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These lectures provide a self-contained introduction to the essential
aspects of non-supersymmetric beyond the Standard Model (BSM)
physics for beginning graduate students who are already familiar
with quantum field theory. After a detailed review of the physical
meaning of the hierarchy problem, we introduce the key ingredi-
ents of the physics of Goldstone bosons necessary for many non-
supersymmetric new physics models. Next we discuss the concept
of collective symmetry breaking and then present the main elements
leading to Little Higgs/Composite Higgs models. We then turn to ex-
tra dimensional theories. After covering some of the basics of extra
dimensional physics, we describe warped extra dimensions, and ex-
plain how using the AdS/CFT correspondence one arrives at realistic
RS models or the holographic Minimal Composite Higgs model.
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1. Introduction: The Hierarchy Problem and Directions for
Solving it

The Standard Model (SM) of particle physics is an extremely successful
theory: it is capable of reproducing the results of all experiments we
have produced to date. Nevertheless most particle theorists believe
that the SM is not the final theory, and that there should be physics
beyond the SM (BSM) and that physics should not lie too far from the
currently probed energy levels. The main reason for this lies in the hi-
erarchy problem: the Higgs field responsible for electroweak symme-
try breaking (EWSB) in the SM is quadratically sensitive to high scales.
Formally, this appears first as a quadratic divergence in the one-loop
contributions to the Higgs mass. For a Higgs potential of the form

V(H) =°µ2|H|2 +∏|H|4 (1)

the loops of Fig. 1 will contribute °µ2 !°µ2 +±µ2 where

±µ2 = §2

32º2

∑

°y2
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1
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where § is cutoff of the theory (for simplicity assumed to be universal
for the various loops for now), yt is the top Yukawa coupling, g , g 0 are
the SU(2) and U(1) gauge couplings and ∏ is the Higgs self-coupling.
The minimum of the Higgs potential is at

hHi=
√

0
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and from the measured values of the W, Z masses we know v = 246
GeV. Similarly the physical Higgs mass is

mh =
p

2∏v = 125GeV

which implies ∏ = 0.13 ª 1/8. These measured values of v,∏ are the
results of the full quantum corrected potential, which is supposed to
include the quadratically sensitive shift to the mass parameter µ. If
§¿ TeV we would find ±µ2 ¿µ2, giving rise to the so-called hierarchy
problem. The bare potential must be tuned to cancel off the quantum
corrections in order to get the correct physical mass parameter, and
the problem is worse the higher the cutoff. In particular a cutoff§ª 10
TeV gives rise to the so-called little hierarchy problem, while a cutoff all
the way at the Planck scale § ª MPl ª 1019 GeV would give rise to the
big hierarchy problem.

= + +

Fig. 1.: The one loop corrections to the Higgs mass parameter in the
SM. All three diagrams are quadratically divergent, leading to the hier-
archy problem.

As we have seen, the hierarchy problem is the quadratic sensitiv-
ity of the Higgs mass (and the Higgs VEV) to new physics. The cutoff
§ is a physical mass threshold where there must be new degrees of
freedom to explain why the low-energy effective field theory is cutoff
at this scale. As a corollary, any new mass scale (e.g. new particles at
a high scale) will feed into the Higgs potential at some point. There
are several important points that we should clarify here regarding the
hierarchy problem, which often causes misunderstandings.

• In the above discussion we have been somewhat cavalier with
the cut-off scale§2. One might worry (and indeed many peo-
ple do!) that the hierarchy problem is merely an artifact of
using a crude cut-off regulator. However, those understand-
ing effective theories well realize quickly that the hierarchy
problem is not at all about various regularization schemes. As
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in any good effective theory, § in our calculations is merely
standing in for the physical mass threshold at which new
heavy particles appear. You can think of § as literally the
mass of a new heavy particle (mNP), and the “quadratically
divergent" contributions to the Higgs mass parameter sim-
ply as log-divergent or finite contribution from the heavy par-
ticle which are proportional to m2

NP. Moreover, these con-
tributions contain an imaginary part from the new particle
going on-shell, which is physical and cannot be removed by
regulation scheme. Thus using dimensional regularization (a
scheme where power law divergences are simply regulated to
zero) is really not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales.
If there is no new scale there really is no hierarchy problem.
However most physicists believe that there at least two issues
that will force us to extend the SM: the appearance of quan-
tum gravity around the Planck scale and the appearance of a
Landau pole in the hypercharge gauge coupling at exponen-
tially large scales.

• For a while it was popular to play with the idea that the terms
in Eq. (2) actually cancel each other. This used to be known
as the “Veltman condition", which would have singled out a
very particular value for the Higgs mass. However we can eas-
ily see that even if the mass had turned out to be the magical
value (which it did not) this would not have solved the hierar-
chy problem. As we discussed in Eq. (2)§ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate
these loops. However this can numerically be different for the
three diagrams, thus one should really be talking about the
gauge cut-off scale §g , the fermion cut-off scale § f and the
Higgs cut-off scale §H, which could all be significantly differ-
ent. Thus it is not really meaningful to talk about a Veltman-
like condition, unless some symmetry ensures that all these
cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the simple
fact that the Higgs mass term µ2|H|2 is a relevant operator,
which grows towards the IR. The Wilsonian formulation of the
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hierarchy problem then is that it is difficult to choose a RG tra-
jectory which in the IR flows to the correct Higgs mass: most
trajectories will miss a light physical Higgs mass, and an im-
mense tuning is needed to hit the right Higgs mass parameter
in the IR. Note, that the Higgs mass parameter is the only rel-
evant operator in the SM.

• Finally, we should remark that the hierarchy problem is spe-
cific to elementary scalars. The reason is that fermions and
gauge bosons have a new symmetry appearing in the La-
grangian when the mass goes to zero. For example for fermion
masses in 4D one has a new chiral symmetry appearing in
the m ! 0 limit, which will protect the fermion masses from
large unsuppressed corrections, and ensure that the correc-
tion is proportional to the mass itself: ¢me / me log §

me
. Sim-

ilarly, for gauge bosons there is an unbroken gauge symme-
try appearing in the MW ! 0 limit, which will ensure ¢M2

W /
M2

W log §
MW

.

The simplest demonstration of the the hierarchy problem would be
to introduce yet another scalar S (never mind for now that that scalar
would have its own hierarchy problem). Introducing this scalar along
with a quartic coupling with the Higgs

∏S |H|2|S|2

will result in a loop correction for the S particle giving rise to

±µ2 = ∏S

16º2

"

§2
UV °m2

S log
§2

UV

m2
S

+O (m2
S)

#

. (3)

We can see that even if we drop the §2
UV term there will be an ex-

plicit quadratic dependence on m2
S the mass of the new heavy particle,

from log divergent or finite contributions, which is exactly the hierar-
chy problem. This dependence will be there irrespective of how one
regulates this loop. One may wonder if the hierarchy problem can be
avoided by not coupling the new physics directly to the Higgs scalar.
One obvious example would be to use some heavy fermions that are
charged under the SM but don’t directly have a Yukawa coupling with
the Higgs. While one loop corrections are in this case indeed avoided,
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the quadratic sensitivity to the Higgs mass will show up at two loops
(see Fig. 2):

±µ2 /
g 4

SM

(16º2)2 m2
™ .

™
™

Fig. 2.: Corrections to the Higgs mass for the case when new heavy
fermions charged under the SM are added.

By now we should be convinced that the hierarchy problem is a se-
rious issue which should be resolved one way or another in a theory
more complete than the SM. The leading approach toward solving it
has been to assume that new physics actually shows up early: around
the TeV scale rather than at the scales where it ultimately must show
its face (like the Planck scale or the Landau scale) since the required
fine-tuning is more severe the higher the energy scale the issue is ad-
dressed. We will see that the new TeV-scale physics can have a form
that will make the Higgs insensitive to any further higher energy scales
of new physics. The two most common choices for the new physics at
the TeV scale that actually makes the Higgs insensitive to high scales
are:

• Supersymmetry. In this case we introduce a fermion$boson
symmetry (“supersymmetry") which relates the SM Higgs to
its fermionic partner. This symmetry will ensure that the chi-
ral symmetry of the fermionic partner also protects the Higgs
itself from quadratic sensitivity to high scales. Supersymme-
try is a well-researched topic and will not be the focus of these
lectures.

• Composite Higgs [2] : there is no true elementary scalar,
rather the Higgs is a bound state of some more fundamental,
strongly-interacting fermions. This idea eliminates the largest
part of the quadratic sensitivity as a form factor shuts off cor-
rections to the Higgs mass above the compositeness scale §,
thus effectively lowering the cutoff to§ª TeV. It will be useful
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for the Higgs to be identified as a Goldstone boson to ensure
that the Higgs is naturally lighter than the strong dynamics.

– Goldstone’s theorem [1]. If a global symmetry is spon-
taneously broken, massless scalars, “Goldstone bosons"
will appear, whose masses will be protected and remain
vanishing by Goldstone’s theorem. This will be the cru-
cial idea used throughout these lectures. While Gold-
stone’s theorem is a universal ingredient in many of
these models, the actual implementation can be slightly
different (though as we will see all of these models are
actually related to each other).

• Warped extra dimensions [3]: in this case the variation of the
fundamental energy scale along the extra dimension will lead
to a solution to the hierarchy problem. As we will see using
the AdS/CFT correspondence this picture is actually dual to
that of a composite Higgs. Just as it was useful to have a Gold-
stone composite Higgs, it is important to have the extra di-
mensional analogue:

– Gauge - Higgs unification [4]: here the scalar is an extra
dimensional component A5 of the the gauge field. We
will see that by the AdS/CFT correspondence this is the
idea that the Higgs is identified with a Goldstone boson
of a spontaneously broken global symmetry. The ulti-
mately most successful and calculable models actually
combine all of these ingredient into what is now known
the holographic minimal composite Higgs model.

Besides the traditional supersymmetry or composite Higgs ap-
proach there are also more radical ideas for solving the hiearchy prob-
lem which we list here.

• Technicolor/Higgsless models [5, 6]. In this case there is ac-
tually no Higgs particle. A condensate of the strong dynam-
ics directly breaks the electroweak symmetry. While concep-
tually one of the most beautiful ideas, it is now clearly dis-
favored by the discovery of the SM-like Higgs boson. These
models also had difficulty obtaining small corrections to the
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electroweak precision observables. Higgsless models were ex-
tra dimensional versions of technicolor using AdS/CFT, and
are more under control as they are calculable.

• Large extra dimensions [7]. In these models the weak scale is
actually the true fundamental scale (analogous to MPl) where
gravity becomes strongly interacting, and thus there is no
weak-Planck scale hierarchy problem to begin with. But it
does predict interesting gravity-related phenomena at the TeV
scale like production of mini black holes. The main drawback
of such models is that the radius of the extra dimensions has
to be exponentially larger than the fundamental length scale,
which is hard to explain in a model with just one fundamental
scale (that is the issue of radius stabilization is now equivalent
to the original hierarchy problem).

• Anthropic explanations in the Multiverse [8,9]. A popular way
out of the hierarchy problem is to speculate that we live in a
multiverse of many universes, where the fundamental con-
stants vary from one universe to the other. In most universes
the Higgs mass would indeed be very large, but that would
also result in a universe without chemistry and hence no life.
It is no wonder then that we end up living in a universe where
the Higgs mass is small and allows us to wonder about possi-
ble solutions to the hierarchy problem. While this approach
may indeed be the correct one, we will likely never know. By
definition the multiple universes can not be experimentally
accessed.

• Relaxion [10] type mechanisms. A very interesting recent
idea is that while the Higgs mass parameter is currently very
small, it has not always been like that in our Universe. A field
called the relaxion has been continuously scanning the pos-
sible Higgs mass as the Universe expanded. When the Higgs
mass square parameter switched sign, electroweak symmetry
breaking happened, which triggered the end of the rolling of
the relaxion and the scanning of the Higgs mass, leaving us
stuck in a seemingly fine-tuned vacuum.

• There are several other more exotic ideas for solving the hier-
archy problem. For an excellent overview see [11].

8
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In these lectures we will be focusing on the composite Higgs (CH)
solution: it is one of the simplest and most plausible ones, with very
concrete predictions for the LHC or higher energy colliders. There are
many other excellent reviews on CH models [12–16].

2. Goldstone Bosons

Throughout these lectures we will often be identifying the Higgs boson
with Goldstone bosons of a spontaneously broken global symmetry.
Thus it is important to first understand the properties of Goldstone
bosons in detail. Goldstone’s theorem tells us that whenever there
is a spontaneously broken global symmetry there should be a corre-
sponding massless scalar field, the Goldstone boson (GB), sometimes
called the Nambu-Goldstone boson (NGB). The physical intuition is
pretty simple: due to the global symmetry the minimum of the poten-
tial is either unique (in which case there is no spontaneous symmetry
breaking) or degenerate (in which case there is spontaneous symmetry
breaking). In this way, a spontaneously broken global symmetry en-
sures the presence of a degenerate valley at the bottom of the potential
(see Fig. 3). The Goldstone bosons are the fields parametrizing the mo-
tion along this valley. More formally, we would say the the Goldstones
span the coset G/H. This term is borrowed from group theory, where
the coset G/H marks the group G with the elements in H idetified with
the identity. By Goldstone’s theorem, these fields are exactly massless.
Indeed, because of the vacuum degeneracy, there should be zero en-
ergy cost move along the valley of the potential implying a vanishing
mass term along this direction. Note that the unbroken generators of
the original global symmetry annihilate the vacuum, while the broken
generators are the ones generating the movement along the valley of
inequivalent vacua. This simple observation forms the basis of writ-
ing effective GB Lagrangians, also known as chiral perturbation theory
(since it was first developed for the theory of pions, which arise from
the breaking of the SU(2)L£SU(2)R chiral symmetries of the strong in-
teractions), or in its most powerful form as the Callan-Coleman-Wess-
Zumino (CCWZ) formalism. Here we will only discuss chiral pertur-
bation theory which involves less formalism and is slightly more intu-
itive, but once the reader is familiar with that developing the full CCWZ
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formulation will be straightforward.

Fig. 3.: Illustration of the Goldstone mode rolling at the valley at the
bottom of the potential.

2.1. Non-linear Goldstone fields

The first important fact about the effective theory for the GB’s is that
it does not matter what the actual origin of symmetry breaking and
the GB’s actually is: there could be an elementary scalar developing a
VEV, but there could equally well be some strong dynamics (like QCD)
giving rise to a vacuum condensate. For the effective GB Lagrangian
this doesn’t matter. The heavy degrees of freedom (usually some ra-
dial modes, like the Higgs itself in the SM) are integrated out, and chi-
ral perturbation theory fixes the effective Lagrangian for the GB’s only.
Where exactly the heavier degrees of freedom reside will depend on
whether the theory is coupled strongly or weakly. As we will see for
a strongly interacting theory the heavy degrees of freedom are all be
expected to lie at the cutoff scale of the theory. If the heavy degrees
of freedom are weakly coupled, they can appear far below the cutoff.
This will play an important role in composite Higgs models and we will
discuss this issue in detail.

10
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Let us now explicitly identify the lowest term in the chiral La-
grangian. We assume that the global symmetry G is spontaneously
broken to H by some VEV ß0 (the exact origin of ß0 does not matter).
The NGBs are conveniently parametrized in the NGB matrix:

UNGB = ei¶a (x)Ta / f , (4)

where the index a labels broken generators, f is the pion decay con-
stant determined by the magnitude of the VEV ß0, and the ratio ¶a/ f
can be interpreted as the angle of transformation in the broken direc-
tion. This matrix acts on the VEVß0 to rotate it along the broken direc-
tions:

ß = UNGB [ß0] . (5)

The exact way that UNGB acts on the VEV depends on it’s representa-
tion under the global symmetry G. For example:

ß = UNGB [ß0] = UNGBß0 for ß0 in the fundamental ,

ß = UNGB [ß0] = U†
NGBß0 UNGB for ß0 in the adjoint . (6)

From now on we will assume for simplicity thatß0 is in the fundamen-
tal of G.

