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STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
f(x|0) - statistical model; () - prior

d: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and action
R(8,0) = Eqxe)[L(B, 0)] - risk

e A decision 0* rule dominates a decision rule d if and only if R(8,0*)< R(8,0) for all 8, and the inequality is strict for
some 0.

e A decision rule is admissible if and only if no other rule dominates it; otherwise it is inadmissible
r(r, 8) = Ene)l R(,0)] - Bayes risk (expectation over 8 w.r.t. prior and possible observations)
p(r, ® | x) = Enepl L(B,0(x))] - expected loss (expectation over 8 w.r.t. posterior (0|x) )

e 0'is a(generalized) Bayes rule if it minimizes the expected loss

* under mild conditions every admissible rule is a (generalized) Bayes rule (with respect to some prior —possibly an
improper one—that favors distributions where that rule achieves low risk). Thus, in frequentist decision theory it is
sufficient to consider only (generalized) Bayes rules.

* Conversely, while Bayes rules with respect to proper priors are virtually always admissible, generalized Bayes rules
corresponding to improper priors need not yield admissible procedures. Stein's example is one such famous

situation.
https://en.wikipedia.org/wiki/Admissible_decision_rule



THUMBNAIL OF THE STATISTICAL PROCEDURE

L, 0(1) Follow LHC-HCG Combination Procedures
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https://cdsweb.cern.ch/record/1375842

SLIDES FROM THE LAST DAY

My GGl lectures were mainly on the blackboard, but on the
last day | showed a selection from these slides.
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Galileo Galilei Institute for Theoretical Physics
Firenze
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Building a Statistical Model
Systematics & Nuisance Parameters



VISUALIZING PROBABILITY MODELS

| will represent PDFs graphically as below (directed acyclic graph)
» eg. a Gaussian G(x|u, o) is parametrized by (i, o)
» every node is a real-valued function of the nodes below
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ROOFIT: A DATA MODELING TOOLKIT

RooFit is a major tool developed at BaBar for data modeling.
RooStats provides higher-level statistical tools based on these PDFs.
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MARKED POISSON PROCESS

Channel: a subset of the data defined by some selection
requirements.

» eg. all events with 4 electrons with energy > 10 GeV
» n. number of events observed in the channel
» v: number of events expected in the channel

Discriminating variable: a property of those events that can be
measured and which helps discriminate the signal from background

» 9. the invariant mass of two particles
» f{x): the p.d.f. of the discriminating variable x

D = {181,...,£En}
Marked Poisson Process / Extended Likelihood:

f(D|v) = Pois(n|v) H f(z,)




MIXTURE MODEL

Sample: a sample of simulated events corresponding to particular
type interaction that populates the channel.

» statisticians call this a mixture model
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PARAMETRIZING THE MODEL o = (i, 0)

Parameters of interest (u): parameters of the theory that modify the
rates and shapes of the distributions, eq.

» the mass of a hypothesized particle
» the “signal strength” u=0 no signal, u=1 predicted signal rate

Nuisance parameters (0 or ay): associated to uncertainty in:
» response of the detector (calibration)
» phenomenological model of interaction in non-perturbative regime

Lead to a parametrized model: v — v(a), f(z) — f(z|a)

mn

£(D|a) = Pois(nlv(a)) [] f(zley

e—=1
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INCORPORATING SYSTEMATIC EFFECTS
Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and "+ 1 ¢~

» use some form of interpolation to parametrize p* variation in terms of
nuisance parameter a,
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VISUALIZING THE MODEL FOR ONE CHANNEL
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VISUALIZING THE MODEL FOR ONE CHANNEL

After parametrizing each
component of the mixture model,
the pdf for a single channel might
look like this
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SIMULTANEOUS MULTI-CHANNEL MODEL

Simultaneous Multi-Channel Model: Several disjoint regions of the
data are modeled simultaneously. |dentification of common
parameters across many channels requires coordination between
groups such that meaning of the parameters are really the same.

fsim(Dsim‘a) — H POlS nc|Vc H fc mce

cEchannels

where DSim — {Dla R 7Dcmax}

Control Regions: Some channels are not populated by signal
processes, but are used to constrain the nuisance parameters

» attempt to describe systematics in a statistical language
» Prototypical Example: “on/off” problem with unknown v,

f(n,m|u,vy) = Pois(n|u + vp) - Pois(m|Tvp)
S—— N —
signal region control region
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CONSTRAINT TERMS

Often detailed statistical model for auxiliary measurements that
measure certain nuisance parameters are not available.

