Relaxing the Cosmological Moduli Problem by Low-scale Inflation

Shu-Yu Ho

(Tohoku University, Japan)

In collaboration with F. Takahashi (Tohoku. U.) and Y. Wen (KAIST)

Based on 1901.01240

21 Jan 2019, Student Seminar Talk GGI Lectures on the Theory of Fundamental Interactions

Modulus Field

- String theory predicts many light scalar moduli fields through compactification.
- In SUSY, a modulus forms a chiral supermultiplet, X.

$$X = r + i\phi$$
 Axion

Dynamics of Modulus Field

• After inflation ends modulus is frozen $H(t) \gg m$ by Hubble friction modulus $\phi_{\rm ini} \neq 0$ $(H_{inf} \gg m)$ H(t) : Hubble parameter *m* : modulus mass

Dynamics of Modulus Field

• After inflation ends

$$\rho_{
m mod} \approx m^2 M_G^2$$
 or $m^2 f^2$

The energy density of modulus may dominate the Universe.

Moduli Abundance

• We consider only one (string) axion ϕ with a potential

$$V(\phi) \simeq \frac{1}{2} m_{\phi}^2 \phi^2$$

$$At \ H(t_{\text{osc}}) \approx m_{\phi} \longrightarrow \rho_{\phi, \text{ini}} \simeq \frac{1}{2} m_{\phi}^2 \phi_{\text{ini}}^2$$

$$\Omega_{\phi} h^2 = \frac{\rho_{\phi, \text{ini}} s_0}{\rho_c s} h^2 \simeq \begin{cases} 3.0 \times 10^{10} \left(\frac{g_{\star, \text{osc}}}{106.75}\right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \text{ GeV}}\right)^{1/2} \left(\frac{\phi_{\text{ini}}}{10^{16} \text{ GeV}}\right)^2 & \Gamma_{\text{inf}} > m_{\phi} \\ 2.5 \times 10 \left(\frac{T_{\text{RH}}}{20 \text{ MeV}}\right) \left(\frac{\phi_{\text{ini}}}{10^{16} \text{ GeV}}\right)^2 & \Gamma_{\text{inf}} < m_{\phi} \end{cases}$$

The axion abundance Ω_ϕ can be suppressed if $\phi_{
m ini}$ is sufficiently small.

Cosmological Moduli Problem (CMP)

- If the modulus is stable on a cosmological scale.
 ✓ Its abundance may exceed the observed DM density.
- If the modulus is unstable and can decay into photons.
 - It may spoil the success of big bang nucleosynthesis (BBN) due to the photo-dissociation of the light elements.
 - ✓ It may overproduce X-ray or gamma-ray fluxes.

moduli problem in cosmology

Simple Solutions to Moduli Problem

Entropy production (e.g. thermal inflation)

Yamamoto '86 Lyth & Stewart '96

- → dilutes baryon asymmetry
- Adiabatic suppression -> not so efficient

Linde '96 K. Nakayama et al. 2011

• Very low scale inflation with $\,H_{
m inf} \ll \,m_{\phi}$

Randall & Thomas '95

Bunch-Davies (BD) distribution

Graham & Scherlis (1805.07362) and Takahashi, Wen & Guth (1805.08763) applied to the QCD axion

Astrophysical & Cosmological Constraints

Bunch-Davies Distribution

Bunch & Davies `78

- Suppose that the axion already acquires its mass (or potential) during inflation.
- The quantum diffusion prevents the axion from falling into the potential minimum.

The Axion Abundance with BD Distribution

The energy density of the axion with BD distribution

$$\phi_{\rm ini} \simeq \sqrt{\frac{3}{8\pi^2}} \frac{H_{\rm inf}^2}{m_{\phi}} \longrightarrow \rho_{\phi, \rm ini} \simeq \frac{3}{16\pi^2} H_{\rm inf}^4 \quad H(t_{\rm osc}) \approx m_{\phi}$$

• The axionic moduli problem is relaxed if $H_{
m inf} \ll \sqrt{m_{\phi} f_{\phi}}$.

$$\Omega_{\phi}h^{2} \simeq \begin{cases} 1.1 \times 10^{-20} \,\mathrm{GeV} \left(\frac{g_{\star,\mathrm{osc}}}{106.75}\right)^{-1/4} \left(\frac{m_{\phi}}{0.1 \,\mathrm{GeV}}\right)^{-3/2} \left(\frac{H_{\mathrm{inf}}}{\mathrm{GeV}}\right)^{4} & \Gamma_{\mathrm{inf}} > m_{\phi} \\ 9.6 \times 10^{-31} \,\mathrm{GeV} \left(\frac{T_{\mathrm{RH}}}{20 \,\mathrm{MeV}}\right) \left(\frac{m_{\phi}}{0.1 \,\mathrm{GeV}}\right)^{-2} \left(\frac{H_{\mathrm{inf}}}{\mathrm{GeV}}\right)^{4} & \Gamma_{\mathrm{inf}} < m_{\phi} \end{cases}$$

One can suppress Ω_{ϕ} by low inflation scale

Upper Bound on *H***inf for Solving CMP**

Upper Bound on H_{inf} with Different f_{ϕ}

Summary

• We have shown that the cosmological moduli problem can be significantly relaxed by low-scale inflation even if the Hubble parameter during inflation is much bigger than the scalar mass. This is because the value of the scalar field follows the BD distribution if the inflation lasted sufficiently long.

Thanks for your attention!!