The simplest example that can illustrate this is QCD and the chiral
Lagrangian. The QCD Lagrangian in terms of quarks is of course well-
known:

LQCD =°1
4

Ga
µ∫Gaµ∫+

X

i
q̄i (i /D°mq )qi . (7)

The most important aspect for us from this Lagrangian is that in the
mq ! 0 limit the theory has a chiral global symmetry G = SU(3)L £
SU(3)R (the classical global symmetry is even larger U(3)L£U(3)R, one
of the two additional U(1)’s is baryon number, while the axial U(1) is
anomalous). While the QCD Lagrangian is usually written in terms of
4-component Dirac fermions, for the purpose of understanding the
symmetries it is better to think of it in terms of 2 component Weyl
spinorsa. A Dirac spinor can be written as

™=
√

¬

√̄

!

aFor a review of 2 component spinors, see [17].
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where ¬ is a left handed (LH) and √̄ a right-handed (RH) 2-component
Weyl spinor. Since the conjugate of a RH spinor is a LH one we can
immediately see that ¬,√ are both two-component LH spinors, with
¬ transforming as 3 and √ as 3̄ of SU(3)QCD. In this language the
fermionic Lagrangian can be written as

™̄(i /D°m)™= i√†
Æ̇ǣ

µÆ̇ÆDµ√Æ+ i¬†
Æ̇ǣ

µÆ̇ÆDµ¬Æ°m(√Æ¬Æ+h.c.) (8)

In this last form the appearance of the chiral symmetries in the m ! 0
limit is pretty straightforward to see: since it is only the mass term con-
nection ¬ and √ in the massless limit we have the independent rota-
tions

√!√U†
R ,¬! UL¬

leaving the Lagrangian invariant where UL,R are independent 3 by 3
unitary matrices. Since the resulting SU(3)L £SU(3)R global symme-
try is physical it should be realized on the spectrum of QCD (ie. the
composites should form multiplets of the full SU(3)L £ SU(3)R sym-
metry). However, only one SU(3) is actually realized on the spec-
trum, which is Gell-Mann’s SU(3)V leading to the eightfold way [18].
Hence we conclude that the dynamics of QCD must be breaking the
SU(3)L £SU(3)R ! SU(3)V by forming a quark condensate as a result
of the string dynamics:

hq̄qi= hq̄Li qR j +h.c.i/ ±i j§
3
QCD .

This structure of the condensate will ensure that SU(3)V remains
unbroken, while SU(3)A is broken, resulting in 8 GB’s, forming the
pseudo-scalar octet º± ,0,K±,K0, K̄0 and ¥. However they are not true
Goldstone bosons: the SU(3)A axial symmetry is exact only in the
mq ! 0 limit. For finite quark masses there will be small explicit break-
ing terms which will render the octet to be pseudo-Nambu-Goldstone
bosons (pNGBs) rather than true Goldstone bosons, lifting the masses
of the pions and the other members of the octet.

How do the electroweak gauge interactions fit into this picture?
The SU(2)L £ U(1)Y electroweak gauge symmetry can be embedded
into the chiral global symmetries of the strong interactions: SU(2)L £
U(1)Y Ω SU(3)L £SU(3)R £U(1)B. Clearly SU(2)L can just be identified
with the upper left two by two corner of SU(3)L, which will transform
the (uL,dL) quarks into each other. Incorporating the strange quark

12
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is slightly more complicated since as we know (cL, sL) also form an
SU(2)L doublet, but the charm mass is large mc > §QCD and hence it
is integrated out from the low-energy effective theory. The proper de-
scription would be to start with four quarks and an SU(4)L chiral sym-
metry, embed the SU(2)L weak interactions twice into this SU(4), then
turn on a large charm quark mass and integrate it out before confine-
ment and chiral symmetry breaking is implemented. We will not fol-
low through this procedure explicitly, but instead focus on the SU(2)L

subgroup of SU(3)L. Similarly, hypercharge can be embedded into the
chiral symmetries as

Y = TR3 +
B
2

.

As the electroweak symmetries are weakly gauged, they also explicitly
break the global symmetries of QCD (and hence split the charged and
neutral pion masses).

2.2. The low-energy effective Lagrangian for QCD

Let us now proceed and start explicitly constructing the effective La-
grangian for QCD. Since the condensate breaking the global symme-
tries hq̄qi is a bidoublet under SU(3)L £ SU(3)R we will take for ß0 a
bifundamental VEV

ß0 = f

0

B

@

1
1

1

1

C

A

and act on this VEV with the broken global symmetries. A bifunda-
mental transforms genrically as ß0 ! ULß0U†

R. Of course for us ß0 is
a constant, and it will be left invariant for UL = UR, that is the vector-
like SU(3)V transformations of Gell-Mann. On the other hand the axial
elements can be identified by UR = U†

L, leading to the non-linearly re-
alized pion field

ß(x) = ei¶a Ta / f ß0ei¶a Ta / f = e2i¶a Ta / f , (9)

where ¶a(x) is now the Goldstone boson field identified with the
members of the pseudo-scalar octet of QCD. How do the pions trans-
form under the unbroken and the broken global symmetries? Let us
first look at the case of the unbroken symmetries:

ß(x) ! UV ß(x)U†
V .

13
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Linearizing ß(x) in the pion fields we find:

¶aTa ! UV¶
aTa U†

V (10)

yielding the usual linearly realized transformation of an adjoint under
SU(3)V. However, under the broken symmetries the transformation
will turn out to be non-linear! For this case

ß(x) ! UAß(x)UA = e2i¶0
a Ta / f (11)

The broken transformations can be themselves written as UA = ei ca Ta

where the ca are the global transformation parameters. Expanding
both sides in powers of the pion field (as well as powers of the gauge
transformation parameter) we find

¶a 0Ta =¶aTa + f caTa +O (¶a)2 (12)

This is a very important equation which tells us that:

• To leading order the pions have a shift symmetry ¶a ! ¶a +
f ca . This provides another simple proof of Goldstone’s the-
orem, since the shift symmetry forbids any non-derivative
terms, in particular mass terms or any potential.

• The pions transform non-linearly under the axial rotation.

We are now ready to construct the leading order Lagrangian for the
interacting pion fields. We will simply write down all the terms in ß(x)
that are symmetric under the entire SU(3)L £SU(3)R global symmetry,
including both unbroken and broken ones. Since we are looking for a
low-energy effective Lagrangian, we will organize them by the number
of derivatives. The simplest term would contain no derivatives, and
there is a unique invariant one can form: Trß†ß, however this term
is obviously just the trace of the unit matrix and independent of the
Goldstone fields. The first non-trivial term contains 2 derivatives and
is

f 2

4
Tr[(@µß)†@µß] (13)

where the overall coefficient has been fixed such that one obtains a
canonical kinetic term for the pions. Every term will contain two
derivatives and an arbitrary number of pions once the exponential
is expanded. This will give the leading pion interaction terms in the
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p/ f ! 0 limit. Besides the pion kinetic terms it will contain 4-pion in-
teractions terms with two derivatives contribution to º°º scattering
and higher order terms with more pions:

L = Tr[@µ¶@
µ¶]+ 4

f 2 Tr[@µ¶@
µ¶¶2]+O (¶6) (14)

where ¶=¶aTa and we assumed the normalization of the generators
Tr TaTb = 1

2±
ab .

2.3. Gauging EW symmetry and dynamical gauge boson
masses

We can now weakly gauge the electroweak gauge group, by simply pro-
moting the ordinary derivatives to covariant derivatives @µ ! Dµ, de-
fined as

a

a

0

@

1

A

a

a

0

@

1

ADµ = @µ° i g Wa
µ °i g 0 Bµ

øa/2 1
6 · 1 . (15)

An important side effect of the chiral symmetry breaking SU(3)L £
SU(3)R ! SU(3)V is that it also breaks electroweak symmetry! We can
see this easily from the chiral Lagrangian: the ß field will contain a
term independent of the pions ß= 1+ . . ., hence the covariant deriva-
tive will contain terms linear in the gauge fields:

DµßΩ°i
g

2
Wa
µø

a ° i
g 0

6
Bµ , (16)

hence the Lagrangian will contain the gauge boson mass terms

f 2

4
Tr[(Dµß)†Dµß] æ g 2 f 2

4
W+
µWµ°+ g 2 + g 02

4
f 2 1

2
ZµZµ . (17)

The expressions obtained for the gauge bosons masses just like those
from the ordinary SM Higgs mechanism, except v is replaced by the
pion decay constant f . A simple way to convince yourself that the
gauge boson indeed has become massive is to examine the fate of the
Goldstone bosons. In addition to the gauge boson mass terms (17) also
contains a derivative mixing term between the pions and the gauge
bosons:

g

2
f W+

µ@
µ¶°+h.c. (18)
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which is also the term that explains most easily the measured decay
width of the charged pions to µ+∫µ, and can be used to fix the pion
decay constant fº ª 130 MeV. This mixing will also contribute to the W
propagator and shift the location of the pole in the W propagator from
0 to g 2 f 2/4. One way to think of the Lagrangian for the W boson is to
say that it is linearly coupled to weak currents made out of quarks:

LW = W+
µ Jµ °+h.c., (19)

and the W propagator i¶µ∫(q) is nothing but the current-current two-
point function

i¶µ∫(q) = hJ+µ (q)J°∫ (°q)i= i

µ

¥µ∫°
qµq∫

q2

∂

¶(q2) (20)

where the function ¶(q2) encodes the effect of the strong dynamics.
The full W propagator can be obtained from summing up the 1PI con-
tributions (see Fig. 4)

¢µ∫ =
°i

q2 ° g 2¶(q2)

µ

¥µ∫°
qµq∫

q2

∂

(21)

hence shifting the mass of the W boson to g 2¶(0). We know that the
charged current generates the charged pions

h0|J+∫ |¶°(p)i=
i f pµp

2
(22)

implying that ¶(q2) = f 2

2 .

= + + +·· ·¶ ¶ ¶

Fig. 4.: The full propagator is obtained by summing the 1PI contribu-
tions.

2.4. Explicit breaking

Next we discuss the effects of explicit breaking and how to incorpo-
rate them into the chiral Lagrangian. One source for explicit breaking
are the charges of the quarks (that is the fact that the electromagnetic

16
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charges of the quarks are not uniform but different for up vs. down
and strange). The charge matrix is given by

Q =

0

B

@

2
3
° 1

3
° 1

3

1

C

A

(23)

in the (u,d , s) basis for the quarks. We will use this quark charge matrix
as a spurion: we imagine that there was a field Q that transformed as a
bifundamental under the SU(3)L £SU(3)R global symmetry, and try to
write down invariants under the full symmetry including the spurion.
For example we can write the term:b

¢L = e2Tr[Qß†Qß] (24)

where the presence of the overall e2 factor follows from the observa-
tion that this term must vanish for e ! 0 (in other words Q must always
appear together with a factor of e). At this point we can freeze the spu-
rion Q to its VEV diag( 2

3 ,° 1
3 ,° 1

3 ) which will yield a mass contribution
to the charged pions (but not the neutral ones) and hence explain the
observed charged-neutral pion mass splittings. The exact same story
can be repeated for the quark masses. The quark mass matrix is nu-
merically given by

M =

0

B

@

mu

md

ms

1

C

A

(25)

but we first promote it to a spurion transforming as a bi-fundamental
under SU(3)L £SU(3)R. The leading operator in this case is

¢L =µ3Tr
h

M
≥

ß+ß†
¥i

= µ3Tr
∑µ

M
f
¶aTa

∂2∏

+ . . . (26)

where µ is a fixed dimensionful constant. This provides a shift to the
pion mass squares of the form

¢m2
º/µ

mq

f 2 (27)

yielding the famous Gell-Mann-Okubo mass formula

m2
¥+m2

º = 4m2
K (28)

for mu ' md ø ms .
bFrom the point of view of the symmetries one could also write the term TrQß, but
investigating the electromagnetic contributions we can quickly convince ourselves that
every term must contain at least two Q insertions, as a consequence of electromagnetic
gauge invariance.
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2.5. NDA and the cutoff scale

An essential part of every EFT, including non-linearly realized Gold-
stone Lagrangians is its cutoff §. Since it is a non-renormalizable the-
ory the best way to make sense of it is to assume that there is a region
of validity for the theory characterized by the cutoff scale§. This is the
scale where we definitely expect new particles to show up, and gener-
ically this is also the scale that cuts off the radiative corrections to the
Higgs potential. The simplest method for estimating the size of the
cutoff scale is called naive dimensional analysis (NDA). In this method
we assume that all couplings are O (4º), and get an upper limit on how
large the cutoff scale could be.

The cutoff is determined to be the energy scale in which the diver-
gent loop corrections become as large as the tree level ones. For exam-
ple in the chiral Lagrangian, the 4-point pion-pion interaction vertex
is of the form

¶2(@¶)2

f 2 ! p2

f 2 vertex. (29)

The point vertex allows us to write a loop term, and we are looking for
§ for which

ºp2

f 2
p2

f 2
p2

f 2

We have then

p2

f 2 º 1
f 4

1
16º2

Z

d 4k

(k2)2 k2p2 ª p2§2

16º2 f 4 =
µ

§

4º f

∂2 p2

f 2 (30)

We can see that the requirement that the one loop result be at most as
large as the orginal tree-level vertex will limit the size of the cutoff to

§<ª4º f (31)

The scale § is the physical scale where new particles have to ap-
pear (to be more precise this is an upper bound, new particles could
also show up earlier). It is also the actual cutoff of the purely strongly
coupled theory, where the interactions among the composites are also
strongly coupled, g§ ª 4º. This is called the NDA limit, the limit when
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(31) is saturated. However, new particles could also show up ear-
lier than the maximal scale §. This happens, when the interaction
strength of some of the composites is actually is actually not so strong,
g§ < 4º. We expect these particles to show up a lower scale

mΩ = g§ f . (32)

In particular, g§ ª 1 means that some of the composites are actually
weakly coupled, and the mΩ scale is actually f . This means that there
will be new particles that can be used to cut off the quadratic diver-
gences before reaching the full cutoff scale. As we will see these will be
the so-called top partner and spin 1 partner particles.

Similarly one can perform NDA for a generic term in the effective
Goldstone Lagrangian. The rules are the following:

• Every Goldstone field will have a 1/ f suppression (arising
from expanding the exponential ei¶a Ta / f ).

• The remaining dimensions are made up by the Ω mass scale
mΩ = g§ f . Thus the two dimensionless quantities are x ¥ ¶

f =
g§

¶
mΩ

and y ¥ @
mΩ

.

• We start with a dimensionless function of x, y to give L̃ (x, y),
from which we get a dimension 4 Lagrangian m4

ΩL̃ (x, y)
• The kinetic terms obtained using this rule are m4

Ωy2x2 =
g 2
§(@¶)2. Thus the entire Lagrangian needs to be rescaled by

1/g 2
§.

For example, a quartic two-derivative coupling would be estimated
at 1

g 2
§

m4
Ω
@2

m2
Ω

¶4

f 4 = (@¶)2¶2

f 2 as we saw from the explicit expansion for the

chiral Lagrangian. A non-derivative tree-level quartic would be esti-
mated at 1

g 2
§

m4
Ωg 4

§
¶4

m4
Ω
= g 2

§¶
4. If it is loop induced, NDA will ive its size

at g 2
§

16º2¶
4. These will be the two basic magnitudes of quartics generi-

cally showing up pNGB Higgs models.

2.6. Towards a composite Higgs model

We are now ready to start constructing models with dynamical elec-
troweak symmetry breaking. The simplest idea is to mimick the story
already happening in QCD, where the strong dynamics breaks the
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global symmetries as SU(3)L £ SU(3)R ! SU(3)V, except the symme-
try breaking scale is too low. One can instead choose a group with
strong dynamics that has chiral symmetry breaking patters SU(2)L £
SU(2)R ! SU(2)V and a much higher dynamical scale §TC giving rise
to a condensate hq̄qi=§3

TC. This is the main idea of technicolor mod-
els, where all formulae discussed above will be rescaled via §QCD !
§TC. The SU(2)L£SU(2)R ! SU(2)V breaking will produce 3 GBs which
are the minimal number to provide for the longitudinal degrees of free-
dom of W±,Z. In such minimal TC models there is no additional light
particle, in particular no light Higgs boson would appear. The symme-
try breaking pattern is similar in higgsless models, the main difference
is that the higgsless models are weakly coupled and calculable. Since
the physical Higgs boson has been discovered in 2012, TC and higgs-
less models are no longer viable options. The next simlest possibility
is for the strong dynamics to not directly break the electroweak sym-
metry, but rather produce a light composite Higgs among the generic
heavier composite states. In this case the hierarchy problem would
be solved since there would be no true elementary scalars. However
in generic (bona fide) strongly coupled theories the composite Higgs
is expected to appear at §str ong , or at most a loop factor below, at
§str ong /(4º). If we could take§str ong ª 1 TeV there would be no prob-
lem. However, in generic theories with a strong scale at 1 TeV one
would expect a very diverse spectrum of new particles BSM showing
up at 1 TeV. There are two problem with this: first the LHC has not (yet)
observed any new particles, with several typical bounds well above
1 TeV. Second, generic new particles interacting under the SM gauge
symmetries will give large corrections to electroweak precision observ-
ables (essentially higher dimensional operators suppressed by 1/§2).
The LEP experiments at CERN have strongly constrained such correc-
tions, with the conclusion that generic suppression scales should be
more like§str ong

>ª5°10 TeV. However in this case the expected size of
the Higgs mass would be around 10 TeV/(4º) ª 1 TeV. This would still
leave a tuning of about

µ

125 GeV
1 TeV

∂2

ª 1% (33)

This percent level tuning is generically called the little hierarchy prob-
lem of generic composite Higgs models. In order to reduce the Higgs
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mass from 1 TeV to 125 GeV we will assume that it is Goldstone boson.
The next sections will explore on how to implement the pNGB Higgs
idea as part of the composite Higgs models and obtain realistic models
of this sort.