» one typically has MLE for a,, denoted ap and standard error
Constraint Terms: are idealized pdfs for the MLE.
fplap|ay) for pes
» common choices are Gaussian, Poisson, and log-normal
» New: careful to write constraint term a frequentist way
» Previously: m(ayplay,) = fp(ap|ap)n(ay,) with uniform n

Simultaneous Multi-Channel Model with constraints:

fiot (Dsim, G|ax) = H Pois(nc|ve(a)) H fe(@eelor) | - H fpap|op)

cE€channels L e=1 1 péEeS

where

Dsim:{Dl,...,DcmaX}, G ={a,} for pes

16



CONCEPTUAL BUILDING BLOCKS

Ensemble

Experiment

A |— VW |—O| »

Constraint Term
a la )
fp( P P

p € parameters with constraints

Channel
Legend:
A "has manyu Bs. Cc € Channels
B "has a" C. f (xla)
Dashed is optional. ¢
S ——
Event Sample
e € events s € samples
{1...nc}
\4
Observable(s) Distribution Expected Number of Events
xec fsc (xla) z/s

?
v

Shape Variation

fscp(x I ap =X)

global observable

a

Parameter

a, 0, u

We will use the following mnemonic index conventions:

e € events

b € bins

c € channels
s € samples

p € parameters
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EXAMPLE OF DIGITAL PUBLISHING

File View Options A RooPlot of "x"

£ wspace.root = 8y e |n o Iﬁ/ | .LJI §1°°j
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VISUALIZING THE COMBINED MODEL

State of the art: At the time of the discovery, the combined Higgs search
iIncluded 100 disjoint channels and >500 nuisance parameters

RooFit / RooStats: is the modeling language (C++) which provides
technologies for collaborative modeling

» provides technology to publish likelihood functions digitally
» and more, it's the full model so we can also generate pseudo-data

fiot (Dsim, G|ax) = H Pois(n.|v.(a)) H fe(Teel) | - H folaplap)

cEchannels L e=1 pPES
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VOLUTION OF MODEL COMPLEXITY
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TENSORBOARD

Modern Machine Learning tools like TensorFlow express the
model in a similar way as a Directed Acyclic Graph (DAG)
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AUTOMATIC DIFFERENTIATION

Automatic
differentiation

A 4

B o)

human

programmer

y=f(X)F--------mmmmmmmmme oo

symbolic differentiation

(human/computer)

>>> import autograd.numpy as np # Thinly-wrapped numpy

>>> from autograd import grad # The only autograd function you may ever need
>>>
>>> def tanh(x): # Define a function

y = np.exp(-2.0 *x x)
return (1.0 - y) / (1.0 + y)

>>> grad_tanh = grad(tanh) # Obtain its gradient function

>>> grad_tanh(1.0) # Evaluate the gradient at x = 1.0
0.41997434161402603

>>> (tanh(1.0001) - tanh(0.9999)) / 0.0002 # Compare to finite differences
0.41997434264973155

We can continue to differentiate as many times as we like, and use numpy's vectorization of scalar-valued functions
across many different input values:

>>> from autograd import elementwise_grad as egrad # for functions that vectorize over inputs
>>> import matplotlib.pyplot as plt

>>> X = np.linspace(-7, 7, 200)

>>> plt.plot(x, tanh(x),

x, egrad(tanh)(x), # first derivative
X, egrad(egrad(tanh))(x), # second derivative
x, egrad(egrad(egrad(tanh)))(x), # third derivative
x, egrad(egrad(egrad(egrad(tanh))))(x), # fourth derivative
X, egrad(egrad(egrad(egrad(egrad(tanh)))))(x), # fifth derivative

e X, egrad(egrad(egrad(egrad(egrad(egrad(tanh))))))(x)) # sixth derivative
e s https://en.wikipedia.org/wiki/Automatic differentiation



https://en.wikipedia.org/wiki/Automatic_differentiation

Probabilistic programming frameworks

RooFit serves us well, but shows limits in terms of scalability.

w M LIL= S Using a data flow graph framework, RooFit would be distributed, GPU-enabled

and automatically differentiable.

Feasibility? Certainly within reach! As illustrated by our tentative
proof-of-concepts carl.distributions and tensorprob
. See also Edward.
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0 Subemaclies distributions Al ] et e Yourve found the for TensorProb, a probabil framework
o carl.data = The API documentation based on Tensor] Flow.
: G0l This Page TensorProb is currently under construction! Expect things to break!
We are working on implementing the following features:
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Edward  Alibrary for probabilistic modeling, inference,
and criticism.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a
testbed for fast experimentation and research with probabilistic models, ranging from

classical hierarchical models on small data sets to complex deep probabilistic models Ph.D. Student Fel Cke rt
on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, Columbia University
deep learning, and probabilistic programming. dustin@cs.columbia.edu (@dustinviran, "
http.//dustintran.com _ %
It supports modeling with High Energy Physics Ph.D. Candidate

Southern Methodist University
matthew.feickert@cern.ch or mfeickert@smu.edu
GitHub: matthewfeickert @HEPfeickert




pyhf: modern implementation of HEP likelihood computations
— easy'to'p U bl |S h Ilkel I h OOdS
— make likelihoods fast to compute B | B | By H PR

kot 1331 A3 233 Al

Likelihoods as computational graphs B
of array computations e

a3

e automatic gradients

e compute on specialized hardware
(GPU / TPU)

e graph structure allows distribution
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Gaussian Processes



The anatomy of a transit observation
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https://indico.cern.ch/event/395374/timetable/#41-scalable-gaussian-processes

AN EXOPLANET EXAMPLE
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https://speakerdeck.com/dfm/pydata-time-series-analysis-gps-and-exoplanets



the data are drawn from one

Gaussian

* the dimension is the number of data points.




