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1 Quick Intro

The QCD axion, or simply the axion, is a hypothetical 0− particle arising in the Peccei-
Quinn generic mechanism to ease the strong CP problem. Furthermore, axions are can-
didates for the cold dark matter of the Universe. Axions have been searched in a small
number of experiments and constrained with astrophysical and cosmological arguments,
but not yet found. Many different theoretical realisations have been proposed, which re-
late axion physics with other theories beyond the standard model. After some years of
abandon and despair, the interest in axions is growing strong again, and many new ex-
periments have been proposed and will be built in the next few years. In this lectures,
we will introduce the axion in the context of the strong CP problem and study its phe-
nomenological consequences in astrophysics and dark matter, as well as its experimental
signatures.

The notes were born to provide a closer recollection of the first lecture I gave in the
2016 Invisibles school (SISSA Trieste, 5-9 July 2016). They were later used in the TAE
20171 and in the ICCUB school2 in 2017. They are growing bigger in the GGI school3 in
2019. The few hours I had assigned were unpurposely stretched to the limit, and yet my
humble talents did not amount to much when trying to cover all aspects of this exciting
field. Because of this reason, but mostly because is always advisable to complement any
lecture with different approaches to the problem, I list here other pedagogical readings that
I encourage to get acquainted with. I was very lucky to enjoy the lectures of the 1st Joint
ILIAS-CAST-CERN Training back in 2005 [1], which produced excellent lecture notes. The
very same Roberto Peccei taught on Axions and the strong CP problem [2], Pierre Sikivie

1Benasque, Spain, 3-16 September 2017. http://benasque.org/2017tae/
2Barcelona, 23-26 October 2017 http://icc.ub.edu/congress/ICCUBschool/
3Florence, 14-18 Jan 2019 http://webtheory.sns.it/ggilectures2019/
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on Axion Cosmology [3] and Georg Raffelt on Astrophysical Axion bounds [4]. As an easy
and enjoyable read for the moments where everything seems uphill, I also recommend [5].
For a thorough review on Axions with a well fed collection of references, see the review
of J. E. Kim and G. P. Carosi [6] (take a deep breath before). I am always available for
requests on deeper readings on specific aspects and updated experimental proposals. Use
me. Likewise, if you have corrections to these notes, please drop me a line and get a free
coffee, beer or dinner (depending on the correction).

2 Strong CP �������
problem hint

The strong CP problem is a conceptual issue with QCD being the theory of strong interac-
tions in the standard model of particle physics. From a theoretical point of view we expect
that such an SU(3) gauge theory coupled to massive quarks is “generically” CP violating,
and yet there is no sign of CP violation in the strong interactions. Sure, the heart of the
matter is on what we mean by generically.

When SU(3)c was proposed as a theory of the strong interactions, one of the designer’s
choice was CP conservation, which was already a clear constraint from the experimental
point of view. The low energy theory of SU(3)c had, however, a mysterious problem: Wein-
berg’s U(1)A “missing meson” problem. Its resolution by ’t Hooft triggered the recongnition
of the strong CP problem and thus is our starting point for these lectures.

2.1 U(1)A missing meson problem

Consider QCD with 2 quark flavours, u, d in a vector notation q = (u, d)

L = −1

4
GaµνG

µν
a + iq̄ /Dq − (q̄Lmqe

iθY qR + h.c.) (1)

where mq is a diagonal mass matrix with the mu,md masses and θY a common phase.
Note that in the SM, quark masses come from Yukawa couplings of the Higgs and Yukawa
matrices are allowed to be completely general, so we expect θY to be there in a general
case.

In the mq → 0 limit, the quark phase transformations

qR → ei(α0+~α·σ)qR ; qL → e−i(α0+~α·σ)qL, or q → eiγ5(α0+~α·~σ)q (2)

are a four-parameter (α0, ~α = (α1, α2α3)) symmetry of the Lagrangian,

U(2)A = U(1)A ⊗ SU(2)A. (3)

The U(1) part shifts a common phase of uR and dR quarks at the same time and opposite
for LH, while the SU(2) part shifts phases differently for u and d flavours. The symmetry is
explicitly violated by the quark masses, but since they are much smaller than QCD energy
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scales we can think about them as a perturbation. Note that a U(1)A transformation can
be used to reabsorb θY in the quark fields, and thus it should have unobservable effects.