3. Little Higgs models and Collective Symmetry Breaking

In this section we will review the mechanism called collective symme-
try breaking [19] , and show how it can lower the effective cutoff to
the Higgs radiative potential. For other reviews of little Higgs models
and collective symmetry breaking, see [20]. As in the last section, we
consider a sector with some strong dynamics which confines at a scale
§. The strongly coupled sector has some global symmetry G, which is
spontaneously broken to a subgroup H by the confining dynamics at
the scale §. The Higgs is then among the Nambu-Goldstone bosons
(NGBs) in the coset G/H [2]. By Goldstone’s theorem, NGBs have only
derivative couplings and no mass or quartic. However, there is one
more key element in the construction: the original G is not exact, but
rather an approximate global symmetry. Another way to say it is that
G is explicitly broken. The explicit breaking of G makes the Higgs not
an exact NGB but rather a pseudo-Nambu-Goldstone boson (pNGB)
by generating a mass and a quartic term for it. The problem is that
the loop-induced mass term is generically large since it is quadrati-
cally divergent. However, the quadratic divergence can be eliminated
in scenarios which exhibit collective symmetry breaking.

To illustrate the idea of collective symmetry breaking, we will focus
on a model called “The Simplest Little Higgs" [21]. In this model we
consider a strongly coupled sector with a G = SU(3) global symmetry,
broken to the subgroup H = SU(2) at the scale§. The first thing we can
do is count the number of broken generators, which by Goldstone’s
theorem equals the number of NGBs:

NNGB =
°

32 °1
¢

°
°

22 °1
¢

= 5. (34)

We can represent these NGBs graphically by looking at a generic SU(3)
matrix and splitting it to the unbroken SU(2) part, and the NGB part:
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a a £
a a £

£ £ b

0

B

B

B

B

@

1

C

C

C

C

A

Broken
SU(3)/SU(2)

Unbroken
SU(2)

(35)

Every generator that has non-zero elements in one of the blue parts is
a broken generator, while generators that only have nonzero elements
in the red part are unbroken. The broken SU(3) generators in this case
are ∏4,...,8, and we can represent the NGBs as:

UNGB ¥ exp
h

ip
2 f
ºâTâ

i

¥

¥p
6

¥p
6

° 2¥p
6

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

i H

°i H†

,

(36)

where the index â represents broken SU(3) generators only. In the
above equation,

H ¥ 1
p

2

√

h1 + i h2

h3 + i h4

!

(37)

is the SM SU(2)L Higgs doublet. As stated above, the SU(3) symme-
try must be explicitly broken in order to get a Higgs potential. This is
achieved by the gauging of an SU(2) subgroup. Gauging only a sub-
group of a global symmetry explicitly breaks the symmetry—in partic-
ular the gauge bosons only transform under the subgroup. Note that
the SU(2) subgroup doesn’t generically coincide with the subgroup
H = SU(2) that survives the spontaneous breaking at §. The explicit
breaking generates a potential for the (p)NGBs arising from loops of
SU(2) gauge bosons. We can parametrize this potential by writing a
nlæm. The nlæm field is defined as:

ß = UNGB

0

B

@

0
0
f

1

C

A

=

0

B

@

f ° H†H
2 f

1

C

A

+ ¥ dependent and higher order terms,
i H

(38)
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where we remember that H is a complex doublet. The leading-order
nlæm Lagrangian is simply

Lnlæm =
°

Dµß
¢† °

Dµß
¢

, (39)

where Dµ is the gauged SU(2) covariant derivative

Dµ = @µ° i g Wa
µ .

a

a

0

@

1

A

øa/2 (40)

Expanding this Lagrangian in terms of the physical Higgs h, we get:

Lnlæm =
Ø

ØDµh
Ø

Ø

2
µ

1+ h†h

f 2 + . . .
∂

, (41)

where

Dµh =
≥

@µ° i
g

2
Wa
µø

a
¥

h . (42)

The SU(2) gauge bosons W explicitly break the global SU(3) invariance
via interactions of the type

Ø

Øg Wµh
Ø

Ø

2. At the one loop level, these gen-
erate a quadratic contribution to the Higgs potential:

h h h h+

W
W / g 2

16º2 §
2 h†h + . . .

(43)
The quadratic divergence generated by the gauging of SU(2) should
not come as a surprise. After all, the interaction with the SU(2) gauge
bosons is similar to the SM, where the gauge quantum corrections
contribute all the way up to the cutoff. We seem to have come full
circle then: first the Higgs was an NGB in the coset G/H, with zero po-
tential due to the shift symmetry protecting NGBs. Then we broke the
original G symmetry, but unfortunately got the quadratic divergences
back. Have we achieved anything?

To understand better what is going on, let us calculate the Higgs
potential in a more systematic way. The first step is to extract the term
quadratic in W from the Lagrangian Eq. (41):

Lnlæm 3
Ø

Øg ß |2 = M(h) W†
µWµ ,

a

a

0

@

1

A

Wµ (44)
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where

M(h) ¥ g

0

B

@

1
1

0

1

C

A

| {z }

⇠⇠⇠SU(3) spurion P

ß (45)

is a Higgs dependent mass matrix for Wµ, which we wrote in terms
of an SU(3)-breaking spurion P. From this term we can compute the
Coleman-Weinberg potential [22] for the Higgs due to radiative correc-
tions from the gauge bosons. This potential is given by the formula:

VCW(H) = §2

16º2 Tr
h

M†M
i

| {z }

Quadratically div. term

+ 3
64º2 Tr

h

M†M
i2

log
∑

M†M
§2

∏

| {z }

Log div. + finite term

. (46)

We see that the Higgs potential is quadratically divergent because
M†M is not / 1. In other words,

VCW(H) = §2

16º2 Tr
h

ß† P†Pß
i

= g 2§2

16º2 H†H. (47)

Note that if not for the spurion P, the quadratic divergence would be
proportional to ß†ß which is independent of h.

Our next idea to get rid of the quadratic divergence is to get rid of
the spurion P†P in Eq. (47) by simply gauging the entire SU(3) instead
of just an SU(2) subgroup. In this case the symmetry is no longer ex-
plicitly broken because the gauge bosons come in a complete adjoint
of SU(3). Accordingly, the quadratic divergence becomes

VCW(H) = §2

16º2 Tr
h

ß†ß
i

, (48)

which is independent of h. However, there is one major problem in
this scenario: there are now additional SU(3) gauge bosons that be-
come massive due to the SU(3)/SU(2) spontaneous breaking. Unfor-
tunately, that means that the would-have-been Higgs is now “eaten" by
these additional gauge bosons—there is no longer a physical scalar in
the theory to break electroweak symmetry. We somehow need a better
solution, one which preserves a global SU(3) symmetry but also has an
uneaten scalar.

This reasoning leads us to the third, and final version of our story.
Consider a strongly interacting sector with a global symmetry which is
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not SU(3), but a larger SU(3)£SU(3). The strong sector confines at §,
breaking the global symmetry to SU(2)£SU(2).

We can parametrize this breaking by not one, but two nlæm fields
ß1 and ß2, in the first and second SU(3)/SU(2) coset, respectively:

ß1 ¥ ei º1/
p

2 f

0

B

@

0
0
f

1

C

A

, ß2 ¥ ei º2/
p

2 f

0

B

@

0
0
f

1

C

A

, (49)

where we have taken f1 = f2 = f for simplicity. Additionally, we break
the SU(3) £ SU(3) explicitly by gauging only the diagonal subgroup
SU(3)D. In terms of the nlæm fields the nonlinear Lagrangian is

Lnlæm =
Ø

ØDµß1
Ø

Ø

2 +
Ø

ØDµß2
Ø

Ø

2 , (50)

where Dµ is now the SU(3)D covariant derivative. Because we gauged
the entire SU(3)D, there is no SU(3) breaking spurion in the La-
grangian.

What about the physical Higgs? This time we started with SU(3)£
SU(3) spontaneously broken to SU(2)£SU(2), with

NNGB = 2
°

32 °1
¢

° 2
°

22 °1
¢

= 10, (51)

out of which
°

32 °1
¢

°
°

22 °1
¢

= 5 were eaten by heavy gauge bosons,
leaving us with an uneaten complex doublet H / º1 °º2 and a real
scalar ¥. For its potential, we obtain the leading quadratically diver-
gent piece

VCW(H) = §2

16º2

n

Tr
h

ß†
1ß1

i

+ Tr
h

ß†
2ß2

io

, (52)

which is again independent of the NGBs.
We see that the problem has been solved, at least on a technical

level. There is a physical Higgs and no quadratic divergence in the
Higgs potential. The deeper reason for this cancellation is called col-
lective breaking.

3.1. Collective breaking

To illustrate the concept of collective breaking, we will study the
quadratic part of the nlæm Lagrangian

Lnlæm 3
Ø

Øg Wµß1
Ø

Ø

2 +
Ø

Øg Wµß2
Ø

Ø

2 . (53)
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Let us analyze the symmetries of this Lagrangian. Both terms are
present because the diagonal group SU(3)D is gauged. Note that the
existence of a gauge SU(3)D symmetry also indicates the existence of a
global SU(3)D, symmetry under which:

ß1 ! eiÆa Ta
ß1 , ß2 ! eiÆa Ta

ß2 , Wµ! eiÆa Ta
Wµe°iÆa Ta

. (54)

Both ß1,ß2 must rotate with the same transformation angles Æa as Wµ

such that Eq. (53) is invariant.
Now we reach the key part of our analysis: what would the symme-

try be if only the first term of Eq. (53) was present? That case would cor-
respond to having a gauge SU(3) symmetry, and also an SU(3) global
symmetry, i.e. there is an overall SU(3)£SU(3) global symmetry:

ß1 ! eiÆa
1 Ta

ß1 , ß2 ! eiÆa
2 Ta

ß2 , Wµ! eiÆa
1 Ta

Wµe°iÆa
1 Ta

, (55)

where Æ1,2 are independent SU(3) rotation parameters. Since the sec-
ond term is absent, we are free to do rotations on ß2 that are indepen-
dent of the rotations on ß1,Wµ. The same is true if only the second
term was present in Eq. (53), this time with an SU(3)£ SU(3) under
which

ß1 ! eiÆa
1 Ta

ß1 , ß2 ! eiÆa
2 Ta

ß2 , Wµ! eiÆa
2 Ta

Wµe°iÆa
2 Ta

. (56)

We have seen that each term in Eq. (53) separately conserves an
extended SU(3)£ SU(3) symmetry, and only in the presence of both
terms, the global symmetry is reduced to SU(3)D. In other words, the
symmetry is collectively broken in the presence of the two terms: if
only one of the two terms were present, we would have a full SU(3)£
SU(3)/SU(2) £ SU(2) of exact NGBs, out of which an SU(3)/SU(2)
worth is eaten by the gauged SU(3), leaving us with exactly massless
NGBs in the coset SU(3)/SU(2) (the Higgs included). In particular, the
SU(3) gauge bosons cannot generate a potential to the NGBs by Gold-
stone’s theorem—i.e. any radiative correction that only involves one of
the terms in Eq. (53) has to be exactly zero.

What happens then in the full picture, when both terms in Eq. (53)
are included? In that case we still have an SU(3)/SU(2) coset of un-
eaten bosons, but this time they are only pNGBS of the SU(3)£SU(3)
with is explicitly broken to the diagonal SU(3)D. However, we now
have an important insight into the radiative corrections to the poten-
tial of the pNGBs: it only involves diagrams that combine both terms

26



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 27

in Eq. (53), for example

ß†
1

ß1

ß†
2

ß2

/
Ø

Ø

Ø

ß†
1ß2

Ø

Ø

Ø

2 g 4

16º2 log
h

§2

µ2

i

.

(57)

The way to understand this diagram is by expanding ß1,2 in terms of
h, so that some of the terms in the expansion are quadratic in h. By
simple power counting, diagrams involving both terms are only loga-
rithmically divergent, because they contain one more propagator than
the would be quadratically divergent diagrams Eq. (61), which are in-
dependent of h by the collective breaking argument. We see that the
leading SU(3)£SU(3) breaking invariant is

Ø

Ø

Ø

ß†
1ß2

Ø

Ø

Ø

2
ª f 2 °2h†h + . . . (58)

and so the dominant contribution to the Higgs mass is ª g 4

16º2 log
h

§2

µ2

i

.

For f ª 1TeV, we get m2
h ª (100GeV)2, which is in the right ballpark.

The one question that remains is: what exactly cancels the SM
gauge boson quadratic contributions? To understand that, note that
our SM SU(2)L gauge symmetry is now embedded in a larger gauge
symmetry, SU(3)D. After the spontaneous breaking SU(3)2/SU(2)2,
the 3 SM SU(2)L gauge bosons remain massless, while the extra 5
gauge bosons get masses proportional to f . Let us introduce some
notation. We denote the SM (isospin) SU(2)L gauge bosons W±,3

µ . The
extra gauge bosons are then denoted X±

µ , Y1,2
µ , and A8

µ. These fields are
embedded in the adjoint of SU(3) as

0

B

@

W+ X+

W° Y1 + i Y2

X° Y1 ° i Y2

1

C

A

+ W3, A8 on the diagonal . (59)

In terms of these fields, the nlæm Lagrangian is

Lnlæm =
Ø

Ø

Ø

≥

@µ° i g Wa
µTa

¥

ß1,2

Ø

Ø

Ø

2
=

= g 2

4
h†h

∑

2W+
µW°µ+W3

µW3µ°X+
µX°µ° 1

2

≥

Y1
µY1µ+Y2

µY2µ
¥

°A3
µA3µ

∏

.

(60)
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Summing up all of the contributions from the gauge bosons to the loop

h h
(61)

for example, we have

g 2

16º2 §
2 h†h

2

4 2
|{z}

W±

+ 1
|{z}

W3

° 1
|{z}

X±

° 1
|{z}

Y1,2

° 1
|{z}

A8

3

5= 0. (62)

A similar cancellation happens for the second diagram in Eq. (61), and
so we are left with no quadratic divergences. This of course had to be
true by the collective symmetry argument. A notable feature of col-
lective symmetry breaking that is evident here is that the cancellation
happens between same-spin partners (in this case spin-1). This is in
constrast with Supersymmetry, where the cancellation happens be-
tween opposite-spin partners. A similar cancellation happens in the
fermion sector, as we will now see.

3.2. The fermion sector

We have seen how collective breaking can eliminate the quadratic cor-
rection to the Higgs potential arising from the gauge sector. However,
the most dominant SM quadratic corrections to the Higgs potential
come from the fermion sector, more specifically from the top quark
due to its large Yukawa coupling. Carrying over the lesson we have
learned form the gauge boson case, we have to introduce top part-
ners in multiplets of the global symmetry. We will begin by introduc-
ing top partners in the (3,1)+ (1,3) of SU(3)£ SU(3), from which we
keep only the degrees of freedom in the diagonal SU(3)D part. Keep-
ing only a part of the full multiplet constitutes an explicit breaking of
SU(3)£SU(3) ! SU(3)D. This is in direct analogy to the gauge boson
case, where only SU(3)D was gauged. The 3 of SU(3)D contains the SM
QL = (t ,b) SU(2)L doublet plus an additional top partner T:

™=

0

B

@

tL

bL

TL

1

C

A

¥
√

QL

TL

!

. (63)

In addtion, we have two right handed t1,2 in the 1 of SU(3)D. The
fermion sector of the nlæm Lagrangian is then

Ltop = ∏1™̄ß1t1 + ∏2™̄ß2t2 . (64)
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Generically ∏1 6= ∏2 but we will set them equal for simplicity, and the
symmetries allow for mixing between t1, t2, t1ß1, etc. but we can ro-
tate these away with unitary transformations. We can check that this
Lagrangian exhibits collective breaking in a very similar manner to
Eq. (53). In the presence of both terms, the overall global symmetry
is SU(3)D. However, if one of the terms is turned off, the symmetry
of the above Lagrangian is enhanced to SU(3)£SU(3) where ß1,2 can
rotate differently. The radiative corrections contributing to the Higgs
potential must involve both terms in Eq. (65), and the quadratic diver-
gences cancel. Let us verify this cancellation explicitly. Expanding the
Lagrangian in h, we find:

Ltop = ∏
p

2

"

°

Q̄L , T̄L
¢

√

i H

f ° H†H
2 f

!

t1 +
°

Q̄L , T̄L
¢

√

°i H

f ° H†H
2 f

!

t2

#

, (65)

or in the mass basis

Ltop = ∏Q̄LHtR + ∏ f

µ

1° H†H
2 f 2

∂

T̄LTR , (66)

with tR = ip
2

(t1 ° t2) , TR = 1p
2

(t1 + t2). We get the SM top Yukawa and
a heavy top partner T of mass ∏ f . It is this top partner that cancels
the top quadratic divergences to the Higgs potential. This time, the
cancellation is between two different diagrams:

h h h h+

t

∏ ∏

T£∏ f

°∏/ f (67)

We see that the quadratic divergences cancel out, leaving a finite piece
of order 3∏

16º2

°

∏ f
¢2. By collective breaking, the leading divergence has

to come from a digram that involves both terms in Eq. (65). As usual
it is convinient to write a diagram for the nlæm fields which, when
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expanded, becomes a contribution to the Higgs mass. The result is

ß1 ß2

ß†
1

ß†
2

™

™

t1

t2

/
Ø

Ø

Ø

ß†
1ß2

Ø

Ø

Ø

2
∏4

16º2 log
h

§2

µ2

i

,

(68)
which is only a log divergent contribution to the Higgs potential

∏4

16º2 log
∑

§2

µ2

∏

H†H. (69)

This concludes our survey of the collective breaking and cancellation
of quadratic divergences in the “Simplest Little Higgs" [21].