GAUSSIAN PROCESSES

logp(y |z, 0,0, a) =~ 5 [y~ fo(x)] Kalz, o) " [y~ fo(z)

N
logdet Ko (x, o) — 5 log 2

MI}—\[\DI»—

where

Ko (x, a')]z.j = 0,°6; + ka(x;, 1;)

_

kernel function
(Where the magic happens)

see: gaussianprocess.org/gpml  github.com/dfm/george



WIKIPEDIA

https://en.wikipedia.org/wiki/Gaussian

process

Prior

function values y(x1) &

y(x2) are highly

correlated for close by

points

2.0

Posterior

Prediction with Uncertainty



https://en.wikipedia.org/wiki/Gaussian_process

WIKIPEDIA

https://en.wikipedia.org/wiki/Gaussian_process

Prior Posterior Prediction with Uncertainty

function values y(x1) &
y(x2) are ~uncorrelated
tor far-away points


https://en.wikipedia.org/wiki/Gaussian_process

WIKIPEDIA

https://en.wikipedia.org/wiki/Gaussian_process

Prior Posterior Prediction with Uncertainty

if value of function is known at some
points, the gaussian process must go
through them
(can include uncertainty in function value)


https://en.wikipedia.org/wiki/Gaussian_process

WIKIPEDIA

https://en.wikipedia.org/wiki/Gaussian_process

Prior Posterior Prediction with Uncertainty

GP can interpolate and extrapolate.
Uncertainty on interpolation and
extrapolation grows as you move further
from known points


https://en.wikipedia.org/wiki/Gaussian_process

GAUSSIAN PROCESSES —
6 » T T T 1 |

_9l _
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_4l T;— T, _
ka(xi, x;) = exp [ 222]]

_gl | | | | -

0 1 2 3 4 D
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LEARN MORE
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Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. I. Williams
The MIT Press, 2006. ISBN 0-262-18253-X.

Carl Edward Rasmussen and Christopher K. |. Williams

[ Contents | Software | Datasets | Errata | Authors | Order ]

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in
the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and
practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine
learning and applied statistics.

The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance
(kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many
connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks,
splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are
treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and
code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

The book is available for download in electronic format.

A

http://www.gaussianprocess.org/gpml/



Parametrized Function
VS.
(Gaussian Process



NEW PAPER https://arxiv.org/abs/1709.05681

Information References (44) Citations (0) Plots

Modeling Smooth Backgrounds and Generic Localized Signals with Gaussian Processes

Meghan Frate, Kyle Cranmer, Saarik Kalia, Alexander Vandenberg-Rodes, Daniel Whiteson
Sep 17, 2017 - 14 pages
e-Print: arXiv:1709.05681 [physics.data-an] | PDF

Abstract (arXiv)

We describe a procedure for constructing a model of a smooth data spectrum using Gaussian processes rather
than the historical parametric description. This approach considers a fuller space of possible functions, is robust
at increasing luminosity, and allows us to incorporate our understanding of the underlying physics. We
demonstrate the application of this approach to modeling the background to searches for dijet resonances at the
Large Hadron Collider and describe how the approach can be used in the search for generic localized signals.

Note: *Temporary entry*
Note: 14 pages, 16 figures

Keyword(s): INSPIRE: background | CERN LHC Coll | dijet | resonance | data analysis method | Gauss model |
statistics | statistical analysis
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PARAMETRIC FUNCTION VS. GP

ad-hoc [ 2(xa, xB)
Gaussian Process ad-hoc
_: L) ¢ data i Gaussian Process

f(xa)

f(xs)

f(xg)

fixa)

FIG. 2: Schematic of the relationship between an ad-hoc function and the GP. An example toy dataset is shown
(left) with samples from the posterior for an ad-hoc 1-parameter function (red) and a GP (green). Each posterior
sample is an entire curve f(x), which corresponds to a particular point in the (center) plane of f(z4) vs. f(zp).
The red dots for the ad-hoc 1-parameter function trace out a 1-dimensional curve, which reveals how the function is
overly-rigid. In contrast, the green dots from the GP relax the assumptions and fill a correlated multivariate
Gaussian (with covariance indicated by the black ellipse). The covariance kernel ¥(z, z’) for the GP is shown (right)
with 3 (x4, xp) corresponding to the black ellipse of the center panel.



MOAR DATA!