When QCD grows strong at low energies, this symmetry becomes spontaneously broken
by the quark condensate 〈ūu〉 = 〈d̄d〉 = −v3. According to the Goldstone theorem, a
global symmetry spontaneously broken implies the existence of Nambu-Golstone bosons
(NGB), massless particles that appear in the low energy effective theory. The NGB’s
have quantum numbers of the symmetry generators which are spontaneously broken. A 4-
parameter symmetry implies 4 Goldstone bosons, which are associated with the η′ and the
3 pions π0, π+, π−. Since the symmetry is not perfect, i.e. it is violated by the small mass
terms, the NGBs become massive, and are usually called pseudo-NGB’s. Let us compute
the spectrum of mesons.

Meson masses can be computed by promoting the phases of quarks α0, ~α to NGB fields

α0 →
Π0(x

µ)

f0
= θ0(x

µ) ~α→
~Π(xµ)

fπ
≡ ~θ(xµ) (4)

where f0, fπ are energy scales related to ΛQCD. For simplicity in the exposition I will tend
to take f0 = fπ = f when it does not compromise the main points under discussion 4

We define Goldstone-less quarks q̃

qR = e+i(θ0+
~θπ ·~σ)/2q̃R ; qL = e−i(θ0+

~θπ ·~σ)/2q̃L or q = eiγ5(θ0+
~θπ ·~σ)/2q̃ (5)

Note that after this redefinition, U(2)A transformations will appear as global shifts of the
θ0(x), ~θ(x) fields.

Under this redefinition, the quark mass term in the Lagrangian leads to a potential for
the NGB’s when subject to the quark condensate, Let us first consider the charged sector
θ± = (θ1 ± iθ2)/2. We get

q̄LmqqR+h.c.→ −(mu+md)v
3 cos(

√
θ−θ+) = (mu+md)v

3+
(mu +md)v

3

2f2π
Π−Π++..., (6)

from which we can directly read the charged pion mass5

m2
π+ =

(mu +md)v
3

f2π
. (7)

.
In the neutral sector Π0,Π3 we have (θ3 = Π3/fπ, appears with σ3)

q̄LmqqR + h.c.→ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3), (8)

4Note a slight abuse of notation, in which θλ is a constant (and so will be θQCD, θSM) later but θ0, θ1,2,3
are fields. I am open to change of notation proposals.

5This assumes the kinetic terms for Π0,1,2,3 are canonically normalised. The kinetic term for the Gold-
stones is generated by the quark-gluon-condensation non-perturbatively, it cannot be derived straightfor-
wardly from the QCD Lagrangian.
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which gives mass to two linear combinations of Π0,Π3, one of which has to be the neutral
pion π0 and the other something related with η′ (because of quantum numbers). Expanding
around Π0 = Π3 = 0 to quadratic order, the mass matrix for the neutral mesons is

∂2V

∂Πi∂Πj
=
v3

f2

(
mu +md (mu −md)β

(mu −md)β (mu +md)β
2

)
, (9)

where β = fπ/f0. The sum of the squared masses is related to the charged pion mass (7)

m2
η′ +m2

π0 = m2
π+(1 + β2). (10)

The observed pion and η′ masses,

m2
π+ :: m2

π0 :: m2
η′ = (134.9766(6))2 :: (139.57018(35))2 :: (957.78(6))2 MeV2 (11)

would require β2 ' m2
η′/m

2
π ' 50 which is not justified from the theoretical point of view.

With all we have said, we would naively expect f0 ∼ fπ, β ∼ 1, because why should be so
different if QCD confinement cannot distinguish u, d except for their small mass difference?

Therefore, the theory as it is predicts a pNGB with similar mass to the neutral pion,
which is not observed in nature. Sometimes it is called, Weinberg’s missing U(1)A meson.

