3|^2 + |H_4|^2$$

 $SO(4) = SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$ "custodial symmetry"

"custodial symmetry"

Veltman 1977 +...

Sikivie et al 1980

- at 1 loop two types of contributions:

1. top-bottom-Goldstone bosons

2. Only 2 $\log m_h$ dependent (see below)

The ante-LEP knowledge $\Rightarrow \rho \approx 1, \quad \sin^2 \theta_W \approx 0.22$ within few % Theory: - at 1 loop two types of contributions: 1. top-bottom-Goldstone bosons the "gaugeless" limit of the SM $\phi(x) = e^{i\pi_i(x)\sigma_i/v} \begin{pmatrix} 0\\ v + \frac{h(x)}{\sqrt{2}} \end{pmatrix}$

The ante-LEP knowledge

- at 1 loop two types of contributions:

2. Only 2 $\log m_h$ dependent (see below)

Passarino, Veltman 1979 Antonelli et al 1980 Sirlin 1980

LEP (and not only LEP) at work (from 1990 on)

The observables at the Z-pole and the W-mass Assuming quark-lepton and flavour universality,

3 effective observables only

In terms of the vector/axial couplings of the Z to the fermion f

$$g_A^f = T_{3L}^f \left(1 + \frac{\epsilon_1}{2}\right) \qquad \qquad \frac{g_V^f}{g_A^f} = 1 - 4|Q_f|s^2\left(1 + \frac{\epsilon_3 - c^2\epsilon_1}{c^2 - s^2}\right)$$

and the W-mass

$$\Delta r = \frac{1}{s^2} (-c^2 \epsilon_1 + (c^2 - s^2) \epsilon_2) + 2s^2 \epsilon_3) \qquad s^2 c^2 = \frac{\pi \alpha (M_Z)}{\sqrt{2} G_F M_Z^2}$$

Why this peculiar definition of the ϵ_i ?

$$\begin{split} \Pi^{\mu\nu}_{ij}(q^2) &= -i \big[A_{ij}(0) + q^2 F_{ij}(q^2) \big] \eta^{\mu\nu} + (q^{\mu}q^{\nu} - \text{terms}) \\ \text{with} \quad i, j = W, Z, \gamma \quad \text{or} \quad i, j = 0, 3 \quad \text{for} \quad B, W^3 \end{split}$$

Defining:

Peskin, Takeuchi 1990

$$\hat{T} = \frac{1}{m_W^2} (A_{33}(0) - A_{WW}(0)); \quad \hat{S} = \frac{c}{s} F_{30}(0); \quad \hat{U} = F_{WW}(0) - F_{33}(0)$$

$$\epsilon_1 = \hat{T} + \text{smaller oblique + non oblique}$$

$$\epsilon_2 = \hat{U} + \text{smaller oblique + non oblique}$$

$$\epsilon_3 = \hat{S} + \text{smaller oblique + non oblique}$$

non-oblique = vertices, boxes

$$\Pi_{WW}, \Pi_{33}, \Pi_{30}, \Pi_{00} \Rightarrow 8 \ (\Pi(0), \Pi'(0))$$

$$8 = 2 \ (\Pi_{\gamma\gamma}(0) = \Pi_{\gamma Z}(0) = 0) + 3 \ (g, g', v) + \frac{3 \ (\hat{S}, \hat{T}, \hat{U})}{3 \ (\hat{S}, \hat{T}, \hat{U})}$$

U less UV-sensitive than S and T \Rightarrow only 2 independent $\log m_h$ terms

Constraining the top mass

La Thuile, April 1994

For the Higgs boson a similar story in July 2012

EW precision	ATLAS	CMS
$m_h/GeV = 97^{+23}_{-17}$	$126.0 \pm 0.4 \pm 0.4$	$125.3 \pm 0.4 \pm 0.5$

Current SM predictions (all OK with exp)