GP fits the background well, and continues to as we add

more data. Parametric function no longer fits well

5 , . . .
10 —— Gaussian Process ||
¢ ¢ ATLAS data
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FIG. 5: Invariant mass of dijet pairs reported by

ATLAS [15] in proton-proton collisions at /s = 13 TeV
with integrated luminosity of 3.6 fb~!. The green line
shows the resulting Gaussian process background
model. The bottom pane shows the significance of the

residual between the data and the GP model.
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Physically Motivated Kernels



CONNECTION TO UNFOLDING

It the truth level distribution 1(z) is a Gaussian Process with kernel 2(z, 2°),
then the reconstructed distribution f(x) is also a Gaussian process with Z(x,x’)

Z(a:,:z:’)://dzdz’E(z,z')W(az,z)W(w',z’) (8)
f(z) [ W(zlz)

| o _

> > >

folding / smearing L
h level folded distribution
Huteve < detector response L

& poisson fluctuations

If we are making predictions with Monte Carlo, truth level distribution f(z) is usually known exactly.

To think of 1(z) as a Gaussian Process, we need some notion of uncertainty (eg. parton density
functions, higher-order corrections, renormalization/factorization scales)

In unfolding, we often don’t want to make assumptions about 1(z)... it could be anything. But
regularization in unfolding is equivalent to choosing a kernel for f(z).

Even in extreme case where we assume no smoothness in 1(z), f(x) has to be smooth due to
detector resolution.



EXAMPLE: PDF UNCERTAINTIES

¥(z,2') = //dzdz’Z(z, YW (z, 2)W(x',2")  (8)

P £ W) b @)= [ 1wk
Correlation Matrix truth level YA fdoe[tdeiZtgoiierzzaor:;g folc%ed distribution T

& poisson fluctuations

Here we focused on truth level
distribution 1(z2).

Mass [TeV]
(-]
o

Used dijet spectrum predicted at
NLO with POWHEG-BOX and look
into PDF uncertainties from

05 1 15 2 25

Mass [TeV] NNPD F3

This is the PDF uncertainty in the
truth distribution expressed as a
Gaussian Process Kernel.



EXAMPLE: JET ENERGY SCALE

Mass [TeV]
~J (@) un S w N

Correlation Matrix

2 3 4 5 6 7
Mass [TeV]

Take for example, the jet energy scale (JES) uncertainty.
As described in Refs. [17, 27] the ATLAS JES uncer-
tainty is only a few percent for jets with pr of around 1
TeV where data are plentiful, while the the limited size
of observed examples for higher-pr jets requires an al-
ternate approach to estimating the JES. The resulting
JES uncertainty therefore grows rapidly with m;; and
has an impact of at most 15% [27]. To illustrate the co-
variance due to the JES uncertainty, consider a simplified
two-parameter model for the impact on the mj; distri-
bution: J(z,0) = 1+ 15% 612 + 5% 62(1 — z), where 2 is
the true dijet invariant mass and zy.x = 7 TeV. We use
the best fit 3-parameter fit as a proxy for f(z) and fold
in the smearing W(z|z,0) = Gaus(x|z J(2/2zmax, ), 0z),
where o, = 2%z is the dijet invariant mass resolu-
tion [17]. By assuming a uniform prior and an ap-
propriate scaling for 6, we sample from the posterior
Gaus(610, 1)Gaus(62|0, 1) and propagate the uncertainty
in 6 through to the predicted bin counts f(x|) as in
Egs. 4 and 5. This allows us to explicitly build the co-
variance matrix ¥ using the simulation shown in Fig. 3.
As expected, we see a roughly block-diagonal structure
defined by low and high mass regions.

1.0
0.8
0.6
0.4

10.2
10.0
1—0.2

—-0.4
—-0.6
—-0.8
-1.0

Z(x,x’)=//dzdz’)3(z, YW (z, 2)W(2',2")  (8)
- fe) Wl b @)= [ 1wk

BN VANE

»

truth level yA folding / smearing folded distribution T

detector response . -
P & poisson fluctuations

Fven if the truth-level distribution is
known, the folding matrix may not be

known exactly.

Example: consider a jet energy scale with
2 nuisance parameters, where one
parameter dominantly affects low-pT jets
(in situ) and the other high-pT jets (limited
stats for in situ).

Propagate uncertainty in jet energy scale
to reconstructed mjj spectrum, obtain
covariance kernel.



EXAMPLE: TRADITIONAL DIJET

Correlation Matrix

2-
3_
?
E 4
A 5t
(1v]
26-
7-
2 3 4 5 6 7
Mass [TeV]
Correlation Matrix
2
l—!3-
?
E 4
h 5}
s
6-
7-

2 3 4 5 6 7
Mass [TeV]

1.0
0.8
0.6
0.4

10.2
10.0
1—0.2

-0.4
—-0.6
—-0.8
-1.0

We can also think of the
covariance structure for current
fitting strategies.

e top: 3-parameter dijet
function

e pottom: sliding window
(SWIFT)

nese are post-fit covariance
plots.




POST-FIT PARAMETRIZED DIJET KERNEL

Correlation Matrix

Mass [TeV]
N O U~ W N

1.0

| 0.8
IO.G

1 [10.4

10.2
10.0
1—0.2

| |{-0.4
—0.6
| W—0.8
-1.0

2 3 4 5

6 7

Mass [TeV]

20(x)l(x")

S(z,2') = AeTm \/l(

x)?+1(x’)?