The puzzle stays when including the strange quark, which forces us to consider U(3)A
and has three neutral mesons that have to be associated with π0, η, η′.

2.2 QCD instantons solve the issue ...

The divergence of the U(1)A current jµA = ūγµγ5u + d̄γµγ5d gets a contribution from the
triangle loop diagram

∂µj
µ
A = −2muūiγ5u− 2mdd̄iγ5d+ 4

αs
8π
GaµνG̃

µν
a (12)

where G̃µνa = εµναβG
αβ
a /2 is the gluon field strength. The current is not conserved even for

non-zero masses ∂µj
µ
A 6= 0. In other words, U(1)A is not a symmetry even when mu,md

are zero. The factor of 4 comes from the 2 flavours and two chiralities that run in the loop.
The first two terms, proportional to quark masses, simply state that quark masses violate
the symmetry too, but this we already knew.

Generically, an axial phase transformation of one quark (SU(3) fermionic triplet)

u→ eiαγ5u (13)

implies that the current associated has a triangle anomaly

∂µ(ūγµγ5u) = ...+ 2
αs
8π
GaµνG̃

µν
a . (14)
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Transformations along the Π3 direction, i.e. along σ3 =diag{1,-1} are not colour
anomalous because the u and d parts cancel out. But the U(1)A part is proportional
to the identity in flavour space and all the quarks contribute the same.

Physical effects of the GG̃ term were neglected in early times because it turns out to
be a total derivative,

GaµνG̃
µν
a = ∂µK

µ (15)

with
Kµ = εµναβAaν

(
Faαβ −

gs
3
fabcAbαAcβ

)
(16)

(note that it is not gauge-invariant).
By partial integration all its effects are defined by field configurations at infinity, which

shall not contribute to local processes if gluon fields go to zero at infinity Aaµ → 0. But
Gerard ’t Hooft realised that there are actually topologically non-trivial field configurations,
called instantons, that contribute to this operator, and thus it cannot be neglected. These
instantons are strongly related to the structure of the QCD vacuum, which is displayed in
appendix A.

But we can continue with the lectures without the fine points of instantons so I will
skip the discussion as much as I can. The important points I cannot avoid to list are the
following:

• The term violates P and T, or equivalently, P and CP

• A GG̃ term must be admitted in our Lagrangian (1), because it is compatible with
all symmetries of the SM gauge group and instanton configurations contribute to it.
Thus, we are led to consider

L = −1

4
GaµνG

µν
a + iq̄ /Dq − (q̄Lmqe

iθλqR + h.c.)− αs
8π
GaµνG̃

µν
a θQCD. (17)

where θQCD is a parameter to be determined. In appendix A we show that it appears
as the phase that determines one of the possible vacua of QCD.

• GG̃ violates the U(1)A symmetry explicitly (even if only at the quantum level, i.e.
after the triangle radiative correction is included) so we expect that it will generate a
mass term for the Π0 field, just like mu generated mass for the θ0 + θ3 combination.

When an infinitesimal U(1)A transformation(redefinition) like (2) with parameter α is
performed on quark terms, the Lagrangian gets a new piece

δL = α∂µj
µ
A (18)
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that, of course, vanishes if U(1)A would be a symmetry with its current conserved. This
leads to

δL = α∂µj
µ
A = −2muūiαγ5u− 2mdd̄αγ5d+

αs
8π
GaµνG̃

µν
a × 4α. (19)

The first two terms are the phase shifts of quark masses, expected because U(1)A transfor-
mations do not leave invariant mass terms, and the last redefines(shifts) θQCD. Fukujita
showed that it appears from the transformation of the measure in the path integral [].

Therefore, note that when performing these transformations, we are effective shifting
a phase from θλ to θQCD. For instance, we can rotate θλ away from the quark mass term.
Then, the combination

θSM = θQCD + 2θY (20)

appears multiplying the GG̃ term in the Lagrangian. Only this combination (often denoted
called θ̄) is thus physical and all the CP violation observables are going to depend on it.
The GG̃ term will solve the missing meson problem, but it brings with it CP violation that
we thought was absent in QCD.