 $g, g', v + g_S, m_t, m_h, \Delta \alpha_{had}$

 $\alpha = 1/137.035999139$

$$G_{\mu} \Rightarrow 1.1663787 \times 10^{-5} \text{ GeV}^{-2}$$

		Prediction	$lpha_s$	$\Delta lpha_{ m had}^{(5)}$		m_t
80.385 ± 0.015	$M_W ~[{ m GeV}]$	80.3618 ± 0.0080	± 0.0008	± 0.0060	± 0.0026	± 0.0046
	Γ_W [GeV]	2.08849 ± 0.00079	± 0.00048	± 0.00047	± 0.00021	± 0.00036
	$\Gamma_Z \; [\text{GeV}]$	2.49403 ± 0.00073	± 0.00059	± 0.00031	± 0.00021	± 0.00017
	σ_h^0 [nb]	41.4910 ± 0.0062	± 0.0059	± 0.0005	± 0.0020	± 0.0005
0.23146 ± 0.00012	$\sin^2 heta_{ ext{eff}}^{ ext{lept}}$	0.23148 ± 0.00012	± 0.00000	± 0.00012	± 0.00002	± 0.00002
	$P_{\tau}^{\rm pol} = \mathcal{A}_{\ell}$	0.14731 ± 0.00093	± 0.00003	± 0.00091	± 0.00012	± 0.00019
	\mathcal{A}_{c}	0.66802 ± 0.00041	± 0.00001	± 0.00040	± 0.00005	± 0.00008
	\mathcal{A}_b	0.934643 ± 0.000076	± 0.000003	± 0.000075	± 0.000010	± 0.000005
	$A_{ m FB}^{0,\ell}$	0.01627 ± 0.00021	± 0.00001	± 0.00020	± 0.00003	± 0.00004
	$A_{ m FB}^{0,c}$	0.07381 ± 0.00052	± 0.00002	± 0.00050	± 0.00007	± 0.00010
	$A_{ m FB}^{0,b}$	0.10326 ± 0.00067	± 0.00002	± 0.00065	± 0.00008	± 0.00013
	R^0_ℓ	20.7478 ± 0.0077	± 0.0074	± 0.0020	± 0.0003	± 0.0003
	R_c^0	0.172222 ± 0.000026	± 0.000023	± 0.000007	± 0.000001	± 0.000009
	R_b^0	0.215800 ± 0.000030	± 0.000013	± 0.000004	± 0.000000	± 0.000026

(negligible uncertainty from m_h variations)

de Blas et al, 2016

The state of the art on 2 most precisely known quantities

$$M_W, \qquad \sin^2 \theta_{eff}^l \equiv \frac{1}{4} \left(1 - \frac{g_V^l}{g_A^l}\right)$$

	$\delta M_W/MeV$	$\delta \sin^2 \theta^l_{eff} / 10^{-5}$
higher orders	5	5
parametric	9	12
exp. current	15	16
exp. FCC-ee	0.5	0.3

"parametric": $\Delta m_t = 1 \; GeV, \; \Delta \alpha_{had}^{(5)} = 3.3 \cdot 10^{-4}, \; \Delta \alpha_S(M_Z) = 7 \cdot 10^{-4}$

Degrassi, Gambino, Giardino 2014

general current fit

Two other complementary directions in (the use of) precision data

1. The SM as an effective low-energy theory

$$\mathcal{L}_{eff}(E < \Lambda) = \mathcal{L}_{SM} + \sum_{i,p>0} \frac{c_{i,p}}{\Lambda p} \mathcal{O}_i^{(4+p)}$$

2. Precision in Higgs couplings

EW precision with effective operators $\mathcal{L}_{eff}(E < \Lambda) = \mathcal{L}_{SM} + \sum_{i,p>0} \frac{c_{i,p}}{\Lambda^p} \mathcal{O}_i^{(4+p)}$

95% lower bounds on $\Lambda/{\rm TeV}$ on one operator at a time

	$c_i = -1$	$c_1 = +1$	$c_i = -1$	$c_i = +1$
$(H^+\tau^a H)W^a_{\mu\nu}B_{\mu\nu}$	9.7	10	11.1	18.4
$ H^+ D_\mu H ^2$	4.6	5.6	6.3	15.4
$i(H^+D_\mu\tau^a H)(\bar{L}\gamma_\mu\tau^a L)$	8.4	8.8	9.8	14.8
$i(H^+D_\mu\tau^a H)(\bar{Q}\gamma_\mu\tau^a Q)$	6.6	6.8	9.6	8.7
$i(H^+D_\mu H)(\bar{L}\gamma_\mu L)$	7.3	9.2	14.8	9.2
1	3, Strumia	a 2000	deBlas	et al 2014

caveats:

In general many more operators already at dim=6 Correlations lost

What is the "true" meaning of these bounds?

