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Problems of (questions for) the SM

0. Which rationale for matter quantum numbers?
Q, + Q.| <107 %e

1. Phenomena unaccounted for

neutrino masses matter-antimatter asymmetry
Dark matter inflation?

2.Why 0<10710 2 0G ., GH
Axions

3. O;:d(0;) <4 only?
neutrino masses Are the protons forever?
Gravity

4. Lack of calculability (a euphemism)

the hierarchy problem
the flavour paradox



Why Q@ + Q.| <1072'¢ 2

(recall Einsteins lesson from min = Mgrav )

\IJZQ(Saz)l/G u(gal)—Z/S d(gvl)l/B L(laz)—l/Z 6(171)1

U = next-to-simplest rep of G : @
chiral, anomaly-free, vector-like under SU(3) x U(1)em

However:

1. A simpler rep: Z=(3,2)0 (3,1)1/2 (3,1)_1,2

2. What if vp are added? @

@:Q(S)Q)y u(gvl)—y—1/2 d<§71)—y—|—1/2 L(172)—3y e(171)5?;4—1/2 Vc(lal)Sy—l/Z

(An important hint for “algebraic” Unification?)



The unification way: SU(5)
A unique “embedding” of SUs 51 into SUs
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The particle content follows in the simplest reps
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with all quantum numbers fixed (including hypercharge)



Neutrino masses

Known to be nonzero since about 1990

Yet vanishing in the SM because of an
accidental symmetry: L-conservation

(A, Z) - (A, Z+1)+e+D
Accidental symmetries are not exact

Y
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Neutrinos are massive and of Majorana type (v =7 )
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Neutfrino oscillations
(in the standard 3-neutrino framework)
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3 ways to be sensitive to

the absolute V-mass scale

region close to endpoint

N >N +4+e +v
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2- neutrino-less PB-decay

7n.3/3 — ‘0%3(2%27”’1 + 0%38%277'2,26up2 + <9%377l:362¢3‘

3 - cosmology (large scale structures)
> =mq + meo + msy



Power spectrum of large scale structures

5 — p(r) —p Fourier tr (k)

p .
€(r) =< S(x+ 1600 > ()2 = P(k)

the neutrino fluid influences P, (k) by gravitational interactions
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Power spectrum of large scale structures
Power spectrum P(k)/Pmassiess v (k)
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» Determination with future large-scale structure observations (Euclid)
at 2 — 50 depending on control of (mildy) non-linear physics

» Not independent on “priors” but still highly significant



current bounds (with uncertainties)
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beta-decay
endpoint
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neutrino-less
G0 decay

2. =m1 + ma + ms
large scale
structures

Key neutrino measure

ments

20 bounds

from current knowledge
of oscillations only

Lisi et al

normal hierarchy

inverted hierarchy
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2. Why 6<10710 2 0G ., G*

How do we know that 6 <1071 ?

0G ., G" is T-odd and (almost) the only source
of T-violation in the SM

—

i-B,d-E N =2-10" e - cm
e n B dy| ~0-10"P¢c. cm
d;v s o O ¢ 107 2% - em

= Make 6 a dynamical field forced in its cosmological
history to relax to O (almost) and (possibly) appear as DM



A quick introduction to axions

2 field theory results that you should know:
1. In spite of being a 4-divergence Ly =6 G;;,,ég” is physical

In a non-abelian case, there are pure gauge configurations that

give a non-vanishing contribution to S[A}] at infinity

Crucial to solve the ™ 77" problem in QCD

2. Due to the triangle anomaly

_ as N
Jus = qVu549 Opd s = S

a Y
i Guv G
In fact, by a chiral transformation that makes 1/, physical in
Ly = qrMyq + h.c.
/d4x£ — Arg deth/d4a:8MJM5 so that
Ocrr =0+ Arg detM, is the physical combination @

(out of U(N)L x U(N)g only U(1)4 anomalous)




A quick introduction to axions

To solve the strong CP problem:

Embed the chiral symmetry into an exact classical

U(1)-symmetry (PQ) spontaneously broken at a scale f,

Classical examples:

DFS L= ASHqu, + YuQHuu + YdQHdd =+ 1/eQ[{cle

KSvVz L=ASTT +Ty"D,T withT a new QCD triplet

The axion a(x) is the corresponding (pseudo)GB



A simplified laboratory

Consider a gauged U(1)4 | Jr | R l ¢
Ql 1 1o | -1
Ly = gydfrfr+ h.c ¢ = (v+ h)ei%

Jp = fLyufr —vd,a
Naively Opd, = —igyvfysf — v@ia =0

However, because of the anomaly, under a gauge transformation

2 ~
a — a -+ ve 5[::6(1“]“:#}7”,/}7“”#0

unless one adds to the Lagrangian
2

a g ~
AL = = F,, FH
v16m2 *

so that 0(L+AL)=0




The axion Lagrangian

Lo :——\a o2 4 98 yPe

to keep the formal U(1)pginvariance:
Useful to make the ftransformation to get rid of

q — (Z) N 67’75 %Qaq

o.a -
i (29 — qvuv5Qaq) —

M,(a) = e'7a @ M e'7a Qe

/ <a>=0 = noCPV
V(CL,’]T()) = m2 — T, My m%fg @

My +myg  f2

Lo —




Relic abundance of the QCD axion
3H ~m,

m,

H =T?/Mp,

4 mCL )

