Inflation and the Theory of Cosmological Perturbations

Exercises

The standard Big Bang model and its shortcomings

1. Friedmann equations

Using the FLRW metric and Einstein equations, find the Friedmann equations.

2. Matter-Radiation Transition

Calculate the epoch of matter-radiation equality as a function of redshift.

3. Flatness Problem

Consider an FLRW model dominated by a perfect fluid with equation of state $P = w\rho$, for w = const. Show that

$$\frac{\mathrm{d}\Omega}{\mathrm{d}N} = (1+3w)\Omega(\Omega-1)$$

and discuss the stability of the solution $\Omega = 1$.

The inflationary cosmology

1. Photons in deSitter

Show that photons are not produced during inflation.

2. E-folds and reheating temperature

Using entropy conservation and assuming instantaneous reheating at temperature $T_{\rm rh}$, show that we need a number of e-folds of

$$N = 46 + \log\left[\frac{T_{\rm rh}}{10^{10} {\rm GeV}}\right] + \frac{1}{2} \log|\Omega_i - 1|$$
(0.1)

to solve the flatness problem.

3. Slow-roll inflation I

Consider a model of inflation with a potential $V(\phi) \propto \phi^n$. Calculate slow rollparameters for this class of models. Requiring a minimum number of e-foldings of $N \ge 60$, what is the minimum inflaton field excursion $\Delta \phi$ between the beginning and the end of inflation?

Cosmological perturbations

1. Slow-roll inflation II

Using the results from the previous exercise, calculate the scalar spectral index n_s and the tensor-to-scalar ratio r for $V(\phi) \propto \phi^n$ as a function of n and ΔN_{λ} (the number of e-folds between horizon exit of the wavelength λ and the end of inflation). Discuss allowed values of n given the current CMB constraints ($50 < \Delta N_{\lambda} < 60$).

2. Lyth bound

Find a relation that connects the maximum inflaton field excursion $\Delta \phi$ during inflation to the tensor-to-scalar ratio r.

3. Scale of Inflation

Find a relation that connects the energy scale of inflation to the tensor-to-scalar ratio r.

4. Symmetries and inflationary N-point correlators

Using symmetry arguments, show that the N-point function of ζ in Fourier space in a generic model of inflation is of the form

$$\langle \zeta_{\vec{k}_1} \dots \zeta_{\vec{k}_N} \rangle = (2\pi)^3 \delta_D \left(\sum_{i=1}^N \vec{k}_i \right) F(\vec{k}_i) \tag{0.2}$$

with F a homogeneous function of the momenta of degree -3(N-1).

5. Magnetic field during inflation

Find the suitable function I(t) such that the Lagrangian $I(t)F_{\mu\nu}F^{\mu\nu}$ leads to the quantum-mechanical generation of a magnetic field during a de Sitter epoch.