3.3. Other versions of little Higgs models

3.3.1. The littlest Higgs

The littlest Higgs [23] is an example of a model with collective symme-
try breaking which is not based on a product group (such as SU(3)£
SU(3) in the simplest little Higgs). In this model the Higgs is a pNGB in
the coset SU(5)/SO(5). A quick counting of generators gives

NNGB =
°

52 °1
¢

° 5(5°1)
2

= 14. (70)

In contrast with the simplest little Higgs, where the SU(3) ! SU(2)
breaking was triggered by a fundamental, the SU(5) ! SO(5) breaking
is triggered by a VEV of the form

ß0 = f

0

B

@

0 0 1

0 1 0
1 0 0

1

C

A

, (71)
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where 1 are 2£2 unit matrices (ß0 is a 5£5 matrix). To parametrize
our pNGBs in an SU(5) matrix, we note that as usual

UNGB ¥ exp
h

ip
2 f
ºâTâ

i

=

¡++ ¡+

¡+ ¡0

¡§
++ ¡§

+

¡§
+ ¡§

0

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

H

H§

HTH† ,

(72)
where for simplicity we only include the Higgs complex doublet and a
complex triplet ¡. We will soon see that the other 4 NGBs are eaten by
gauge bosons, so we omit them here. The SU(5)/SO(5) coset is then
parametrized by

ß = UNGBß0 U†
NGB . (73)

In addition to the spontaneous SU(5)/SO(5) breaking, we also break
the SU(5) explicitly by gauging an [SU(2)£U(1)]2 subgroup, compris-
ing of the generators:

Qa
1 =

0

B

@

æa/2 0 0
0 0 0
0 0 0

1

C

A

, Qa
2 =

0

B

@

0 0 0
0 0 0
0 0 °æa§/2

1

C

A

Y1 = 1
10

diag(3,3,°2,°2,°2) , Y2 =
1

10
diag(2,2,2,°3,°3) . (74)

This explicit breaking results in the NGBs becoming pNGBs. The
nlæm Lagrangian is in this case

Lnlæm = 1
4

Ø

ØDµß
Ø

Ø

2 , (75)

where
the covariant derivative for ß in the adjoint of the [SU(2)£U(1)]2 is
given by

Dµß = @µ° i g1,2 W1,2;a
µ

©

Qa
1,2,ß

™

° i g 0
1,2 B1,2

µ

©

Y1,2,ß
™

, (76)
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where g1,2, g 0
1,2 are the [SU(2)£U(1)]2 gauge couplings. Unsurpris-

ingly, the spontaneous SU(5)/SO(5) breaking results in the breaking
of the [SU(2)£U(1)]2 to SU(2) £ U(1), as can be seen by expanding
Eq. (75). One combination of the [SU(2)£U(1)]2 gauge bosons “eats" 4
of the 14 pNGBs and becomes massive, while the other remains mass-
less as well as the SM SU(2)£U(1) gauge bosons. These combinations
are given by
√

Wµ

W0
µ

!

=
√

°cosÆ sinÆ
°sinÆ °cosÆ

!√

W1
µ

W2
µ

!

,

√

Bµ
B0
µ

!

=
√

°cosÆ0 sinÆ0

°sinÆ0 °cosÆ0

!√

B1
µ

B2
µ

!

,

(77)

with tanÆ= g2/g1 and tanÆ0 = g 0
2/g 0

1. This pattern of symmetry break-
ing leads to collective breaking, which can be seen as follows. When
g2, g 0

2 ! 0 in Eq. (75), the unbroken SU(5) generators are the ones com-
muting with Qa

1 ,Y1. These live in the lower-right corner of

AdjSU(5) =

a a

a a

a a

a a

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

SU(2)
£

U(1)

SU(3)

, (78)

and constitute an SU(2)£U(1)£ SU(3) global symmetry. The SU(3)

part of this symmetry protects the Higgs from corrections just like in
the simplest little Higgs. When all g1,2, g 0

1,2 are present, the unbro-
ken SU(5) generators are the ones commuting with Qa

1,2,Y1,2, i.e. ,
[SU(2)£U(1)]2. There is no SU(3) global symmetry, and the Higgs isn’t
protected. Consequently, we expect all the gauge boson contributions
to the Higgs potential to depend both on g1,2 and on g 0

1,2. Indeed,
expanding Eq. (75) in H we get

Lnlæm = 1
4

H†H
h

g1g2W1
µW2;µ+ g 0

1g 0
2B1

µB2;µ
i

+ . . . (79)

The important thing to notice is that there are only off diagonal cou-
plings between W1

µ and W2
µ and similarly for B1,2

µ . This leads to the soft-
ening of the gauge contribution to the Higgs potential, since there’s no
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way to close a loop with just a single gauge boson. In the mass eigen-
basis this becomes:

Lnlæm = 1
4

H†H
h

g 2
≥

WµWµ°W0
µW

0µ°2cot2ÆW0
µWµ

¥

+ term forB
i

+ . . .

(80)

It is then easy to see that the quadratic divergences cancel

h h h h

+

W W0

g 2 °g 2

= 0. (81)

A similar cancellation happens for B and B0. The leading divergence
involves the mixed W0

µWµ and B0
µBµ terms in Eq. (81), but these are

only give rise to log divergences.
The fermion sector of the model is not very different from the sim-

plest little Higgs. We embed the left handed doublet QL in an SU(3)
triplet

™̄=
°

t̄L , b̄L , T̄L
¢

¥
°

Q̄L , T̄L
¢

. (82)

In terms of this multiplet, the effective SU(3) invariant Largrangian is:

Ltop = °∏1 f

2
™̄i ≤i j k≤mnß j m ßkn t1 ° ∏2 f T̄L t2 , (83)

where i , j ,k 2 [1,2,3] and m,n 2 [4,5]. The resulting Higgs couplings
and collective breaking is similar to the simplest little Higgs case.

The novel part in the littlest Higgs is the emergence of an O (1) quar-
tic self coupling for the Higgs. This sounds impossible at first, since
we know that the Higgs is a pNGB and its tree level potential should
vanish, and the radiative corrections are one-loop suppressed. The
solution to this conundrum is that the quartic is both radiatively gen-
erated but still O (1), which is known as a collective quartic. To see this,
consider the quadratically divergent gauge boson contribution to the
Coleman-Weinberg potential for H and ¡. We know from collective
breaking that this should not depend on H.

Vquad
CW

°

H,¡
¢

=

a
§2

16º2 f 2 X

j=1,2

Ω

g 2
j

X

a
Tr

h

Qa
j ßQb§

j ß§
i

+ g 02
j Tr

h

Y jßY§
j ß

§
i

æ

, (84)
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with a a model dependent O (1) coefficient. Expanding in H and ©, we
get:

Vquad
CW

°

H,¡
¢

= a f 2
Ω

≥

g 2
1 + g 02

1

¥

Ø

Ø

Ø

Ø

¡i j +
i

4 f

°

Hi H j +H j Hi
¢

Ø

Ø

Ø

Ø

2

+

+
≥

g 2
2 + g 02

2

¥

Ø

Ø

Ø

Ø

¡i j °
i

4 f

°

Hi H j +H j Hi
¢

Ø

Ø

Ø

Ø

2æ

, (85)

where we have used § ª 4º f . As expected, the quadratic divergence
cancels for H. However, there’s still a quadratically divergent mass
term for ¡ and also a quadratically divergent H¡¡ coupling. Below
M¡ ª a f , we can integrate ¡ out and get a quartic term for the Higgs:

∏ = a

≥

g 2
1 + g 02

1

¥≥

g 2
2 + g 02

2

¥

g 2
1 + g 02

1 + g 2
2 + g 02

2

. (86)

The alert reader might notice two main qualities of the above quartic:
1) it is O (1) and 2) it is collective, in the sense that it is nonzero only
when both terms exist in Eq. (85). The fact that the quartic is O (g 2)
might come as a surprise, after all we are used to quartic couplings
arising at loop level. But notice that the quartic is due to a tree level ¡
exchange

h

h

h

h

©

,

(87)

where M¡ ª f and c¡HH ª f is the coupling. The fermion sector in this
model contributes a similar, O (g 2) collective quartic.

Summing up, the Higgs potential in the model is of the form

V(H) =

2

6

6

6

6
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°
3y2

t M2
T

8º2 log

√

§2

M2
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!
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+ 3
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√

3g 2M2
W0 log

√
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W0

!

+ g 02M2
B0 log
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g aug e

+
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¡ log

√
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scal ar

3

7

7

7

7

7

5

|H|2 + ∏|H|4 , (88)
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where MT, MW0,B0 and M¡ are the masses of the top partners, gauge
partners, and heavy pNGB, respectively. The scalar contribution
comes from Higgs loops, and is cut at the M¡. For a rough estimate
of the naturalness in this model, we can keep only the dominant con-
tribution due to top loops. The potential is then roughly

V(H) = °
g 2

SMM2
T

16º2 log

√

§2

M2
T

!

|H|2 + O (1) g 2
SM |H|4 , (89)

where gSM represents a generic SM weak coupling. Minimizing the
potential provides us with a natural VEV v ª MT

4º = O (100GeV). This is
a beautiful example of a fully natural electroweak symmetry breaking
model, where the separation between the scales v and f is autmatic.
Ironically this same mechanism leads also to a prediction for a rather
heavy Higgs inthis model:

mh =
p

2∏v ª
p

2gSMv ª 200°300GeV. (90)

The origin of the heaviness of the Higgs is the large tree-level Higgs
quartic (which is exactly also the reason behind the fully natural EWSB
potential). To obtain the experimentally measured mh = 125GeV, the
parameters of the model have to be slightly tuned to reduce the quartic
(but then one also has to further reduce the quadratic term to maintain
the separation betwen v and f ).

3.3.2. The Minimal Composite Higgs Model

In the previous sections we’ve seen how little Higgs models predict top
and gauge partners around the compositeness scale times their inter-
action strength g§ f . This is generically in tension with electroweak
precision observables, e.g. S & T parameters. The more constraining
of the two, the T-parameter, is the experimental fact that:

Ω¥
M2

W

M2
Z cos2µW

º 1, (91)

to within 1%. In little Higgs models, the top and gauge partners gener-
ate radiative corrections to the gauge boson masses which violate this
relation. In the absence of any protective symmetry, these unwanted
corrections push the compositeness scale f to the multi-TeV regime,
making the model unnatural. The minimal Composite Higgs (MCH)
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model and related models greatly reduce the tension with electroweak
constraints. They do this by incorporating a global symmetry known
as custodial symmetry.

Custodial symmetry is a way to protect the T-parameter from cor-
rection involving the top and gauge partners. The S-parameter is not
protected, but it is also far less constraining than the T-parameter. To
illustrate how custodial symmetry works, let us look at the SM Higgs
sector:

LH = °µ2|H|2 +∏|H|4 . (92)

Ignoring gauge symmetry and Yukawa couplings for the moment, we
see that the Higgs potential is invariant under an SU(2)L £ SU(2)R

global symmetry, under which:

H ! UL HU†
R , (93)

where UL 2 SU(2)L , UR 2 SU(2)R

This symmetry is unbroken even when the gauging of SU(2)L is
taken into account. In fact, under the global SU(2)R, the W± and Z
bosons transform as a triplet, which ensures that MW = MZ. This re-
lation is modified at tree level due to the gauging of U(1)Y 2 SU(2)R,
which explicitly breaks SU(2)R and yields Ω = 1 at tree level. The dif-
ference between the up-type and down-type Yukawa couplings also
breaks SU(2)R, but this breaking only leads to loop level corrections to
Eq. (91).

This quick illustration of custodial symmetry in the standard
model makes it clear how to protect the T-parameter in composite
Higgs models: all we have to do is make sure that the new physics in-
troduced respects SU(2)R. This is exactly what happens in the MCH
models. The global symmetry is these models is SO(5)£U(1), spon-
taneously broken to SO(4)£U(1), so that the Higgs is a pNGB in the
coset SO(5)/SO(4) (for other possible cosets, see [16, 24]). The count-
ing of broken generators is

NNGB = 5(5°1)
2

° 4(4°1)
2

= 4, (94)

Exactly the right number of broken generators to make up the Higgs
doublet H. The important thing to notice is that SO(4) ª= SU(2)L £
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SU(2)R, so the Higgs sector in this type of model is custodially sym-
metric. Under SU(2)L £SU(2)R, the Higgs transforms as a bi-doublet
(2,2). The nlæm field is then

ß = ei
p

2
f ºâ Tâ

°

0,0,0,0, f
¢T =

sin h
f

f

µ

h1,h2,h3,h4,h cot
h

f

∂T

, (95)

where h ¥
p

haha . The nlæm Lagrangian is as usual

Lnlæm = 1
2

°

Dµß
¢† °

Dµß
¢

, (96)

where Dµ is the gauged SU(2)£U(1) covariant derivative
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Dµ = @µ° i g Wa
µ °i g 0 Bµ

øa/2

øa/2

1
6 · 1

2
3 · 1 . (97)

Expanding the nlæm Lagrangian in the gauge fields, we get

Lgauge =
f 2

8
sin2 h

f

≥

g 02BµB∫+ g 2W3
µW2

∫°2g g 0W3
µB∫+2g 2W+

µW°
∫

¥

µ

¥µ∫°
qµq∫

q2

∂

.

(98)

Setting v ¥ f sin hhi
f where v = 246 GeV and hhi is the actual physical

Higgs VEV, we get the right W and Z masses.
The appearance of the sin h

f might seem strange at first, but note
that it is an essential part in the description of the Higgs as a pNGB in
any coset, including the SO(5)/SO(4) case of the MCH.c We can think
of the NGBs in a G/H coset as just the set of rotation angles connecting
different vacua that break G but preserve H. In this way, pNGBs always
enter the nlæm Lagrangian inside trigonometric functions. In fact, the
nlæm fields in the little Higgs, Eq. (38,3.3.1) also depent on the pNGBS
through trigonometric functions. All we did before was expand these
functions to second order.
cWe could write the non-linear fields in the LH models using trigonometric functions as
well, there we simply chose to expand those functions to lowest powers in h

f to follow

the literature.
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A direct consequence of the fact the the Higgs only enters the La-
grangian through sin h

f is a modification of Higgs couplings with re-
spect to their SM values. This is a general prediction in composite
Higgs models. To see this, note the following expansion:

f 2 sin2 h

f
= f 2

∑

sin2 hhi
f

+
µ

2sin
hhi

f
cos

hhi
f

∂

h

f
+

µ

1°2sin2 hhi
f

∂

h2

f 2 + . . .
∏

,

(99)

which by our definition of v becomes

v2 + 2v
p

1°ªh + (1°2ª) h2 + . . . (100)

with ª ¥ v2

f 2 . Using this expansion in Eq. (98), we see that the Higgs-
gauge boson couplings are modified:

gVVh = g SM
VVh

p

1°ª , gVVhh = g SM
VVhh (1°2ª) . (101)

These couplings will be experimentally measured to within 10%
at the high-luminosity LHC and to within 1% at the ILC, providing
bounds on v/ f . The current leading bound on v/ f comes from the
S parameter [25]: f > 3v .

Another important thing to note, is the absence of gauge partners
in the Lagrangian Eq. (98), which makes the Higgs potnetial quadrati-
cally divergent. However, the fact that the gauge parners our missing
from Eq. (98) does not mean that they are absent in the model. In fact,
Eq. (98) should be taken as the effective action below the gauge partner
mass. The gauge partners enter at a scale ª gSM f in complete SO(5)
multiplets, and cut the quadratic divergences in a similar way to little
Higgs models. One can write a collective symmetry breaking argument
in this case based on a two- or three-site model [26, 27].

The more general way of writing the effective Lagrangian Eq. (98)
is to allow for generic momentum dependent form factors, to account
for the effect of integrating out composite degrees of freedom below
the compositeness scale g§ f . These form factors reflect the fact that
the gauge bosons are partially composite—their nonlocal substructure
is encoded in the form factors for momenta & f . These are similar
in spirit to the momentum dependent factors that arise in the chiral

38



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 39

Lagrangian for pions below §QCD. In terms of these the Lagrangian is

Lgauge = 1
2

Pµ∫T

"√

¶X
0 (q2)+¶0(q2)+

sin2 h
f

4
¶1(q2)

!

BµB∫+

+
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f

4
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!

Wa
µWa

∫ +2sin2 h

f
¶1(q2)H† Ta

L Y HWa
µB∫

#

.

(102)

The formula for the Coleman-Weinberg potential in the presence of
these momentum dependent form factors is given by

VCW(h) = 9
2

Z

d 4q

(2º)4 log
∑

1+ 1
4
¶1(q2)
¶0(q2)

sin2 h

f

∏

. (103)

The composite substructure encoded in the form factors for p & f
damps the integrand, making the integral UV finite. In the next sec-
tion we will show how to calculate the form factors exactly in an equiv-
alent five-dimesional setting. The UV finiteness will be clearer from
that perspective.