T >M Aoen
2

m?r(AQCD)ZL max
\_ fa I fa Y,

pa =maa® x T° < 1/R?

i.e. cold Dark Matter

i+ 3Ha+ma=0 @




QCD Axions in cosmology
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The dynamical field, a, is the “axion”
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and is very intensively searched for
(with the most interesting region still unaccessible)



The “hierarchy” problem
Can we calculate the Higgs mass? NOT in the SM
If we try:  V(h) =m*(a, B)|R|* + A|h|*

V(" The phase diagram of the SM

V(h)

< h>=0 |

mp; = (he/Gn)Y? = 10 GeV

g

To get <h> = 175 GeV, as observed, we have fo live
very very close to the critical line

But we dont have knobs!



The Higgs naturalness problem illustrated
In another way

Take the SM + a particle of mass My = 10 GeV
and coupling Arr to the Higgs boson

: 2
The running m;j versus the scale M " o
107 = fine tuning
o) K myp depends on a very

ol @ N\ precise initial condjtion
m,
( -

2 2
of order O(mj /m3;)
Gev) 101
00, =125 GeV
105/

at some short distance
A jumpiat M of size
i P
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The hierarchy problem, once again

Can we compute the Higgs mass/vev in terms
of some fundamental dynamics?

NOT in the SM
t
-+ - 3kwe
i 3y2 . 9¢g? 39’2
2 Jt A2 A 2 A 2
om; = 47;2 Ay — 55 A, — 392 Ay + ...

@.4\/5 TeV) Ay SLIVA TV Ay S3.7VA TeV

1/A = amount of tuning

= Look for a top “partner” (coloured, S=0 or 1/2)
with a mass not far from 1 TeV
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The flavour paradox

Yukawa couplings: a piece of physical reality
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Summary of lectures I and II

The Standard Model is NOT a complete story

Pictures that go Beyond the SM are not lacking,
but - fair to say - we dont know which one is right

The very nature of Particle Physics and the current
uncertain situation REQUIRE

highly diverse frontiers of research

Can an understanding of short distance physics
ever be produced deeper than the SM one?

Could such a putative theory not include the SM
as a relevant limit?



The SM as an emerging iceberg

What there is under the water?



BSM in the multi TeV region...




BSM in the multi TeV region...

.. or the SM extended up to E >> TeVs?



For question time



vacuum stability

V() = 12lof? + Al mw = gu/ V2
: myg — 2\/XU
d)\ B 3 [/\Q-I—l/\Q 14+ ]
dlogQ 272 ot T g My = YU

With current values of mpg, m:, ag,...
A~ 10" GeV) < 0

= A second minimum of V at ¢ > 10" GeV
to which v should tunnel in a very long time (>> tuniv )

- Is there a real meta-stability at¢ < Mp; ?
- Any experimental implication?

- Connection to inflation?

- Is it a problem?



Landau poles

—~ = —g; = a Landau pole at A4

- the problem not cured by including other couplings

- can it be cured by gravity? Yes, since A1 > Mpy,
if gravity important at £ < Mp

- what if gravity softened enough, so that it becomes
irrelevant? (How is hard to tell, but...)

- need SU(3) x SU(2) x U(1) fully immersed
In a non-abelian group

@QARCNUQ X @qﬁwvh X %qﬁwvm
SU(3). x SU3)r, x SU(3)r
which requires heavier scales than v



How dramatic is the “little hierarchy problem”?

2 2
A — oms ~ Mz p
—_— w Y
my, My, ~——model dependent
1
2
fine tuning o = w:ca to achieve
1 — some NMSSM
L ool
an indicative MSSM
0.001F .
= LHC now — —
HO'A. | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0.5 1.0 15 2.0 2.5 3.0

Myp(TeV)
- Things do not work the way they were originally thought

- Not a serious problem at a fundamental level LHC-13 TeV



A self-critical Higgs vev

1. A Goldstone boson ¢ of a U(1) broken at a scale f

2\A U(1)-breaking coupling of ¢ to H
hat keeps ¢ — ¢ H2nrwf )

3. A breaking of ¢ — ¢+ 2n7f controlled by a small
mass parameter 1 pntering the Higgs mass term

S+ ST
4\%

S = ge /] A = UV cutoff

V =—f2S] +|S|* + p(H) + (A% — me)[H|> + A H[* + mA®¢

V is a natural potential



Minimizing V (H, ¢)
V = p(H) cos ¢/ f + (A? - s&_m_w + AH|* +mA%o

H m 4
p(H) =pg + p1— + p2(— Vp > P1,2
A:o: trivial)
glo = h° ~ X > 0
oV A°mf
— =0 = h=v
0J0) " P1

h = vF natural = moving A, m, f, p1 by O(1)
h changes by O(1)

4 A2
m

%Y,
G



historical evolution of @ (and of ¥ )
(under suitable conditions: e.g. a very very long inflation period)

V(o)

@ slow-rolls during inflation at v = 0

until it hits value where \

2
M}, crosses zero

o)

Y

rolling stops when barriers grow due to v >0

experimental consequences:??
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(a recent result from KamLAND)

mgg < 0.06 - 0.16 eV
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