Note that θSM it is a sum of two phases which in principle have a different origin:
θY originates as the common phase of the Yukawa couplings and θQCD defines the QCD
vacuum. Therefore, in principle we shall not expect any cancellation. Moreover, the only
CP violating phase observed so far, which appears in the CKM and has a similar origin
than θY , it is O(1) (γ ∼ 60 degrees).

Let us now discuss some important details of how the eta’ mass has to be generated.
We aim at guessing the contribution to the meson potential due to the new GG̃ term.
There are three points to consider:

• The spacetime integral of GG̃ is a very special object. It only cares about special field
configurations with non-trivial topology like instantons (see appendix A). Indeed, it
turns out to be an integer, ∫

d4x
αs
8π
GaµνG̃

µν
a = n, (21)

corresponding to the change of winding number (“Pontryagin index”) of the gluon
field configuration integrated. For the moment we only want to highlight that n is
an integer and thus any quantity that depends on θSM must be 2π-periodic

θSM ≡ θSM + 2π. (22)

In particular, the energy density (or effective potential) dependence on for θSM (Eu-
clidean path integral)

e−
∫
d4xEV [θ] =

∫
DAaµe−SE [Aaµ]−iθ

∫
d4xE

αs
8π
GaµνG̃

µν
a (23)

will satisfy V (θ) = V (θ + 2π).
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• The effective potential has its absolute minimum6 at θQCD = 0

e−
∫
d4xEV [θ] =

∣∣∣∣∫ DAaµe−SE [Aaµ]−iθ ∫ d4xE αs
8π
GaµνG̃

µν
a

∣∣∣∣ (24)

≤
∫
DAaµe−SE [Aaµ]

∣∣∣e−iθ ∫ d4xE αs
8π
GaµνG̃

µν
a

∣∣∣ (25)

≤
∫
DAaµe−SE [Aaµ] = e−

∫
d4xEV [0] (26)

so V [0] ≤ V [θ].

• The VEV of the Π0 field also contributes to CP violation. When we define Goldstone-
less quarks in (5) we are effectively doing a position dependent U(1)A transformation
with parameter θ0(x)/2. This produces the term in the Lagrangian

L =
θ0
2
∂µj

µ
A 3

αs
8π
GG̃× 2θ0. (27)

which adds the dynamical field 2θ0(x) to the theta-angle.

With these considerations in mind, we can write a new contribution to the meson
potential, which reads now,

V ∼ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3)− Λ4 cos(2θ0 − θSM). (28)

We have modelled the effect from QCD instantons as −Λ4 cos(2θ0−θSM) with Λ an energy
scale related with non-perturbative QCD to be determined from the eta’ mass. The reasons
are: 1) the induced term has to have its minimum at whatever value multiplies αs

8πGG̃ in
the Lagrangian, i.e. 2θ0 − θSM, 2) it has to give a large mass ∼GeV to η′ so it must have
a non-zero second derivative at the minimum and 3) it must be periodic in 2θ0 − θSM.
The cosine form is a simple choice which at this point I decided7. The potential can be
computed analytically in the so-called dilute-instanton-gas-approximation (DIGA) to give
precisely this form, but this calculation is only physically justified at high temperatures
(when multi-instanton configurations do not interact). Introducing the cosine gave me the
excuse to tell you about all this, but I will actually only use the position of the minimum
and the fact that its second derivative is large (because eta’ is much more massive than
π0) so forgive me for the liberty.

6In this proof we have assumed that the Euclidean action at θ = 0, SE [Aaµ] is real, which is the case

when the GG̃ term is the only source of CP violation. Since the EW sector of the SM has also a phase
in the CKM matrix, this is not exactly true, but quantitatively irrelevant for these lectures. However, the
CP-interested student will shall remember this.