—(:Iz—ac/)2

el(x)2+1(z")?

In addition to kernels constructed
bottom-up from first-principles, we
can also construct parametrized
kernels using some intuition.

GPs adapt to the data very well, so
even simple exponential-squareo
kernels often work fine.

For our dijet studies, we used a
"Gibbs kernel”, which has length
scale I(x) and amplitude vary with x

e plot shows post-fit covariance
kernel



FUTURE DIRECTIONS

Vocabulary of kernels + grammar for

composition

e physics goes into the construction of

a "Kernel” that describes covariance

of data

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013
pdf | code | poster | bibtex

(explGG+ G e GG+ G
dependent gaussian scale mixture
(e g. Karklin .md+.cwxh, 2005)

(MG +G)GMT +G)+ G
Bayesian clustered tensar factorization

(Sutskeveret al, 2009) UI(:‘UI LQ) 4+ G
’

W e \
bimary matrix factorization (exp(G) o G)G + G

(Meeds et al, 2006) spanse coding
\ ’ (eg. Okhausen and Field, 199)

MGMT +G)+ G (CC+C\C+C

co-clustering BG + G GG+ G h'm:.u dvnamical system

(e.g. Kemp et al, 2006) binary features  low-ramk spproximusion g : ‘
(Griffths and (Salakburdmoy and

\ A Ghahramani, 2005) M, 2008)

MG+ G

random walk
clustering /
\ o

no structure

Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

CG+ G /

Mauna Loa atmospheric CO-
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with Meghan Frate

FUTURE DlRECTlONS & Daniel Whiteson

Instead of fitting the dijet spectrum with an ad hoc 3-5
parameter function, use GP with kernel motivated from physics

= Final Kernel =
5000 105,
Poisson stats
. 104}
B + Mass Resolution
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Likelihood-Free Inference



Generative Models: Simulat

SCEC ShakeOut Simulation

by R. Graves

Barstow
Lancaster

Victorville

Santa Barbara |
’ g’“&

Oxnard . N

Rosdnggles San Bernardino.

\
N
Anaheim

Oceanside.

Ground velocity magnitude
e ——

0.05 1 2 m/s San Diego Mexicali




WHY WE SHOULD CARE

Many areas of science have simulations based on some well-
motivated mechanistic model.

However, the aggregate effect of many interactions between these
low-level components leads to an intractable inverse problem.

The developments in machine learning and Al go way beyond
improved classitiers and have the potential to effectively bridge the
microscopic - macroscopic divide & aid in the inverse problem.

e they can provide effective statistical models tor macroscopic
phenomena that are tied back to the low-level microscopic
(reductionist) model

e generative models and likelihood-free inference are two
particularly exciting areas

50



LATTICE FIELD THEORY

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

QCD Lagrangian

. -

| - ) S : )
L=—2F"Fu+ 5 qliv"(9—igA,) —mjlq

q u.ds.chit

P>

P>

O quark A gluon



EPIDEMIOLOGY & POPULATION GENETICS

Generation 1 2 3 4

a Hospital School Sexual

Chain of transmission
of the disease

Source
33 infected  §

Scale-free

Super-spreader

Infects multiple people

c Empirical networks d g
5 110 1.0
g 3
] ©
g°'° 3 Soxual |= = == = = = —
©
o
24 %6 g Hospital |= — = — — A——
(2] o
. . » 04 @
Infected with disease 2 . ] &~
0.2 b i
§ & Social = = = — — |- -
0.0
0 1 2 3 4
Scaled transmissibility Selective advantage r
e i f
Small Change, Big Effects Modest variations in the concurrency rate—the proportion of people in overlapping sexual g 10 Timorstical netwolls 1.0
partnerships—can have a dramatic effect on a population’s vulnerability to HIV. @ A

b o 08 3 Small-world |- — — — — — g

[1partner | 5 8
Percers of people When the concurrency rate is 55%, only 234 of this population is connected to the broader sexual 2 46 g )

}"“:":‘ ‘m'::‘“" network required for HIV transmission (top). But when concurrency reaches 65%, an astonishing 2 = < KNI [ o e o oo s i
through ther sexual 64% of the population is vulnerable, even though the number of sexual partners remains constant. g 0.4 § Séaledfioe R
partnerships % :°:

+ § 0.2 & Random +
Q
0.00 vy 2 3 4 - 'S - A1
. B .4 0. = i
Scaled transmissibility Selective advantage r 09 S%Izeclg)n efpﬁne(:\taa 0

Source: Morris, et al. The Refotioaihip Between Concurrest Partnershigs end MIV Trorimitsion, 2008. See www.2idstar-one comy.
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

| | | | 1 | | |
Om m 2m im am 5m 6m /m
Key:
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Charged Hadron (e.g. Pion)
— = — - Neutral Hadron (e.g. Neutron)

----- Photon
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Hadron Superconducting
Calorimeter Solenoid

' Electromagnetic
);’ " Calorimeter
’

Iron return yoke interspersed
Transverse slice with Muon chambers

through CMS




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

This motivates a new class of algorit
likelihood-free inference, which on

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



A COMMON THEME

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood-free), a class of computational statistical methods for Bayesian inference under

b e s PRI G RIS giasoa o s oo

intractable Ilkehhoods The site is meant to be a resource both for blologlsts and statisticians who

want to learn more about ABC and related methods. Recent publications are under Publications

2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the

radar of the machine learning community, but are lmpo'nt tools for 'a large and diverse se ment of the

sc1nt1ccommumtx “This is particularly true forsxstem and pe Eulgp_ggmglologx comEutatlonal

neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.




ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.



APPROACHES TO LIKELIHOOD-FREE INFERENCE

Use simulator Learn simulator
(much more efficiently) (with deep learning)

B - conv (180w + 5b) non-linear
f— 'Qﬂgqég mGXPOOI COHV (450w + 10b) G @
. ¢ = O
( - ‘ non- Imear' ¢ = 0
) O =6
O 7,
o hon- Imear maxpool O 8
e fully-connected F%@
TN (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autoregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

LEARNING FROM SIMULATED DATA
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LIKELIHOOD RATIO TRICK

RBF SVM

RBF SVM

® [ Signal [T

= 1.8

-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

e binary classifier: find function
s(x) that minimizes loss:

Lis| = / pl(| Ho) (0 — s(x))? da
" / p(e|Hy) (1 — s(x))2da

1 N

~ N Z(yi — s(z4))°

1=1

e j.e. approximate the optimal
classifier
H
p(z|Ho) + p(x|Hi)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




EXTENDING THE LIKELIHOOD RATIO TRICK

A binary classifier approximates

S($) _ p($|H1)
p(x|Ho) + p(x|H1)

Which is one-to-one with the likelihood ratio

p(z|Hq) 0 1
p(z|Ho) s(z)

Can do the same thing for any two points 8¢ & 01 in

parameter space ©. | call this a parametrized classifier

p(z|61)
z|6o) + p(x|61)

s(x;0p,01) =
(60, 61) p(

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

PARAMETERIZED CLASSIFIERS
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arXiv:1805.12244

LEARNING WITH AUGMENTED DATA PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90

parameter 0 > |

0;

. observable '

o — approximate

likelihood

_) (. 2|6) L ratio
arg min L[g] — 7(x|0) —>
> t(x, z|0) > 9

augmented data
0;

Simulation Machine Learning Inference

%@V Journals ¥ Physics PhysicsCentral APS News Login

Viewpoint: Fast-Forwarding the Search EEEESOCER
for New Particles

Constraining Effective Field Theories with
Machine Learning

Daniel Whiteson, Department of Physics and Astronomy, University of California, Irvine, USA
Johann Brehmer, Kyle Cranmer, Gilles Louppe,

September 12,2018 « Physics 11,90 and Juan Pavez

Phys. Rev. Lett. 121,111801 (2018)
Published September 12,2018

Read PDF

A proposed machine-learning approach could speed up the analysis that underlies searches for new particles
in high-energy collisions.

A guide to constraining effective field
theories with machine learning

Johann Brehmer, Kyle Cranmer, Gilles Louppe,
and Juan Pavez

Phys. Rev. D 98, 052004 (2018)
Published September 12,2018

Read PDF
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MINING GOLD FROM THE SIMULATION

Detector Shower  Parton-level Theory

Observables . . o
Interactions splittings momenta parameters

€T < Zd € Zs € Zp < )

p(9) = /dzd /dzs /dzp p(alza)  plealz) sl p(z,10)

This parton-level
likelihood can be
evaluated!

= We can calculate the “joint” likelihood ratio conditional on a specific evolution:

_ p(w, 24, 2s, 2p|0o) _ p(z|za) p(2a|zs) p(2s|2p) p(2p|to)
r(xz, z|0y,01) =
P(x, 24, 25, 2p|01)  D(x|24) P(2al2s) D(2s]2p) | P(2p|01)

(“How much more likely is this specific evolution assuming 6, compared to 6; ?”)

= Similarly, we can calculate the joint score

t(z,z|00) = Vologp(z, 24, 25, 2|0)



PUTTING IT ALL TOGETHER
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MACHINE LEARNING THE HIGGS EFFECTIVE FIELD THEORY
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MACHINE LEARNING THE HIGGS EFFECTIVE FIELD THEORY

(based on a 42-Dim observation X)
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Physics-Aware Machine Learning

(choosing the variational family)



PHYSICS AT THE INTERSECTION

We can leverage both the power ot deep learning and inject
our expert / domain knowledge

Max
Welling

Discriminative or Generative?