3.4. Partial Compositeness

Previously, when discussing the fermion sector of the littlest Higgs, we
contended to take the top to be in an SU(3) triplet, even though the
composite sector was invariant under a larger SU(5) global symmetry.
Clearly, our choice to include only a fraction of an SU(5) multiplet is in
need of some UV completion. In composite Higgs models, there is an
easy way to do that, called partial compositeness [28].

The idea behind partial compositeness is to separate the spon-
taneous G/H breaking from the explicit breaking of G due to partial
gauging and incomplete fermion multiplets. In the partial composit-
ness picture there are two sectors: the composite sector and the ele-
mentary sector. In the composite sector, composite resonances come
in complete G multiplets. In the MCH, for example, the left handed
tops can come in the OL = 5 of SO(5), while the right handed top can
be in the OR = 1 of SO(5). These multiplets are split due to the sponta-
neous SO(5)/SO(4) breaking. In the elementary sector, states come in
SU(2)L £U(1)Y representations, for example in ™L = 2 1

3
and ™R = 1 4

3
,

since the elementary sector does not know about the SO(5) of the com-
posite sector.
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The Lagrangian of the model can then be written as [26]

LCH = Lelementary + Lcomposite + Lmix . (104)

In the equation above Lelementary is a Lagrangian involving the ele-
mentary fields ™L,™R. These fields are charged under an (SU(3)) £
SU(2)L £ U(1) gauge symmetry. On the other hand, Lcomposite is a
nlæm Lagrangian involving complete SO(5) multiplets OL , OR and the
nlæm field ß. The third term in Eq. (104) is a linear mixing term

Lmix = f ™̄L∏L OL + f ™̄R∏R OR , (105)

where ∏LR are spurions that break SO(5)£ [SU(2)£U(1)] to the diago-
nal SU(2)£U(1). For every elementary state that couples to a compos-
ite state, there are two mass eigenstates. The heavy of the two is at the
compositeness scale f , while the light one is simply the correspond-
ing SM fermion. In this way the SM fermions are partially composite.
Heuristically, we can write the mass and Yukawa terms in Eq. (104) as
follows:

f ™̄L∏L OL + f ŌR∏R™R
| {z }

Lmix

+ML ŌL OL + MR ŌR OR +Y ŌL HOR
| {z }

Lcomposite

. (106)

Rotating to the mass basis, we have
√

™̄SM
L
™̄H

L

!

=
√

1 ° fL

fL 1

!√

™̄L

ŌL

!

,

√

™SM
R
™H

R

!

=
√

1 ° fR

fR 1

!√

™R

OR

!

, (107)

with fL ª ∏L f
ML

and fR ª ∏R f
MR

, and we assume ML,R ¿ ∏L,R f . Substitut-

ing back in Eq. (106), we get massless SM fermions ™̄SM
L ,™SM

R with a
Yukawa coupling

y ™̄SM
L H™R , (108)

with y = fL Y fR. Generalizing this to include down-type fermions and
three generations, we get:

yu
i j = f q

i m Yu
mn f u

n j

yd
i j = f q

i m Yd
mn f d

n j , (109)

where f q = diag
°

f q
1 , f q

2 , f q
3

¢

and similarly for f u,d . The attractive fea-
ture of partial compositeness is that it allows for flavor structure in the
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SM Yukawa matrices yu , yd even when the original composite cou-
plings Yu , Yd are O (1). This is called anarchic flavor. To accommo-
date this possibility, the mixing matrices f q,u,d have to be hierarchical.
This can happen, for example due to a large anomalous dimension:

f q,u,d
i (§C) ª f q,u,d

i (§F)
µ

§C

§F

∂d
q,u,d
i ° 5

2
. (110)

By approximately diagonalizing the SM Yukawa matrices yu,d , we
can infer the CKM structure for anarchic flavor from the f q,u,d hierar-
chy. Up to O (1) numbers, we have

yu,d = f q Yu,d f u,d ¥ Lu,d yu,d
diag R†

u,d , (111)
with

yu,d
diag ª diag

≥

f q
1 f u,d

1 , f q
2 f u,d

2 , f q
3 f u,d

3

¥

Lu
i j ª Ld

i j ª min

√

f q
i

f q
j

,
f q

j

f q
i

!

Ru,d
i j ª min

0

@

f u,d
i

f u,d
j

,
f u,d

j

f u,d
i

1

A . (112)

If we set
f q

1

f q
2

ª ∏ ,
f q

2

f q
3

ª ∏2 ,
f q

1

f q
3

ª ∏3 , (113)

where ∏ ª 0.22 is the Cabbibo angle, we get the phenomenologically
viable structure for the CKM matrix and mass hierarchy

VCKM = Lu L†
d , mu,d

i ª f q
i f u,d

i v . (114)
Note that to get an O (1) Yukawa coupling for the top, we need large
mixing

f q,u,d
3 =

∏
q,u,d
3 f

r

≥

∏
q,u,d
3

¥2
+M2

T

ª O (1) , (115)

where this time we did not take the limit MT ¿ ∏ f . In composite mod-
els we have MT = g™ f , where g™ < 4º is the (dimensionless) interac-
tion strength among composite fermions. We see that to get a large
mixing, we need g™ ø 4º, i.e. top partners that are much lighter than
the cutoff of our nlæm:

MT ø§= 4º f . (116)
If we take the cutoff to be 10TeV, we could have top partners as light as
1.5°2TeV.
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3.5. RS-GIM Mechanism

All composite and little Higgs models reviewed here predict compos-
ite gauge partners which cut the quadratic divergences to the Higgs
potential. But the existence of these heavy gauge partners is severely
constrained by the experimental bounds on flavor violation. For ex-
ample, a composite Z0 could mediate tree level¢F = 2 flavor changing
neutral currents (FCNC) through the following s-channel exchange:

d

s̄

s

d̄

d s

s̄ d̄

Z0
Z0+

(117)

At energies lower than the mass of the gauge partners, we can express
the flavor violation through dimension 6 operators such as:

C4K
°

s̄∞µd
¢ °

d̄ ∞µ s
¢

, (118)

where

C4K ª A4K
g 2
Ω

M2
Ω

, (119)

where A4K is a dimensionless coefficient and mΩ and gΩ ªO (1) are the
mass and dimensionless coupling strength among the composite vec-
tors. The stringent constraints from K ° K̄ mixing and other flavor vi-
olating process severely constrain the coefficients C4K to be hierarchi-
cally small, for example |ReC4K| < 3.6·10°9 TeV. In generic models with
heavy vectors and an anarchic flavor structure, we would expect A4K to
be O (1), and so mΩ & 3 ·104 TeV. This is clearly a disaster for any LHC
phenomenology, and also means O (105) tuning in the Higgs potential.
In composite Higgs models the situation is different, as the coupling
to the composite vector resonances also involve the mixing parame-
ters f q,u,d . In fact, this creates an approximate alignment between the
Yukawa matrices and the couplings to the composite vectors. Conse-
quently:

A4K ª f d†
1 f q

2 f q†
1 f d

2 ªO (10°4) , (120)
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and so composite Higgs models with anarchic flavor can accommo-
date composite vectors at ª 20TeV [29,30]. The same alignment comes
into play with all other ¢F = 1 and ¢F = 2 flavor bounds. This mecha-
nism is called RS-GIM [31], as it was first discovered in the context of
Randall-Sundrum models [3] and it suppresses FCNCs similar to the
GIM mechanism in the SM.

3.6. More About the MCH Model

The minimal composite Higgs model [32,33] is a specific implementa-
tion of the composite Higgs idea with a global symmetry SO(5)£U(1)X,
broken to SO(4)£U(1)X at a scale f . The pattern of symmetry break-
ing uniquely determines the gauge partner sector of the model. In the
fermion sector, however, there are many different choices of SO(5) rep-
resentations to use for partial compositeness. On possibility is:

Ltop = ∏q q̄L Oq + ∏u ūR Ou + ∏d d̄R Od , (121)

with Oq , Ou and Od in the 5° 2
3

, 5° 2
3

and 10° 2
3

of SO(5)£U(1)X. Under
the low energy SU(2)L £SU(2)R these multiplets decompose as:

5 ! (2,2) + (1,1) , 10 ! (2,2) + (1,3) + (3,1) . (122)

These include the SM qL , tR ,bR, as well as other top and bottom part-
ners with masses ª g™ f . Other options for the composite multiplets
are discussed in [30,32–35]. We know from collective symmetry break-
ing that the combined contribution of all of these to the Higgs poten-
tial is free from quadratic divergences. In fact, we will soon encounter
an extra-dimensional realization of composite Higgs in which even the
log divergences cancel out, leaving a Higgs potential which is strictly
finite.

An additional thing to note is that the SO(5)/SO(4) coset contains
only the Higgs and no additional pNGBs. Consequently, there cannot
be a collective quartic in the MCH. The Higgs quartic only arises at
loop level due to interactions with the SM top and gauge bosons. This
has important phenonomenological implications that we will see mo-
mentarily.

3.7. The Higgs Potential in the Littlest Higgs vs. the MCH

The typical Higgs potential has the form

V(h) ª °µ2 |h|2 + ∏ |h|4 . (123)
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In both the littlest Higgs and the MCH the quadratic and quartic cou-
plings are loop-induced. The quadratic term in both models scales like

µ2 ª g 2
SM f 2

g 2
√

16º2 . (124)

The quartics the two models are different:

∏LH ª g 2
SM , ∏MCH ª g 2

SM

g 2
√

16º2 . (125)

This is a major difference between these two models. In the Littlest
Higgs the VEV is suppressed with respect to the compositeness scale
v ª f

4º and the Higgs mass is naturally heavy mh ª
p

2gSMv . In the
MCH, the Higgs mass is naturally light mh ª g√

4º

p
2gSMv , but the VEV

is naturally v = f , which is unacceptable since electroweak precision
constraints demand f > 3v . By playing with the dimensionless param-
eters of the model we can always get f > 3v , but this comes at the cost
of an v2

f 2 tuning.
In the next section we will study a concrete, calculable realization

of composite Higgs as a warped 5D model [32, 36] . This realization
draws inspiration from AdS/CFT, but is not neccessarily based on it.

4. Extra dimensions

Geometries with extra compact dimensions provide a calculable
framework for studying BSM physics, including many of the ideas we
have already discussed in a 4D context. As we will see, the geometry of
the extra dimension can be responsible for solving the hierarchy prob-
lem. Alternatively, we could take another point of view in which the ex-
tra dimension is a tool which allows us to perform weakly coupled cal-
culations that are dual to a 4D strongly coupled field theory as a conse-
quence of holography and AdS/CFT duality. In this section, we will de-
velop the necessary machinery to do calculations in extra dimensions
and review some of the most interesting results. For complementary
introductions to extra dimensions, we recommend the previous TASI
lectures [14, 37–39]

Throughout the rest of this paper, we will consider d extra com-
pact spatial dimensions such that the total number of spacetime di-
mensions is D = 4+d with the (+,°, . . . ,°) signature. We will use Ro-
man letters, e.g. M, N, to enumerate the full D-dimensional spacetime
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indices. Greek letters will be used to denote ordinary 4D spacetime
coordinates. The spacetime interval is given by

d s2 = gMNd xMd xN (126)

where in a flat spacetime background the metric can be written as

gMN =

0

B

B

B

B

B

B

B

B

B

@

1
°1

°1
°1

. . .

°1

1

C

C

C

C

C

C

C

C

C

A

. (127)

For now we will focus on flat backgrounds, although later warped

gravitation backgrounds will play an important role in addressing the
hierarchy problem.

4.1. KK Decomposition

As a first step, we must review how to construct a 4D effective theory
from a fundamental Lagrangian with extra dimensions. Kaluza-Klein
(KK) decomposition, which is essentially a normal mode expansion,
converts a (4+d)-dimensional Lagrangian into a 4D Lagrangian with
an infinite spectrum of 4D particles. To perform the dimensional re-
duction, we must integrate out the extra dimensions by putting the
bulk part of the fields on their equation of motion (EOM) and then in-
tegrate over the d extra dimensions.

As a concrete example, let’s focus on the case of a free real scalar
with one extra dimension (d = 1) compactified on a circle of radius R.
For simplicity, we take the scalar potential to be absent. The action
takes the form

S =
Z

d 4xd y
1
2
@M¡(x, y)@M¡(x, y) (128)

=
Z

d 4xd y
1
2

£

(@µ¡)2 ° (@y¡)2§ (129)

with M = 0,1,2,3,5 and x5 = y . Variation of this action leads to the bulk
EOM for ¡

@2
µ¡°@2

y¡= 0 (130)
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which, given the factorizable geometry and the periodic boundary
conditions for ¡, is separable and admits a periodic solution of the
form ¡(x, y) = 1p

2ºR

P1
n=°1¡(n)(x)ei n

R y with ¡(n)§ = ¡(°n) in order to
guarantee ¡ is real. Substitution of this ansatz back into Eq. 129 and
use of the orthogonality relations for Fourier modes yields the efective
action

S =
Z

d 4x
X

n>0
@µ¡

(n)†@µ¡(n) ° n2

R2 |¡
(n)|2. (131)

The main point is that in the 4D effective theory each 5D field cor-
responds to a KK tower of particles with masses mn = n/R. The mo-
mentum along the compact direction is quantized by the boundary
conditions, and its spectrum appears as a 4D tower of particles. The
generalization to more dimensions (e.g. a torus) is simple:

m2
n5,n6... = m2

0 +
n2

5

R2
5

+
n2

6

R2
6

+ . . . (132)

where m2
0 would arise if we had included a 5D mass term for the scalar.

4.2. Gauge Fields in Extra Dimensions

Now we wish to study theories with gauge fields which propagate in
the extra dimension. We will focus on an abelian gauge theory, al-
though the generalization to non-abelian theories is straightforward.
Gauge fields must still be periodic in y , so we can apply KK decompo-
sition to the gauge sector

AM(x, y) = 1
p

2ºR

1
X

n=°1
An

Mei n
R y (133)

with the one complication being that the 5D vector decomposes as a
4D vector Aµ and a 4D scalar A5 under 4D Poincare transformations:

AM = a

a

0

@

1

A

Aµ

A5

. (134)

After KK expansion, the action contains the following quadratic
part

Sgauge =
Z

d 4xd y ° 1
4

FMNFMN (135)

=
Z

d 4x
X

n

∑

°1
4

F(°n)
µ∫ F(n)µ∫+ 1

2

≥

@µA(°n)
5 °@5A(°n)

µ

¥≥

@µA(n)
5 °@5A(n)µ

¥

∏

(136)
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where FMN = @MAN °@NAM. In the last line, there is mixing between
A(n)
µ and A(n)

5 (absent for n = 0 since A(0)
µ is flat) which suggests that A(n)

5

is eaten by A(n)
µ in order for the KK vectors to become massive. In fact,

the mixing can be removed by moving to the 5D axial gauge (defined
by the gauge transformation parameter Æ(z) =°

R

A5d y):

A(n)
µ ! A(n)

µ ° i

n/R
@µA(n)

5 A(n)
5 ! 0 (137)

which for n 6= 0 removes A(n 6=0)
5 from the action.

The 4D effective action becomes

S =
Z

d 4x

∑

°1
4

(F(0)
µ∫)2 + 1

2
(@µA(0)

5 )2 +
X

n∏1
2
µ

°1
4

F(°n)
µ∫ F(n)µ∫+ 1

2
n2

R2 A(°n)
µ A(n)µ

∂∏

(138)

which contains one massless zero-mode gauge boson, one zero mode
A(0)

5 scalar, and a tower of massive A(n 6=0)
µ . The KK excitations of the

A5 scalar are unphysical: they were eaten so that A(n 6=0)
µ could become

massive.
For a (4 + d)-dimensional theory, the 5D vector decomposes as

again a 4D vector Aµ with additional scalars A5, . . . , A4+d :

AM =
a

a

a

0

B

B

B

@

1

C

C

C

A

Aµ

A5
...A4+d

(139)

In this case, one linear combination of the A5, . . . , A4+d towers is eaten
by the KK tower of Aµ, while the remaining combinations lead to (d°1)
scalar towers.

We can also consider the degrees of freedom arising from the
higher-dimensional graviton. The metric is a D£D symmetric tensor
with D(D+1)/2 independent components. However general relativity
has D dimensional general coordinate invariance, requiring 2D condi-
tions to fix the the gauge. Thus the (4+d)-dimensional graviton has
D(D°3)/2 = (d +4)(d +1)/2 physical degrees of freedom. Therefore,
the graviton will contain additional DOFs in addition to the ordinary
4D graviton with 2 helicity states.
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The massless 4D graviton and its KK modes live in the upper 4 by 4
block of the metric tensor.

GMN = a a a

a a a

0

@

1

A

gµ∫ Aµ j

¡i j

(140)

The tensor additionally contains d vectors Aµ j and d(d +1)/2 scalars
¡i j . However, in order for the KK tower of gravitons to become massive
(5 helicity states), they must eat one gauge boson tower and one scalar
tower (5 = 2+2+1). This leaves us with d°1 gauge boson towers which
each must eat a scalar KK tower to become massive. Finally, we are left
over with d(d °1)/2 uneaten scalar towers.