7 In principle, this term can be computed in lattice QCD but we still do not have the adequate algorithms
to sample non positive definite path integrals. People is working on it, though.
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The meson mass matrix is now (taking f0 = fπ),

=
v3

f2

(
mu +md mu −md

mu −md mu +md

)
+ 4Λ4

(
0 0
0 1

)
, (29)

which allows to fit the large hierarchy between η′ and π0 masses (and have mπ0 = mπ± up
to corrections). Essentially, eta’ takes its mass from the new term and pions from chiral
symmetry breaking by quark masses and the quark condensate,

m2
π0 =

(mu +md)v
3

f2
; m2

η′ ' 4Λ4 +O(mqv
3). (30)

2.3 ... but create the strong CP problem

Let us turn into CP violation. The meson potential allows also to identify formally the
VEVs of the θ0 and θ3, which behave as CP violating phases.

Note also that the potential also reflects the fact that under U(1)A transformations,
which are now shifts of the θ0 field (θ0 → θ0 + α0) allow us to move the θSM phase from
the QCD instanton term to quark mass terms, but they do not allow to redefine it away.
Also, we learn that, if any of the quark masses is zero, one could reabsorb θSM inside θ0
and θ3 and thus CP violation will be absent.

Before minimising the meson potential V , note that if θSM = 0, every of the three terms
of the potential can be made minimum by θ0 = θ3 = 0. Since all the phases are zero, the
theory is of course CP-conserving. Considering now a small value of θSM, and a perturba-
tion the CP conserving solution (expand the cosines at second order). Minimisation of V
leads to a linear system for the VEVs of θ0, θ3 which solves to

2θ0 − θSM ∼ − mumd

(mu +md)2
m2
π0

m2
η′
θSM, (31)

θ0 + θ3 ∼ md

(mu +md)
θSM, (32)

θ0 − θ3 ∼ mu

(mu +md)
θSM. (33)

Two things are again obvious here. First, θSM = 0 implies CP conservation. Second,
the effects of θSM on CP violation also disappear in the case that any of the masses is zero,
for instance mu → 0. CP violation appears multiplied by quark masses, if mu = 0 it has
to be proportional to md but the phase θd = θ0 − θ3 → 0 and θ0 → 0 too.

We could have advanced this by noting that a phase redefinition of the u quark alone
can shift θSM to zero in the theta-term of the Lagrangian. If mu = 0 this redefinition
only shifts the theta-term, so the theta-term must have no physical consequences. In its
absence, the θ0, θ3 VEVs can not either violate CP. For all we know, there is no massless
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quark in SM, but the fact that u and d have small masses, suppresses a bit CP violation
observables.

We have also noted that your honest P,T violation comes from 2θ0−θSM. Note that this
is suppressed with respecto the “natural value” ∼ θSM by the small factor m2

π0/m
2
η′ ∼ 1/50.

Indeed the new term in the potential wants to minimise the combination 2θ0− θSM, which
is precisely the source of CP violation. However, it cannot do it completely because of the
quark mass terms. The final value is a compromise between minimising both. Here, θ0,
which would be essentially the η′ field (mass eigenstate) uses the instanton potential to
adapt its VEV to cancel θSM and it does it to a certain level. This is in a sense a dynamical
mechanism that screens the effects of θSM.

A most discused CP violating observable arising from θSM is the neutron electric
dipole moment (NEDM). Its calculation is a bit cumbersome so instead I will quote
the results

dn =
gπNN ḡπNN

4π2mN
log

(
mN

mπ

)
∼ 4.5× 10−15ecm (34)

where CP violation enters in the CP violating pion-nucleon coupling ḡπNN ∼
−θSMmumd/(mu +md), as it comes from 2θ0 − θSM.

The last attempt to measure the NEDM reported an upper limit

dn < 3× 10−26ecm (35)

which implies the amazingly stringent constraint

θSM < 0.7× 10−11. (36)

The fact that θSM is that small while on general grounds we could expect it to be O(loop
correction times mu suppression) is dubbed the strong CP problem. It is actually not a
technical problem, because θSM does not receive large radiative corrections in the SM.
It could just be that nature chose small θY , θQCD or a fine tuning among them.