# -Deep Learning

-Bayesian Networks

. -Kernel Methods g)
o1+ = -Probabilistic Programs "
- -Random Forests §<) -
’\"o&(‘ LL] -Simulator Models ')"
2240\ -Boosting ’\.4
s Qoo X5
L) o
I 15
B K
/‘"\ J
Advantages generative models:
Advantages discriminative models: * Inject expert knowledge
* Flexible map from input to target (low bias) * Model causal relations
" « Efficient training algorithms available * Interpretable ﬁm.wu
T b « Solve the problem you are evaluating on. « Data efficient A
» Very successful and accurate! * More robust to domain shift

Facilitate un/semi-supervised learning




NN = A HIGHLY FLEXIBLE FAMILY OF FUNCTIONS

In calculus of variations, the optimization is over all functions: § = argmin L|s]
S

e |n applied calculus of variations, we consider a highly flexible family ot

functions sp and optimize: i.e. @ = argmin L[sg] §~ s,
0

e Think of neural networks as a highly flexible tamily of functions

e Machine learning also includes non-convex optimization algorithms that
are effective even with millions of parameters!

Shallow neural network Deep neural network

hidden layer . hidden layer 1 hidden layer 2 hidden layer 3
input layer

input layer
output layer output layer

image credit: Michael Nielsen



CONVOLUTIONAL NEURAL NETWORKS

Another major idea of deep learning: convolutional filters

e the world is compositional = hierarchical architecture

e images are translationally invariant = shared weights
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Every feature map output is the FC FC
result of applying a filter to the image

The new feature map is the next input
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\

image credit: MathWorks
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JET SUBSTRUCTURE

Many scenarios tfor physics Beyond the Standard Model
include highly boosted W, Z, H bosons or top quarks

Low top prt High top pt

q
W _
q W boost .
t _
b
b

|dentifying these rests on subtle substructure inside jets

e an enormous number of theoretical effort in developing
observables and techniques to tag jets like this

b N /l_;// 0 % Rt
N = Yo=\
mass drop ilter ﬂ




image: Komiske, Metodiev, Schwartz arxiv:1612.01551

J E T | M A G E S Oliveira, et. al arXiv:1511.05190

Whiteson, et al arXiv:1603.09349
Barnard, et al arXiv:1609.00607

pre-process

dense layer

max-pooling
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Oliveira, et. al arXiv:1511.05190

J E T I M A G E S Whiteson, et al arXiv:1603.09349

Dawe, et al arXiv:1609.00607

Apply deep learning algorithms to classify to “jet images”
e good results (based on fast simulation & idealized unitorm calorimeter)
e preprocessed to mod out symmetries in the data

e discretization into images looses information

Average Boosted W Jet (y=1) Average QCD Jet (y=0)

10°

T
T
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[Translated] Azimuthal Angle (¢)
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[Translated] Pseudorapidity () [Translated] Pseudorapidity ()
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JETS AS A GRAPH

Using message passing neural networks over a fully connected graph
on the particles

e Two approaches for adjacency matrix for edges

lsaac Henrion

e inject physics knowledge by using dj of jet algorithms

e |earn adjacency matrix and export new jet algorithm

Example Boosted W Jet (y=1) Example QCD Jet (y=0)
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NON-UNIFORM GEOMETRY

ATLAS source:nJiveXML_106382_27470 run:106382 ev:27470 lumiBlock:2 Atlantis
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NON-UNIFORM GEOMETRY
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HOW CAN WE IMPROVE?

mage based approaches are doing well, but....

e would be nice to be able to work with a variable length input

* avoid pre-processing into a regular-grid (eg. non-uniform
calorimeters)

* avoid representing empty pixels (sparse input)
e would be nice if classifier had nice theoretical properties
* infrared & collinear safety, robustness to pileup, etc.

e would be nice to be more data efficient, most image-based
networks use a LOT of training data.

/8



FROM IMAGES TO SENTENCES

Recursive Neural Networks showing great performance tor

Natural Language Processing tasks

e neural network’s topology given by parsing of sentence!

VP

VBG NNS VBZ ADVP

| | I/\/\/\

Parsing sentences is RB RB  JJR NN

so much more fun than

VBG

Analogy: | /\NP

going TO

word — particle N

to DT NN

arsing — jet algorithm
p g J 9 tr|1e denltist




QCD-INSPIRED RECURSIVE NEURAL NETWORKS

Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot

e Use sequential recombination jet algorithms to
porovide network topology (on a per-jet basis)

* path towards ML models with good theoretical T AT
properties

e Top node of recursive network provides a fixed—length“m::%?:wsm
embedding of a jet that can be fed to a classifier 77

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets .



QCD-INSPIRED RECURSIVE NEURAL NETWORKS
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HIERARCHICAL MODEL FOR THE ENTIRE EVENT

particle embedding — jet embedding = event embedding — classifier

It scales!