4.3. Matching of 5D and 4D Couplings

The dimensions of fields and couplings depend on the number of
spacetime dimensions. The simplest example is a scalar in (4 + d)-
dimensions. Focusing on the kinetic term, we can learn the classical
dimension of the field from the requirement that the action be dimen-
sionless.

Z

d 4+d x(@¡)2 ) [¡] = 1+ d

2
(141)

The brackets are used to express the energy dimension of the argu-
ment in natural units. Similarly from the fermion kinetic term one
finds

[√] = 3
2
+ d

2
(142)

How does one recover the canonical 4D dimension (1 for scalars,
3/2 for fermions), which the KK modes must have as 4D particles? The
KK modes generally have additional dimensionful prefactors since the
profile along the extra dimensions is dimensionful. More generally the
energy dimension of higher dimensional couplings and their 4D ef-
fective couplings are mismatched, and the integration of the profiles
along the extra directions in any given interaction vertex will make
up for the mismatch and provide the relation between the (4 + d)-
dimensional couplings and the effective 4D ones.
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As an example, let’s consider the bulk gauge interactions which
arise from the covariant derivative

DM = @M ° i g(d)AM (143)

Since [@M] = 1 and [AM] = 1+ d
2 , the bulk gauge coupling g(d) must be

dimensionful, [g(d)] =°d/2. However, the 4D effective gauge coupling
must be dimensionless, so the zero mode profile must absorb the di-
mensionality. Specifying to d = 1 compactified on a circle or radius R
and plugging in the zero mode expression whose profile in the extra
dimension is flat

Aµ(x, y) = 1
p

2ºR
A0
µ(x)+ . . . , (144)

we find that the effective coupling of the zero mode gauge boson is
given by

g4 =
g5p
2ºR

(145)

where we identify the length of the extra dimension to be L = 2ºR.
Here we see that the 4D coupling g4 does indeed come out dimen-
sionless. This relationship generalizes to geometries with more (flat)
dimensions to

g 2
4 =

g 2
(4+d)

Vol(d)
(146)

where Vol(d) is the volume of the d compact extra dimensions.
Likewise, we can perform the matching of the gravitational cou-

pling. Let the fundamental (higher dimensional) Planck scale be
M(4+d). This is the energy scale where gravity becomes strongly inter-
acting and requires UV completion. The Ricci tensor carries dimen-
sion two ([RMN] = 2) in any dimension, so the action must have a pref-
actor of M2+d

(4+d) in order to be dimensionless. The higher dimension
Einstein-Hilbert action takes the form

S(4+d) =°M2+d
(4+d)

Z

d 4+d x
p

g(4+d) R(4+d) (147)

=°M2+d
(4+d)Vol(d)

Z

d 4x
p

g(4) R(4) + . . . (148)

where in the second line we integrated over the compact dimensions
and used the relation

R(4+d) = R(4) (149)
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for flat extra dimensions, valid to linear order (see [39] for more de-
tails).

Matching onto the 4D action we obtain

M2
pl = M2+d

(4+d)Vol(d) (150)

where Mpl is the effective 4D Planck scale. This result holds only in sce-
narios with a flat gravitational background. In a warped background,
the relation Eq. (149) no longer holds and the integral over the extra
dimensions no longer has the interpretation of a volume.

We can now describe the traditional (pre-branes) flat extra dimen-
sion scenario. If we assume one extra dimension and that all SM fields
propagate in the bulk, then all gauge couplings and the gravitational
coupling are set by a single scale, the radius of the extra dimension, in
a natural theory. If we take M§ ¥ M(4+d) as the fundamental scale, then
the higher dimensional gauge coupling is related by g(4+d) ª M°d/2

§ .
Matching the 4D gauge couplings predicts for the radius of the extra
dimension

R ª 1
MPl

g
1+ 2

d
(4) . (151)

The size of the extra dimension is forced to be roughly Planck-length in
order to simultaneously match the correct gravity coupling and gauge
couplings of the SM. All of the KK modes would be near the Planck
scale in mass, which is much too high to observe their effects at a col-
lider. Moreover, the fundamental scale which acts as a cutoff of the SM
effective field theory would be large since M§ ª 1/R ª MPl in a natural
theory. Therefore, this framework can not solve the hierarchy problem
by lowering the SM cutoff to the TeV scale.

4.4. Branes and Large Extra Dimensions

A major breakthrough in the development of modern extra dimen-
sional theories was the introduction of branes. Branes are hy-
persurfaces, (3 + 1)-dimensional in our case, with localized energy-
momentum which can trap fields on their surfacesd. The existence
of (3+ 1)-dimensional branes in an extra dimensional theory means
dWe want to draw a distinction between our strictly phenomenological definition of
“branes” and more formal definitions like D-branes. We will not care about the micro-
physics underlying the existence of branes, which may or may not be String Theory.
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that some fields can propagate only on the brane, while others are free
to propagate in the bulk of the extra-dimension. The brane-localized
degrees of freedom are inherently four-dimensional, and their gauge
couplings for example are decoupled from the size of the extra dimen-
sion. The introduction of branes allows one to separate gravity from
SM gauge interactions allowing the size of the extra dimension to be
much larger than we previously estimated.

(3+1
)-br

ane

SM

gravity

Fig. 5.: The large extra dimensions scenario: SM fields are trapped and
only propagate on a lower-dimensional (3+1)-brane, while the gravi-
ton propagates into the bulk.

A simple implementation of branes in an extra dimensional sce-
nario is Large Extra Dimensions [7], proposed by Arkani-Hamed, Di-
mopoulos, and Dvali (ADD). Imagine that the SM fields are trapped
on a (3+1)-brane in a larger dimension bulk, but the graviton freely
propagates in all the extra dimensions as shown in Fig. 5. The funda-
mental scale of the higher dimensional gravity M§ is related to the 4D
Planck scale by a dilution factor arising from the volume of the extra di-
mensions. As a consequence of the dilution, 4D gravity appears much
weaker than one would have naively expected given that M§ ø MPl.
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The fundamental scale M§ acts as the cutoff for SM calculationse, so
lowering M§ ª TeV has the potential to eliminate the hierarchy prob-
lem.

Can the cutoff be pushed this low? Unlike the previous scenario
where all fields propagated in the bulk, here we only have to perform
the matching for the graviton since the gauge fields which are brane-
localized. Assuming that all of the extra dimension have similar radii,
we get

Ri ª R = 1
M§

µ

MPl

M§

∂

2
d

. (152)

Since we haven’t seen strongly coupled gravity at colliders, we require
M§ & TeV which leads to

R.
µ

1
1 TeV

∂

10
32
d ª 10

32
d °17 cm. (153)

Thus we see the size of the extra dimensions can actually be large, even
macroscopic.

However, this leads to O (1) deviations from 1/r 2 Newtonian grav-
ity on length scales smaller than R, due to the fact that gravity is ac-
tually propagating in more dimensions. Experiments which test Ein-
stein/Newtonian gravity thus provide a bound on these models.

How many large extra dimensions do we need?

• d = 1: One extra dimension leads to a radius R ª 1015 cm
about the size of the solar system, which is very much ruled
out.

• d = 2: Two extra dimensions predict R ª 0.1 cm, already ruled
about by Cavendish-type experiments for M§ = 1 TeV.

• d ∏ 3: Three extra dimensions bring us to R < 10°6, which is
sufficient to evade experimental constraints.

Some of the most sensitive experimental results come from the Eöt-
Wash experimentf which probes O (10°3) deviations from Newtonian
gravity down to distances of 10°3 cm. For d = 2, the bound is R < 37µm
eIn String Theory, the Planck scale serves as a cutoff for its low energy EFTs, including
the SM. There are daring ideas in which this is not necessarily true, like [42].
fA pun on the name of Loránd Eötvös, who pioneered the experimental validation of
the equivalence principle, and the University of Washington where the experiment is
conducted.

52



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 53

which requires M§ > 1.4 TeV. A different bound on these models comes
from the prediction of KK gravitons with a mass gap set by mKK ª 1/R,
which can result in stringent cosmological bounds. For example, the
bound on KK gravitons from thier effect on supernova cooling implies
M§ > 10°100 TeV for d = 2.

In ADD, hierarchy between the weak scale and the Planck scale is
just a mirage because gravity appears weak on large length scales, but
it is only weak from having to propagate in very large extra dimensions.
However, why are the radii so large? One would expect in a natural
model that there is only one fundamental scale M§ which is related to
the radius by M§ ª 1/R. The ADD idea however requires

R = 1
M§

µ

MPl

M§

∂

2
n

¿ 1
M§

(154)

which is unnatural from naive dimensional analysis arguments. One
needs to explain where this large number is coming from. Large extra
dimensions only translates the hierarchy of mW/MPl to the hierarchy
between the large radius R and 1/M§. Stabilizing this hierarchy dy-
namically in a natural model turns out to be very difficult.

4.5. Warped Extra Dimensions

In this section we explore extra dimensions that are warped, i.e. their
metric is non-factorizable. In 5 dimensions, this can be written gener-
ically as:

d s2 = a(z)2 °

¥µ∫d xµd x∫°d z2¢ (155)

where z is the conformal coordinate along the extra dimension and
a(z) is called the scale factor or warp factor. Warped extra dimen-
sions were first proposed by Randall and Sundrum (RS). In a seminal
paper [3], they showed how a metric of the form Eq. (155) can arise
as a solution to Einstein’s equations on a 5D interval with a negative
cosmological constant§, sandwiched between two branes of tensions
±§. The resulting metric is called 5 dimensional Anti de-Sitter (AdS5),
in which the warp factor assumes the form:

a(z) = R
z

. (156)
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For more details on how to get AdS5 gravity solutions see [39]. As we
will see in detail, the AdS5 form of the metric has far reaching implica-
tions for the Hierarchy problem, making the cutoff to the SM warped
down with respect to the Planck scale. In fact, we can now get the
weak-Planck Hierarchy from a Planck size extra dimension. This was
indeed a revolutionary step towards a solution to the Hierarchy prob-
lem.

Shortly after the proposal of this solution, it became clear that the
RS model has a 4D CFT dual: it corresponds to a 4D strongly cou-
pled theory which confines and dynamically generates an IR scale. In
essence, this is just another formulation of the familiar dimensional
transmutation that happens in QCD, which yields a confinement scale
far below the Planck scale. The advantage of the RS construction is
that it constitutes a calculable, weakly coupled description of a con-
fining theory that generates an IR scale—in this case the weak scale.

There are many variants of 4D solutions to Hierarchy problem that
are based on dimensional transmutation from confinement, of which
we have already named a few: Technicolor, in which the condensate
is directly responsible for EWSB, "old" composite Higgs, in which the
Higgs is some composite of the confining dynamics, and modern com-
posite Higgs, in which the Higgs is a pNGB of a global symmetry bro-
ken by the confinement. All of the above models have weakly cou-
pled duals set in RS space. The duals to Technicolor, "old" compos-
ite Higgs and modern composite Higgs are called Higgsless models,
bulk Higgs models, and models with Gauge-Higgs unification (GHU),
respectively. Towards the end of this section we will mainly explore
GHU, and show how it provide a calculable, weakly coupled frame-
work for modern composite Higgs models with partial compositeness.
But for now, let’s focus on the generic features of the RS construction
which will be useful for model building.

Much of what follows can be generalized to more general gravita-
tional backgrounds, parametrized by a general warp factor a(z). We
choose to work in AdS5 since it is in this background that the corre-
spondence to a 4D CFT is best understood. We take two branes at z = R
and z = R0 > R which truncate the space in the z-direction. The z = R
brane is usually called the “UV" brane since one usually has 1/R ª MPl,
while the other is referred to as the “IR" brane as typically 1/R0 ª 1/TeV
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for models which address the hierarchy problem. One could consider
a more general background which truncates space without the need
for branes, sometimes called soft-walls, but this will only affect the de-
tails of the KK spectrum.

To see how RS resolves the hierarchy between the weak-scale and
gravity, we first perform the gravity coupling matching for RS.

Sg = M3
§

ZR0

R

µ

R
z

∂3 Z

d 4x
p

g(4)R(4) (157)

= M3
§

1
2

µ

1° R2

R02

∂

(158)

From this result we can read off the effective Planck scale

M2
Pl = M3

§R
µ

1° R2

R02

∂

ª M2
§ (159)

where last equality follows from the fact that the natural size for R is
1/M§, the fundamental scale of the 5D theory.

This result Eq (159) is very different from that of ADD, and at first
glance does not seem like a solution to the hierarchy at all. After all, if
MPl ª M§ then there is no apparent hierarchy between 4D gravity and
5D gravity! There must be some other mechanism at hand. Indeed,
in warped extra dimensions the fundamental scale of gravity is the 4D
Planck scale, and the reason for the hierarchy is that the weak scale
itself is warped down. Below we will show this by examining the 4D
effective action for the Higgs. For now we will only state heuristically
that the 4D Higgs mass and VEV end up being related to MPl through
a warp factor evaluated at the position where the Higgs is localized (or
peaked if we allow the Higgs to propagate in the bulk)

v ª MPl
R
R0 ø MPl . (160)

In short, the weak scale is small because the Higgs is IR-localized and
the warp factor in the IR provides a huge suppression. In contrast, we
saw that the Planck scale itself is not suppressed at all. This is because
the graviton is UV-localized, and the warp factor evaluated at z = R is
one. It is the combination of the a UV-localized graviton and an IR-
localized Higgs that makes RS a successful solution to the Hierarchy
problem.

To demonstrate the warping down of the Higgs potential, let’s look
at a concrete example: a simplified RS model with a Higgs on the IR
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brane and only gravity in the bulk (which is essentially the original RS
proposal). The 5D action in this model is

S5 =
Z

d 5x
p°g

∑

R(5) +
p°gindp°g

±(z °R0)LH

∏

, (161)

where gind is the induced metric on the IR brane and

LH = gµ∫ind@µH§@∫H+∏
µ

|H|2 ° v2

2

∂2

, (162)

is the Higgs potential. At energies below 1/R0 ª TeV, we can’t resolve
the extra dimension, and so the physics should be adequetly described
by a 4D EFT. To get this EFT, all we have to do is integrate the action
over the extra dimension (for models with bulk fields we have to per-
form a KK decomposition). Plugging in

p°g = R5

z5 ,
p°gind = R4

R04 , we
get

S4 =
Z

d 4x
£

R(4) + L 4D
H

§

, (163)

with

L 4D
H =

µ

R
R0

∂2

@µH§@µH+
µ

R
R0

∂4

∏

µ

|H|2 ° v2

2

∂2

. (164)

Notice that the Higgs kinetic term is not canonically normalized.
Rescaling the Higgs field, we obtain:

L 4D
H = @µH§@µH+∏

µ

|H|2 ° ṽ2

2

∂2

, (165)

where ṽ = v R
R0 is the 4D Higgs VEV, which is warped down with respect

to the 5D one. If we find a way to naturally set R
R0 ª 10°18 (we will soon

explain how this is possible), we get a weak scale 4D Higgs mass and
VEV.

We see that a warped 5D theory with an IR-localized Higgs corre-
sponds to a 4D EFT with weak scale mass and VEV. In addition, 4D
gravity is not warped down, so we explain the 4D weak-Planck hier-
archy. However, in realistic theories, the 4D EFT contains the SM top
and gauge fields, with the usual quadratically divergent corrections to
the Higgs potential. How are these cut-off in an RS model? The answer
is subtle. We note that the 4D EFT has a cutoff set by §ª 1/R0. This is
where we are starting to probe the fifth dimension and the 4D EFT is no
longer adequate. From a bottom up point of view, the scale § is where
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KK gravitons appear and become strongly coupled. In other words, the
4D itself does not have a hierarchy problem because its cutoff is close
to the weak scale. The problem of radiative corrections thus goes over
to the full 5D theory. But in the 5D theory, the bare Higgs mass and VEV
can naturally be the Planck scale, in which case we do not expect any
significant difference between the ‘bare’ theory and the renormalized
one.

One still needs to stabilize the extra dimension in order to provide
an explanation for the hierarchy R and R0. Unlike for ADD, such a nat-
ural explanation has been provided by Goldberger and Wise [43] who
dynamically stabilized the distance between the two branes by the ad-
dition of a bulk scalar which obtains a VEV. The VEV generates a po-
tential with a minimum due to two competing forces, one from from
the scalar kinetic term which wants derivatives to be small and hence a
large extra dimension and one from the potential which prefers a small
radius.

As a side remark, note that MPl remains fixed as R0 ! 1, so the
large extra dimension can have infinite proper distance while still pre-
serving the 4D Planck scale. In fact, one can localize SM fields on the
UV brane and take the IR brane to z !1 which is known as RS2. Al-
though the effective Planck scale is finite as R0 !1 and 4D gravity is
preserved, cosmology would be altered due to the emerging gapless
continuum of KK gravitons. We will not consider this option further in
this review.

4.6. KK Decomposition in Warped Space

In realistic RS and composite Higgs models, fields are generically not
localized on the IR brane, but rather exist in the entire bulk. To get the
4D EFT for these fields, we need to perform a KK expansion.