Precision in Higgs couplings

 $\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{SM} \cdot (BR^f)_{SM}} \qquad \kappa_f = \frac{g_{hf_if_i}}{(g_{hf_if_i})_{SM}} \quad \kappa_V = \frac{g_{hVV}}{(g_{hVV})_{SM}}$

comparing Higgs with EW precision

Need to specify the cutoff and be sure of no other contribution

The single prediction of the SM in quark flavour physics

$$\left. J^{\mu}_W
ight|_{
m quarks} = ar{u}^i_L \gamma^{\mu} d^i_L$$
 the only FV interaction with

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

A significant comparison

An alternative definition of the SM (equally precise!)

1. Symmetry group $\mathcal{L} \times \mathcal{G}$

- \mathcal{L} = Lorentz (rigid, exact)
- $\mathcal{G} = SU(3) \times SU(2) \times U(1)$ (local, spontaneously broken)

2. Particle content (rep.s of $\mathcal{L} \times \mathcal{G}$) – See below

3. All "operators" (products of $\Phi, \partial_{\mu} \Phi$) in \mathcal{L} of dimension \leq 4 with a single exception $\theta G_{\mu\nu} \tilde{G}^{\mu\nu}$

$$\hbar = c = 1 \Rightarrow [A_{\mu}] = [\phi] = [\partial_{\mu}] = M, \quad [\Psi] = M^{3/2}, \quad [\mathcal{L}] = M^4$$

The particles of the Standard Model (SM)

A complete story?

J = 0

A single scalar?

Representation content and accidental symmetries

$$\Psi = Q(3,2)_{1/6} \quad u(\bar{3},1)_{-2/3} \quad d(\bar{3},1)_{1/3} \quad L(1,2)_{-1/2} \quad e(1,1)_{1/3}$$

(An important hint for "algebraic" Unification?)

From
$$\mathcal{O}_i: d(\mathcal{O}_i) \leq 4$$

 $\Rightarrow B, \ L_e, L_\mu, L_\tau$
and $U(3)^3 \equiv U(3)_Q \times U(3)_u \times U(3)_d$ only broken by Y_u, Y_d

An interesting story about symmetries ∞ 's \Rightarrow renormalizable this $\mathcal{O}_d(\Phi, \partial_\mu \Phi) d \leq 4 \Rightarrow d > 4$ 40's - 50's 70's30's ₩ Accidental symmetries (approximate) Parity in the electromagnetic interactions Isospin, SU(3), chiral symmetry in strong interactions Barion (B) and Lepton (L_i) numbers in the full SM $B = N_q - N_{\bar{q}}$ $L_i = N_{l_i} - N_{\overline{l_i}}$

$$p \rightarrow e^+ \mp \pi^0$$

Lepton Flavour Violation is absent in the SM

Conclusions postponed to end end of lecture II

For question time

vacuum stability

$$V(\varphi) = \mu^{2} |\varphi|^{2} + \lambda |\varphi|^{4} \qquad m_{W} = gv/\sqrt{2}$$

$$\frac{d\lambda}{d \log Q} = \frac{3}{2\pi^{2}} \Big[\lambda^{2} + \frac{1}{2} \lambda y_{t}^{2} - \frac{1}{4} y_{t}^{4} + \cdots \Big] \qquad m_{H} = 2\sqrt{\lambda}v$$

$$m_{H} = 2\sqrt{\lambda}v$$

$$m_{t} = y_{t}v$$
With current values of $m_{H}, m_{t}, \alpha_{S}, \dots$

$$\lambda(\approx 10^{11} \text{ GeV}) < 0$$

 \Rightarrow A second minimum of V at $\phi \gtrsim 10^{11}~GeV$ to which v should tunnel in a very long time (>> t_{Univ})

- Is there a real meta-stability at $\phi < M_{Pl}$?
- Any experimental implication?
- Connection to inflation?
- Is it a problem?

Landau poles

$$\frac{dg_1^2}{dt} = \frac{41}{40}g_1^4 \quad \Rightarrow \text{ a Landau pole at } \Lambda_1$$

- the problem not cured by including other couplings
- can it be cured by gravity? Yes, since $\Lambda_1 > M_{Pl}$, if gravity important at $E \lesssim M_{Pl}$
- what if gravity softened enough, so that it becomes irrelevant? (How is hard to tell, but...)
- need $SU(3) \times SU(2) \times U(1)$ fully immersed in a non-abelian group $SU(4)_{PS} \times SU(2)_L \times SU(2)_R$ $SU(3)_c \times SU(3)_L \times SU(3)_R$ which requires heavier scales than v