Event embedding Classifier

V(tl) V(tg) V(tM)

b’ (e)

hy(t;) h; (t2) hy(tar)

Jet

embeddings

arXiv:1702.00748 & follow up work with Joan Bruna using graph conv nets



PHYSICS-AWARE MACHINE LEARNING

We can inject our knowledge of physics into the variational family

Physics-aware Gaussian Processes
arXiv:1709.05681

Correlation Matrix

Final Kernel =

0.45

n
3 8 8 & 8 8
o o o o o o
o o o o o o

"~ Poisson fluctuations

= + Mass Resolution
Correlation Matrix
« + Parton Density
Functions
—I_ 1.000¢
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. + Jet Energy Scale
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QCD-Aware recursive neural networks

arXiv:1702.00748
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QCD-Aware graph convolutional neural networks
NIPS2017 workshop
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Adversarial Training
(not just for GANS)



Goodfellow, et al arXiv:1406.2661

GENERATIVE ADVERSARIAL NETWORKS e e e

unit gaussia

O

Z

n

generative

model
(neural net)

generated distribution

If you can

\\}

Leo is G

Tomis D

A

P(X)

image space

true data distribution

image space

e Two-player game:
m a discriminator D,
m a generator G;

e D is a classifier X — {0, 1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for x ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Z~ pnoise);
e G is a generator Z — X trained to produce samples G(z) (for
Z ~ Pnoise) that are difficult for D to distinguish from data.

(D", G") = max min V(D, G).




NEW! AVO

Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe' and Kyle Cranmer’
YNew York Uniwversity

Complex computer simulators are increasingly used across fields of science as generative models
tying parameters of an underlying theory to experimental observations. Inference in this setup is
often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce
Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-
differentiable generative model incorporating ideas from empirical Bayes and variational inference.
We adapt the training procedure of generative adversarial networks by replacing the differentiable
generative network with a domain-specific simulator. We solve the resulting non-differentiable mini-
max problem by minimizing variational upper bounds of the two adversarial objectives. Effectively,
the procedure results in learning a proposal distribution over simulator parameters, such that the
corresponding marginal distribution of the generated data matches the observations. We present
results of the method with simulators producing both discrete and continuous data.

A
>

catch me

9\

If you can

Leo is G Tom is D

G. Louppe & K.C. arXiv:1707.07113

Similar to GAN setup, but
instead of using a neural network

as the generator, use the actual
simulation (eg. Pythia, GEANT

Continue to use a neural network
discriminator / critic.

Difficulty: the simulator isn't
differentiable, but there’s a trick!

Allows us to efficiently fit /
tune simulation with stochastic
gradient technigues!


http://arxiv.org/abs/1707.07113

VARIATIONAL OPTIMIZATION
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ADVERSARIAL VARIATIONAL OPTIMIZATION

Like a GAN, but generative model is non-differentiable
and the parameters ot simulator have meaning

e Replace the generative network with a non-differentiable

forward simulator ¢(z;0). 1.05
e With VO, optimize upper bounds of the adversarial objectives: L 00 - 1.0 : i:g;ﬁ:ip) =0
Ui = Egq(0]) [La] (1) 0.95 - 0.8 ety =S
Ug = IB:49~q(0|¢) [£g] (2) 5 0.90 - 0.6
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° | d | Ebeam
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—— —Ugy=0
1.5 — “Uay=>
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1.0 1
We use Wasserstein distance,
as in WGAN .
0.0 1 A
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G. Louppe & K.C. arXiv:1707.07113
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LEARNING TO PIVOT WITH ADVERSARIAL NETWORKS

Typically classitier f(x) trained to

minimize |oss L. normal training adversarial training
e want classifier output to be 30 Lo 30
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G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046



THE ADVERSARIAL MODEL

Classifier f

Adversary r

Y1(f(X;05);0)
a

Y2 (f(X;05);0r)
O P('Yla’YZa"')

!

0y Lr(0f)

the Y1, Y2, ... are the mean,
standard deviation, and amplitude
for the Gaussian Mixture Model.

 the neural network takes in f
and predicts Y1, Y2, ...

p(z|f)




G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046

AN EXAMPLE

Technigue allows us to tune A, the tradeoft between
classification power and robustness to systematic uncertainty

An example: :
background: 1000 QCD jets
signal: 100 boosted W's

A=0|Z=0
A=0
A=1

-
o
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O 6
0p)
o
Train W vs. QCD classitier o °f
e
© 4r
O
| ——
Pileup as source of =N
. o)
uncertainty '®
o 2HY e A N
o |
= |
) O
Simple cut-and-count Q M
. . X
analysis with background L g b
uncertainty. . l l l l
0.0 0.2 0.4 0.6 0.8 1.0

threshold on f(X)



DECORRELATED TAGGERS

Adversarial approach of “Learning
to Pivot” can also be used to train
a classifier that is “decorrelated”

to some other variable.

e want jet taggers that are
decorrelated with jet invariant

Mass

e so that analysis can still search
for a bump using jet invariant

Mass

e avoids sculpting background

NN output

NN output

K.C, J. Pavez, and G. Louppe, arXiv:1506.02169

P. Baldi, K.C, T. Faucett, P. Sadowski, D. Whiteson arXiv:1601.07913

G. Louppe, M. Kagan, K.C, arXiv:1611.01046
Shimmin, et. al. arXiv:1703.03507
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DECORRELATION IN BELLE Il
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