For example, in the case of a complex bulk scalar, the 5D action is

S5 =
ZR0

R
d 4xd z

p
g

£

@M¡@N¡g MN °m2|¡|2
§

. (166)

We neglect localized boundary terms proportional to ±(z °R) or ±(z °
R0) which could be included. Their effect is to modify the boundary
conditions on ¡. Variation of the action yields the bulk equation of
motion

@M(
p

g g MN@N¡)+p
g m2¡= 0. (167)
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In deriving this equation, we integrated by parts picking up a boundary
term. In order for the field to be on-shell, it is also necessary for the
variation on the boundary to be vanishing

¡§@z¡
Ø

Ø

Ø

R,R0 = 0. (168)

We see that we can choose either Neumann or Dirichlet at both z =
R,R0. This is our choice, and it will affect the spectrum of KK modes
and, importantly, whether or not a zero mode is allowed in the spec-
trum.

We look for a solution in terms of KK eigenstates

¡(x, z) = 1
p

R

X

n
¡(n)(x) f (n)(z) (169)

Substitution of this ansatz into the EOM, we find that the profiles must
satisfy

∑

@2
z °

3
z
@z +m2

n °
µ

R
z

∂2

m2
∏

f (n)(z) = 0 (170)

which is a Schrodinger-type problem with the appropriate field redef-
inition of f (z). The solutions are related to Bessel functions

f (n)(z) = z2 [AnJÆ(mn z)+BnYÆ(mn z)] (171)

where Æ=
p

4+m2R2, and the solutions satisfy orthogonality relations
ZR0

R

1
R

µ

R
z

∂3

f (n)§(z) f (m)(z) = ±m,n . (172)

To determine which mn ’s are allowed, we must apply the chosen
boundary conditions on the solution in Eq. (171). The solution has two
free coefficients. One is fixed by normalization (required to ensure the
KK mode kinetic terms are canonically normalized), and the other by
one of the two boundary conditions. The other boundary condition
provides a quantization condition, picking out discrete allowed values
for the 4D masses. Excluding the zero mode, the first KK mode appears
generically above a mass gap set by mKK ª 1/R0.

For large z and mn 6= 0, the solutions are oscillatory ª z3/2 sin(mn z)
and grow towards the IR. This means that KK modes are generally
peaked at the IR brane. They interact most strongly with other IR-
localized DOF. The only exception is for a possible zero mode with
m0 = 0, in which case the solution take the form

f (0)(z) = Az2+
p

4+m2R2 +Bz2°
p

4+m2R2
. (173)
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The zero mode localization is controlled by the bulk mass parameter m
and is not necessarily IR localized. In most model building scenarios,
SM degrees of freedom are usually associated with the zero modes of
5D fields.

4.7. AdS/CFT Correspondence

One of the most important results related to extra dimensions is the
AdS/CFT correspondence proposed by Maldacena [44] (see [45] for a
complete review). This is a major avenue of research in formal theo-
retical physics, and here we will only give a quick heuristic sketch of
it. Generally speaking, AdS/CFT is a duality between a weakly cou-
pled gravitational theory in the bulk of AdS5, and a strongly coupled
4D conformal field theory. We would say that the 4D CFT ‘lives’ on
the boundary of AdS5. In its original formulation given by Maldacena,
AdS/CFT is the duality:

type IIB string theory ()N = 4 supersymmetric SU(N) gauge theory

on AdS5 £S5 on 4D Minkowski space

Correlation functions calculated in the theory on either side of the du-
ality match given a dictionary for relating observables on both sides.
The theory parameters on both sides of the duality are related by

R4

l 4
s
= 4ºg 2

YMN (174)

where ls is the string scale and gYM is the SU(N) Yang-Mills gauge cou-
pling.

In order for the bulk to be described by classical gravity, we should
have R ¿ ls so that we can neglect string corrections. This implies that
g 2

YMN ¿ 1, but this is the requirement that the 4D dual CFT is strongly
interacting. Now we can immediately see why this duality is useful:
we can perform weakly coupled, classical gravity calculations on the
5D side which are dual to a strongly-coupled 4D CFT. This is not so
surprising, we already know the 5D theory with an IR brane has a tower
of states, which is something we would expect from a strongly coupled
4D theory (e.g. resonances in QCD).

We will not delve into specifics, but we now wish to heuristically ex-
plain why one might expect there to be such a correspondence. Con-
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Fig. 6.: Motion along z scales the 4D coordinates and energy scale.

sider the effect of the z-coordinate transformation

z ! eÆz (175)

on a 4D slice of AdS

d s2 =
µ

R
z

∂2

¥µ∫d xµd x∫. (176)

The 4D effective metric is rescaled by e°2Æ, which can be undone by
the 4D coordinate transformation

x ! eÆx. (177)

Therefore, we see that

motion along z () rescaling 4D coordinates.

This means that increasing z is equivalent to increasing 4D length
scales as in Fig 6 and thus decreasing the 4D energy scale. This is
exactly what we found for the IR-localized Higgs VEV. We could have
guessed this behavior from the form of the metric.

This naturally leads us to the holographic interpretation of the ex-
tra dimension in which the z-coordinate corresponds to RG flow in
the 4D CFT. A bulk profile which grows with z corresponds to a CFT
operator whose coefficient flows to larger values in the IR. How can
we see this? Let’s first just check the plausibility on the warped two
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brane RS scenario before describing the entire dictionary of the cor-
respondence. Imagine localizing some 4D fields on a slice of the extra
dimension at z0. We will use these 4D fields to ‘probe’ the CFT at differ-
ent length scales by adjusting z0. As we move z0 deeper into the bulk
towards the IR brane, we have seen that the overlap of the IR-localized
KK modes with the ±(z °z0) localized fields becomes large once z0 ap-
proaches R0. Since z0 sets the effective 4D length scale on the slice of
AdS we are probing with our 4D fields, this would imply the 4D state
dual to the RS KK mode is strongly interacting at energy correspond-
ing to 1/R0. This is exactly what we would expect if the CFT dual is a
confining gauge theory with confinement scale § ª 1/R0, and the KK
modes are dual to the composite states.

UV
Elementary

IR

Composite

Fig. 7.: AdS/CFT dictionary for localized fields. Elementary DOF are
peaked on the UV brane, while composites are localized toward the IR
brane.

Maldacena’s proof involved the entire AdS5 space, not truncated
by two branes as in RS, and the dual 4D theory was a true CFT (no
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confinement). What is the interpretation of the two branes in the RS
scenario?

• UV brane: The 4D CFT is simply cutoff at a high energy scale
§ª 1/R. The cutoff introduces a mass scale into the CFT and
is therefore a source of breaking.

Moving away from the UV brane, which corresponds to running down
in energy in the 4D CFT, the bulk immediately becomes AdS implying
the CFT should quickly become conformal below the UV cutoff scale.
Any source of conformal breaking introduced by the cutoff must there-
fore be an irrelevant deformation of the CFT.

• IR brane: The IR brane sharply shuts off AdS space at z = R0

and corresponds to a relevant deformation of the CFT which
ultimately leads to confinement occurring at scale §ª 1/R0.

Indeed, we have seen that the IR brane forces a quantization condi-
tion on the allowed masses leading to KK modes with the lowest ly-
ing states near 1/R0. The IR brane should be interpreted then as a
simplified model of confinement. At some point in RG flow, a rele-
vant deformation is introduced such that the beta function Ø(g ) is not
completely vanishing. The theory begins to flow away from its confor-
mal fixed point, and eventually the theory becomes strongly interact-
ing and confines, producing bound states. A more realistic 5D model
of confinement would gradually shut off space, but the most impor-
tant features of confinement are the mass gap and the discrete tower
of states which the IR brane does capture.

Now we have a beautiful picture starting to emerge. The profile of
a particle’s 5D wavefunction corresponds to RG flow of its couplings
in the 4D CFT. Composite states should exist near the 4D confinement
energy scale and therefore near the IR brane in 5D, so we can conclude
that

• IR-localized fields (e.g. KK modes, Higgs) are composite.

Fields which are UV-localized interact weakly with the composite
states, and therefore should not be part of the strong dynamics. We
can conclude that
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• UV-localized fields (e.g. graviton) are elementary.

Now we can see that RS solves the hierarchy problem because the
Higgs is composite! RS is the 5D dual of composite Higgs models of
the sort we have discussed at the beginning of the lecture. We will be
able to present explicit calculable constructions for the MCH model
soon. However, we need one more ingredient, bulk gauge fields and
their connection to global symmetries in the CFT.

We should add one more line to our AdS/CFT dictionary:

5D gauge symmetry () 4D global symmetry.

A bulk gauge symmetry in the full AdS5 (R0 ! 1) corresponds to a
global symmetry in the 4D CFT. In order to see this, we need to under-
stand under which situations is there a massless gauge boson in the
low-energy 4D effective theory. In a RS-type scenario with two branes,
we can also get 4D gauge symmetries from 5D gauge symmetries since
in RS we can get a massless gauge boson in the spectrum.

Given a bulk gauge symmetry, the zero mode A(0)
µ couples to the

global current Jµ at each position in the bulk proportional to the 4D
effective gauge coupling. The EOM for the zero mode has the form

@M
°p

g g MNFNP
¢

= 0, (178)

and one can check that the profile is exactly flat, Aµ(x, z) = NAµ(x)
where N is a normalization constant. In fact, it has to be flat be-
cause this is what ensures that the gauge boson couples diagonally to
charged states. In order to get the effective 4D coupling, we normalize
the zero mode such that its 4D kinetic term is canonically normalized:

N =
"

ZR0

R

R
z

d z

#° 1
2

(179)

If we had taken the full AdS5, i.e. by sending R0 ! 1, then N ! 0
which shows that A(0)

µ is not normalizable (it is absorbed into the Aµ
KK mode continuum). The effective 4D gauge coupling, which is pro-
portional to N, is zero, and therefore it decouples from the theory. In
this case, we have a conserved current @µJµ = 0, which signals a true
global symmetry in the limit R0 !1.

However, for RS with a brane placed at finite R0, N is finite, and we
can have a normalizable zero mode. If the boundary conditions on the

63



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 64

UV and IR brane admit a zero mode solution (Neumann)

@5Aµ
Ø

Ø

R,R0 = 0 (180)

then the zero mode is allowed in the spectrum and the global symme-
try in the CFT is weakly gauged since there is a massless gauge boson
coupling to the current.

What if only one of the boundary conditions is switched to Dirich-
let (which is not compatible with the zero mode solution)?

• Aµ(R) = 0: The gauge symmetry in the 4D effective theory
is broken by UV boundary conditions. The zero mode is re-
moved from the spectrum leaving a residual global symmetry.
The would-be zero mode gauge boson acquires a mass set by
1/R and decouples from the low-energy theory.

• Aµ(R0) = 0: The gauge symmetry is broken by IR bound-
ary conditions. Since the IR brane is dual to confinement,
this corresponds to dynamical gauge symmetry breaking like
technicolor. The would-be zero mode gauge boson acquires
a mass set by the confinement scale or 1/R0.

Now imagine if we take Dirichlet boundary conditions on both
branes: Aµ

Ø

Ø

z=R,R0 = 0. The first boundary condition we apply removes
the zero mode gauge boson from the spectrum, converting the gauge
theory in the 4D effective theory to a global symmetry. However, the
second boundary condition provides a source of global breaking which
corresponds to the global symmetry being spontaneously broken by
confinement. This choice of boundary conditions should produce a
Goldstone mode! We will show that it actually arises in the A5 compo-
nent.

This fact is easy to see once we realize the A5 component should
have opposite boundary conditions to that of Aµ. In deriving the EOM
for A5 by varying the action, an integration by parts is required which
generates boundary terms. By requiring the boundary terms vanish,
one can show that if Aµ

Ø

Ø

R,R0 = 0, then A5 should satisfy the boundary
condition

@5

µ

A5

z

∂

Ø

Ø

Ø

z=R,R0 = 0. (181)

We will show this boundary condition does allow a zero mode in the
A5 component.
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The gauge action in warped space is

Sgauge =
Z

d 5x
R
z

∑

°1
4

Fµ∫Fµ∫° 1
2

Fµ5Fµ5
∏

. (182)

The action contains the following mixing term between A5 and Aµ
Z

d 5x
R
z
@µA5@5Aµ =

Z

d 5x @5

µ

R
z

A5
∂

@µAµ+boundary terms. (183)

The boundary terms will affect the boundary conditions but not the
bulk equation of motion. The mixing can be removed by adding the
gauge fixing term

Z

d 5x
1

2ª
R
z

∑

@µAµ°ª@5

µ

R
z

A5
∂∏2

. (184)

After gauge fixing, the quadratic A5 part of the action contains the
following terms

Z

d 5x
R
z

∑

1
2
@µA5@µA5 + 1

2
ª

µ

@5

µ

R
z

A5
∂∂2∏

(185)

leading to the bulk EOM for A5

@2A5 +
R
z
ª

∑

@2
5

µ

R
z

∂

A5 +2@5

µ

R
z

∂

@5A5 +
µ

R
z

∂

@2
5A5

∏

= 0. (186)

If we replace @2 !°m2, we see that for m2 6= 0, the A5 KK mode masses
are proportional to ª and are therefore unphysical. Remember A(n 6=0)

5
is eaten by A(n 6=0)

µ . However for the zero mode case (m2 = 0) we have
the EOM

@2
5

µ

R
z

∂

A5 +2@5

µ

R
z

∂

@5A5 +
µ

R
z

∂

@2
5A5 = 0 (187)

which has solutions

A5(x, z) =
°

az +bz log z
¢

A5(x). (188)

The boundary conditions in Eq. (181) pick out the solution propor-
tional to z. In more general backgrounds, the EOM is obtained by the
replacement R/z ! a(z), and the A(0)

5 profile always scales as the in-
verse of the warp factor.

Going through the full KK decomposition for Aµ

Aµ(x, z) = 1
p

R

X

n
h(n)(z)A(n)

µ (x) (189)

One can check that the solutions to the A(n)
µ EOM are again Bessel func-

tions

h(n)(z) = z (AnJ1(mn z)+BnY1(mn z)) . (190)
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4.8. Fermions in RS

We now will describe how to include bulk fermions in RS. The smallest
irreducible representation of the 5D Lorentz group is the 4-component
Dirac spinor. This implies that every bulk fermion field contains both
left-handed (LH) and right-handed (RH) components, i.e.

™=
√

¬

√̄

!

, (191)

and the 5D theory is non-chiral. There is a way to get chiral SM mat-
ter content however since the boundary conditions in a RS-type model
pick out chiral zero modes. The boundary conditions which allow a LH
zero mode will not allow a zero mode in RH component of the same
Dirac spinor and vice versa. The KK modes of the fermions are, how-
ever, vector-like.

In this section, we will use Dirac matrices in the chiral representa-
tion:

∞µ =
√

0 æµ

ǣµ 0

!

, ∞5 =
√

i 0
0 °i

!

(192)

where æ0 = ǣ0 = °1 and æi = °ǣi are the usual Pauli spin matrices.
The gamma matrices in warped space are related to the ordinary flat
space ones [38, 46] by a factor known as the vielbein eM

a , where a in-
dices denotes flat space indices, which satisfies

eM
a ¥

abeN
b = g MN, (193)

ea
M = R

z
±a

M, (194)

°M = eM
a ∞

a . (195)

Furthermore, the covariant derivatives require an additional piece
called the spin-connection

Dµ™= (@µ+
1

4z
∞µ∞5)™ (196)

D5™= @5™. (197)
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Working in terms of vielbeins and flat space gamma matrices, the
5D AdS fermion action can be written as

Sfermion =
Z

d 5x
p

g

µ

i

2
™̄eM

a ∞
aDM™° i

2
DM™̄eM

a ∞
a™°M™̄™

∂

(198)

The spin-connection part of the covariant derivative cancels out leav-
ing us (after integration by parts of the left-acting z derivatives) with

Z

d 5x

µ

R
z

∂4

™̄

µ

i /@+ i∞5@5 ° i
2
z
∞5 ° c

z

∂

™ (199)

where we have chosen to write the bulk mass in terms of a dimension-
less bulk mass c = MR.

In terms of 2-component Weyl spinors, Eq (198) becomes
Z

d 5x

µ

R
z

∂4

[°i ¬̄ǣµ@µ¬° i√æµ@µ√̄+ 1
2

(√
√!
@5 ¬° ¬̄

√!
@5 √̄)+ c

z
(√¬+ ¬̄√̄)]

(200)

where √
√!
@5 ¬ = √@5¬° @5√¬. Variation gives the 1st order coupled

EOMs

°i ǣµ@µ¬°@5√̄+ c +2
z

√̄= 0

°iæµ@µ√̄+@5¬ + c °2
z

¬= 0 (201)

Now we can proceed with KK decomposition. As usual we expand
the 5D fields as a sum of 4D eigenmodes

¬=
X

gn(z)¬n(x)

√̄=
X

fn(z)√̄n(x) (202)

where ¬n ,√n satisfy the ordinary 4D Dirac equation

°i ǣµ@µ¬n +mn√̄n = 0

°iæµ@µ√̄n +mn¬n = 0. (203)

Substitution of the KK sum yields EOMs for the profiles

f 0
n +mn gn ° c +2

z
fn = 0

g 0
n °mn fn + c °2

z
gn = 0 (204)
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These equations can be decoupled at the cost of turning them into
two second order decoupled equations with relations among the co-
efficients of their solutions. The result is again Bessel functions:

gn(z) = z
5
2 (AnJc+1/2(mn z)+BnYc+1/2(mn z))

fn(z) = z
5
2 (AnJc°1/2(mn z)+BnYc°1/2(mn z)) . (205)

Focusing on the zero mode solutions, we have

g0 = A0

≥ z

R

¥2°c
, f0 = B0

≥ z

R

¥c+2
. (206)

We will not go into much detail about how to derive the fermion
boundary conditions [47]. One can study the 1st order EOMs and show
that if one chirality satisfies Dirichlet boundary conditions, then the
other chirality must satisfy Neumann-type conditions in order for the
EOM to be satisfied on the boundary. The main point is that one of the
chiralities must have Dirichlet boundary conditions, which will elim-
inate the zero mode solution in that chirality. Thus, either A0 or B0

must be zero. This generates a chiral zero mode spectrum allowing us
to get the SM fermion field content.

Moreover, just as we found for the bulk scalar, the bulk mass con-
trols the localization of the zero mode. The fermion zero mode can be
mostly elementary or mostly composite depending on our choice for
the bulk mass parameter c. For a LH zero mode ¬,

• ¬i s UV-localized (IR-localized) for c > 1/2 (c < 1/2)

and for a RH zero mode √,

• √ is UV localized (IR localized) for c <°1/2 (c >°1/2) .

The properly normalized fermion zero mode is

√0
L,R(x, z) = 1

p
R0

≥ z

R

¥2 ≥ z

R0

¥®c
f±c PL,R√

0(x) (207)

where fc is known as the RS flavor function

fc =
v

u

u

t

1°2c

1°
° R

R0
¢1°2c . (208)
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4.9. Construction of a Realistic RS Model

In this section, we describe the process towards achieving a realistic
RS model consistent with electroweak precision constraints which was
worked out by Agashe, Delgado, May, and Sundrum [48]. The first hur-
dle we face is to protect the T-parameter. Without a custodial sym-
metry incorporated, the strong dynamics from the composite sector
generate large T- and Ω-parameter corrections. The custodial symme-
try can also be useful to protect the Zbb̄ coupling [49] which is highly
constrained by LEP.

We incorporate the custodial symmetry in the composite sector by
enlarging the bulk gauge symmetry G to contain the SM gauge symme-
tries plus a custodial SU(2)R. For simplicity we can take G = SU(2)L £
SU(2)R £U(1)X. The SM hypercharge is embedded in SU(2)R £U(1)X.

However, we do not want additional massless SU(2)R gauge bosons
in the 4D effective theory, so we break SU(2)R£U(1)X down to U(1)Y on
the UV brane by applying Dirichlet boundary conditions on the gauge
bosons corresponding to the generators we wish to break. The 4D CFT
description of this scenario is a CFT with a SU(2)L £ SU(2)R £U(1)X

global symmetry whose SU(2)L £U(1)Y subgroup is gauged. If we take
the Higgs to be a bidoublet under SU(2)L £ SU(2)R, the Higgs sector
will have an approximate custodial symmetry thus reducing the bulk
T-parameter contributions. The other option would be to break the
unwanted SU(2)R generators on the IR brane, but this scenario would
have larger custodial symmetry violation since this corresponds to the
global SU(2)R symmetry being gauged (and spontaneously broken by
confinement). Usually in RS model building, the bulk gauge symmetry
is broken down to SM gauge symmetries on the UV brane.

To address the hierarchy problem, the Higgs should be compos-
ite and thus IR-localized. In order to achieve a realistic top mass, the
Higgs should have significant overlap with the top. However, tL can-
not be IR localized since it is in the same doublet as bL, and this would
give large corrections to the Zbb̄ coupling. Therefore tR should be sig-
nificantly IR-localized, and it turns out we can get away with having tL

approximately flat, ctL ª 1/2. Light fermions should have small mass
and therefore are UV-localized. This scenario is summarized in Fig. 8.

There is a rich set of signatures from the realistic RS scenario [50].
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Fig. 8.: The “realistic" RS scenario. The bulk gauge symmetry contains
the SM gauge symmetries with an additional custodial SU(2)R which
is broken by boundary conditions on the UV brane. The Higgs and tR

are IR-localized, the light quarks and leptons are UV-localized, and the
gauge bosons and tL are approximately flat.

The most striking signal is the production of the KK gluon is produced
via Drell-Yan with a large rate: æ(qq̄ ! G(1)) ª 0.1 pb for mKK ª 3
TeV. Gluon production is not important since the KK gluon profile is
orthogonal to the zero mode gluon, and existing constraints already
rule out KK gluon masses which are light enough to be pair-produced.
Since tR is peaked on the IR brane, the KK gluons decay almost exclu-
sively to t t̄ . Very heavy KK gluons decay to highly boosted tops, re-
quiring the use of jet substructure to tag the tops. The current bound
is roughly mG(1) > 3 TeV. In addition, one can also produce the other KK
excitations: Z(1), ∞(1), etc. The KK modes tend to have largest overlap
with the top, Higgs, and longitudinal gauge bosons. The most likely
decays include Z(1) ! t t̄ ,W+W°, . . ., ∞(1) ! Zh, t t̄ , . . . for example. KK
decays to leptons are strongly suppressed since they are elementary.
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Realistic RS is a natural implementation for partial composite an-
archic flavor models. All we have to do is take the realistic RS scenario
and which requires different c’s for the various SM fermions. The c’s
control the localization of the zero modes, which generates exponen-
tial hierarchies in the zero mode overlap integrals. Then just as in the
general case we have

mu = v
p

2
fq Yu f°u (209)

md = v
p

2
fq Yd f°d . (210)

where f is now given by the RS flavor function, and we have adopted
the short hand q ¥ cq , u ¥ cu , etc. All of the generic partial compos-
iteness discussion applies here. In the 4D CFT description, the bulk
mass parameters control the anomalous dimension of the fermion
mass term operators.

Fig. 9.: Diagrams contributing to KK gluon induced 4-fermi operators.

We can also explore the specific source of 4-fermi operators arising
from KK gluon exchange. In the flavor basis (before mass diagonaliza-
tion), the KK gluon’s couplings to quark species X are diagonal but not
exactly universal [30]

gX ' g§

√

° 1

log R0
R

+ f 2
X°(cX)

!

. (211)
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The first piece is universal and arises from the elementary part of the
KK gluon coupling to the elementary fermions. The second term is the
contribution from the composite sector via mixing with the elemen-
tary part of the KK gluon. The coupling would be universal if the fX’s
were degenerate, but this is not the case if we wish to explain flavor
with RS.

After rotation to the mass basis, the off-diagonal couplings are of
order

(gqL )i j ª g§ fqi fq j (212)

(guR )i j ª g§ f°ui f°u j (213)

(gdR )i j ª g§ f°di f°d j . (214)

Notice that the off-diagonal couplings of the quarks are suppressed by

Fig. 10.: Example of one contribution to the quark elecric dipole mo-
ment arising from KK quarks.

hierarchically small entries. This suppression is the appearance of the
RS-GIM mechanism, which is a result since the off-diagonal couplings
to the KK gluon are proportional to the fermion Yukawas. The 4-fermi
operators are generated from the diagrams in Fig. 9. After integrating
out the KK gluon and application of Fierz identities, we obtain the fol-
lowing operators parametrized in terms of Wilson coefficients C1, C4,
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C5.

C1
≥

q̄ iÆ
L ∞µq j

LÆ

¥≥

q̄kØ
L ∞µql

LØ

¥

+C4
≥

q̄ iÆ
R qk

LÆ

¥≥

q̄ lØ
L q j

RØ

¥

(215)

+C5
≥

q̄ iÆ
R ql

LØ

¥≥

q̄kØ
L q j

RÆ

¥

(216)

where Æ,Ø are color indices. The most strongly constrained quantity is
C4K which we estimate to be

CRS
4K ª

g 2
§

m2
G

fq1 fq2 f°d1 f°d2 ª
1

m2
G

g 2
§

Y2
§

2md ms

v2 . (217)

Even with the RS-GIM mechanism the bound is still somewhat large,
mG & 20 TeV. There is additionally another type of bound arising from
electric dipole moments induced by KK fermion exchange as shown in
Fig. 10.

4.10. Holographic Composite Higgs & Higgs Potential

We have seen how to obtain a realistic RS scenario. However, we wish
to go one step further and incorporate a pNGB Higgs. The pNGB Higgs
allows its mass to naturally be a loop factor below the strong dynamics,
much as the pion is lighter than §QCD. Moreover, the Higgs potential
is finite and calculable. We will describe the RS setup for the MCH
model. We know from AdS/CFT that to obtain a Goldstone boson we
can break a bulk gauge symmetry on both the UV and IR branes, and
we should get Goldstone bosons in the A5 component of the gauge
fields corresponding to the the broken generators. This kind of sce-
nario is known as Gauge Higgs Unification since the Higgs boson is
actually part of a higher-dimensional gauge field [4, 36].

We start with a bulk gauge symmetry G = SO(5)£U(1)X where the
SM SU(2)L is embedded in SO(5) [32]. Notice that SO(5) Ω SO(4) ª
SU(2)L £ SU(2)R contains a custodial symmetry. Hypercharge is em-
bedded in a linear combination the diagonal of SU(2)R æ SO(5) and
U(1)X. G is broken by boundary conditions to the SM gauge groups
SU(2)L£U(1)Y on the UV brane to remove the extra gauge symmetries
in the low energy theory. Finally, G is broken to SO(4) by boundary
conditions on the IR brane. This corresponds to the SO(5) global sym-
metry in the CFT being spontaneously broken by confinement.

There are 4 broken generators Ta
C (the generators corresponding to

the coset of SO(5)/SO(4)) which are broken on both branes, so there
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Fig. 11.: The holographic MCH setup in 5D.

are 4 Goldstone bosons Aa
5 which transform as a (2,2) under SU(2)L £

SU(2)R. After electroweak symmetry breaking 3 are eaten by the W
and Z bosons and one remains as the physical Higgs. The Higgs wave
function is set by the A5 profile

Aa
5 (x, z) =

r

2
R

z

R0 Ta
Cha(x). (218)

We have chosen the normalization such that the ha ’s are canonically
normalized in the 4D effective theory.

There are several relevant scales of the theory. The first is the the
KK scale which is set by zeros of the Bessel function solutions of the KK
EOMs and is approximately

MKK ' 2
R0 . (219)

The KK scale sets the mass gap of the strong dynamics, and the lightest
KK modes should be an order one number times the KK scale in a nat-
ural theory. Another important parameter is the dimensionless gauge
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coupling

g§ = g5p
R

, (220)

that sets the interaction strength of KK gauge bosons. The Higgs inter-
actions, and thus the SM Yukawas, are also proportional to g§. Then
we have the scale of global symmetry breaking

f = MKK

g§
ª 2

g§R0 (221)

which in the dual theory is the energy scale of the VEV that breaks the
global symmetry SO(5) ! SO(4).

Contributions to the Higgs potential are cutoff at an energy scale

g§ f ∑ 4º f , (222)

which acts as a compositeness scale for the Higgs boson. The inequal-
ity comes from the requirement that the effective theory is perturba-
tive. Notice that the dimensionless gauge coupling controls the cut-
off, and for a perturbative scenario (g§ ∑ 4º), the contributions to the
Higgs potential are shut off before we lose perturbative calculability at
§ ª 4º f . This is the reason the Higgs potential is calculable: the po-
tential is not sensitive to contributions above g§ f which we can not
perturbatively calculate. This result can be viewed as a consequence
of collective symmetry breaking in the extra dimension.

How do we get an effective potential for the Higgs? The tree level
potential is vanishing since 5D gauge invariance forbids a potential for
A5. However, a radiative potential is generated since we have explicity
broken the SO(5) global symmetry by gauging a subgroup and from the
fact that the zero modes do not form complete SO(5) representations.
In order to determine the potential, we calculate the bulk EOMs for the
gauge fields and fermions in the presence of a classical A5 background.
Their spectrum will depend on the A5 VEV background and therefore
generate a CW potential. However, this calculation is hard! The bulk
fermion EOMs are very complicated with the z-dependent Higgs VEV
turned on, and the VEV couples the EOM of different components of
each fermion multiplet.

The trick is to perform a 5D gauge transformation that completely
removes A5 from the bulk action [51]:

≠(z) = ei g5
Rz

R d z 0Aa
5 Ta

(223)
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where ≠ is just the Wilson line from R to z. Notice that ≠(R) = 1, so
this is the identity transformation on the UV brane. This gauge trans-
formation removes A5 from the pure gauge action. Under the gauge
transformation, the fermions pick up a phase

√=≠(z)√̃ (224)

which also removes A5 from the bulk fermion EOMs. Working in terms
of the redefined fields √̃, the bulk fermion EOMs are simple and de-
coupled. However, the initial boundary conditions were given as con-
ditions on √. We must now apply boundary conditions on the rotated
fermions ≠(z)√̃. Only the IR boundary conditions are affected since
≠(R) = 1. Therefore A5 still shows up in the IR boundary conditions for
the fermions in the form of the Wilson line.

The 4D Coleman Weinberg potential generated by a KK tower takes
the form

V = (°1)F N
2

X

n

Z

d 4p

(2º)4 log
£

p2 +m2
n(h)

§

(225)

where n runs over the KK modes, N is the number of DOFs at each
level of the KK tower (3 for a gauge boson, 4 for a Dirac fermion) and
mn(h)’s are the Higgs-dependent masses.

The easiest way to perform this sum is to find a function that en-
codes the KK spectrum as simple poles and to enclose the Re(m2) > 0
half of the complex m2-plane with a contour integral. The integral
picks out the residues of the poles and performs the sum for us at the
cost of having to do an integral along the m = i k axis. After the use of
dimensional regularization to compute the d 4p integral, the result can
be massaged to the form

(°1)F N
(4º)2

Z1

0
dkk3 log[Ω(°k2)] (226)

where Ω(z) is a spectral function which must be holomorphic for
Re(z) > 0 and its zeros encode the KK spectrum by Ω(m2

n) = 0.
The spectral function is obtained by application of the boundary

conditions to the fermion and gauge boson EOM solutions in order
to obtain a quantization condition on mn(h). After applying the UV
boundary conditions, there is a solution if and only if the coefficient
matrix M of the IR boundary conditions M .A = 0 is non-invertible
(A is the vector of undetermined normalization coefficients). Thus Ω

76



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 77

is given by the det (M ). One can show that the spectral functions take
the form

Ω(°k2) = 1+F(°k2)sin2
µ

∏Rh

f

∂

(227)

where the form factor F(°k2) depends on the exact warping and ∏r

is a numerical factor that depends on the SO(5) representation of the
fields contributing to the A5 potential.

The form factors can be exactly calculated for the AdS5 back-
ground. For large momenta, the form factors are warped down as
F / e°4k/mKK . This shows that MKK = g§ f acts as a momentum cut-
off to the Higgs potential since contributions from energies above this
scale will not affect the potential. The potential involves contributions
from gauge bosons and from fermions

Veff = Vgauge +Vfermion. (228)

If we take the fermions to be embedded in the fundamental 5 of SO(5),
the result is [51]

Vgauge = Æsin2
µ

h

f

∂

Vfermion = Ø1 sin2
µ

h

f

∂

+Ø2 sin4
µ

h

f

∂

(229)

where Æ, Øi are given by momentum integrals of quantities involving
the form factors F(p2). Constraints on Higgs couplings require that
the minimum of the potential v = hhi satisfies f /v & 3° 5 since the
angle v/ f controls how aligned the Goldstone mode is aligned with
SU(2)L and leads to deviations in Higgs couplings if it is too large. This
introduces a source of fine-tuning of order v2/ f 2.

5. Conclusions

So far there is no direct evidence for BSM physics, making the lightness
of the Higgs boson ever more puzzling. These lectures were reviewing
one of the leading theoretical ideas for new physics that could solve the
hierarchy problem around the few TeV scale: the idea that the Higgs
is not actually an elementary particle, but rather a composite pNGB.
We have outlined the main features of such pNGB’s essential for CH

77



January 2, 2018 15:47 ws-rv9x6 Book Title TASI2017_22_OT
page 78

model building and highlighted the mechanism of collective symme-
try breaking, as the essential tool behind CH/Little Higgs models. We
have sketched out how to construct the major versions of such models
and also contrasted their properties. We have used the AdS/CFT cor-
respondence to establish the connection between pNGB Higgs mod-
els and holographic CH models, and also explained in detail partial
compositeness, the modern way of introducing fermion masses into
model with strong dynamics and symmetry breaking. While the ex-
perimental bounds on the putative top and spin 1 partners are getting
ever stronger, the amount of tuning needed for these models is still
around a few percent, roughly what was initially implied from the LEP
bounds almost 20 years ago.
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