However, small numbers like this could very well have a dynamical origin hinting
at new dynamics and new physics. In this lectures we will discuss a very elegant
mechanism to cancel (almost) completely the effect of θSM the Peccei-Quinn mechanism
based on the axion. The most appealing aspect in my opinion is that the dynamics
required is already build in the SM, concretely in the strong interactions. As a timely
side-effect, it turns out that the mechanism provides a very intriguing cold dark matter
candidate, and a hint for a new (high) energy scale in nature.
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2.4 A new degree of freedom: Axion solution

Each of the terms of the meson potential

V ∼ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3)− Λ4 cos(2θ0 − θSM) (37)

has the tendency to minimise a given combination of CP violating VEVs and phases.
Unfortunately, we have three terms in the potential and only two degrees of freedom so
the minimisation of them all at a time has to find a compromise, which is generically CP
violating. This suggests a possible explanation to the shocking absence of NEDM: could
there be a new meson-like degree of freedom?

If we include a new meson-like without introducing new terms in the potential we will
have three degrees of freedom to minimise three terms, each of which depends on three
different linear combinations of our degrees of freedom. The system has now enough
freedom to set all-three combinations to zero, i.e. to go to the CP conserving absolute
minimum dynamically. Peccei and Quinn argued in a different way, but it all boils down
to the above argument.

The simplest axion realisation involves a new meson-like field φ, that will be called
axion. The important pieces of its Lagrangian are just 2: a kinetic term and an anomalous
coupling to gluons, just like the theta-term

Lφ ∈
1

2
∂µφ∂

µφ+
αs
8π
GaµνG̃

µν
a

φ

fφ
. (38)

The energy scale fφ is called axion decay constant and will play a very important role in
phenomenology. We can define θφ(x) = φ(x)/fφ. At low energies, below QCD confinement,
the axion appears in the instanton contribution to the potential

V ∼ −muv
3 cos(θ0 + θ3)−mdv

3 cos(θ0 − θ3)− Λ4 cos(2θ0 + θφ − θSM) (39)

The minimum of the potential is given by ∂θ0V = ∂θ3V = ∂θφV = 0, which is equivalent to

θ0 + θ3 = 0 (40)

θ0 − θ3 = 0 (41)

2θ0 + θφ − θSM = 0 (42)

i.e.
θ0 = θ3 = 0 ; θφ = θSM (43)

the axion VEV is adjusted by the QCD potential to cancel any possible value of θSM, and
thus any effect of CP violation.

Another way to look at the absence of CP violation in the presence of axions is that
we can redefine θa → θφ − θSM at the Lagrangian level. This completely wipes out any
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dependence on θSM and thus of CP violation. In other words, the presence of such axion
field makes θSM unphyiscal (this was closer to the thinking of Peccei and Quinn).

Yet another saying you will hear: the axion promotes θSM to a dynamical variable, i.e.
the role of θSM in the SM is now played by the axion field θφ(x). This dynamical variable
can now respond to the QCD potential, adjusting its VEV to cancel θSM.

What Peccei and Quinn missed was to realise that θφ, as a dynamical field, has par-
ticle excitations: axions. This was realised very fast by Weinberg and Wilczek indepen-
dently, which worked out their properties. The minimal version presented here is called
the hadronic axion and turns out remarkably predictive.

2.4.1 Axion mass and mixings

The meson mass (squared) matrix is now, using β = f/2fa in the (π3,Π
0, φ) basis

[m2] =

 mu +md mu −md 0
mu −md mu +md 0

0 0 0

 v3

f2
+

 0 0 0
0 1 β
0 β β2

 4Λ4

f2
. (44)

Integrating out the heavy particle by setting η′(x) = Π0(x) + βφ(x) = 0 at the tree-level.
i.e. we will use θ0 = −θφ/2 and forget about the new term ∝ Λ4.

V ∼ −muv
3 cos(θ3 − θφ/2)−mdv

3 cos(θ3 + θφ/2) (45)

The system becomes 2x2 and one easily finds the mass eigenstates,

π0 = π3 + ϕaπφ ; m2
π =

(mu +md)v
3

f2
, (46)

a = φ− ϕaππ3 ; m2
a =

mumdv
3

(mu +md)f2a
=

mumd

(mu +md)2
m2
πf

2

f2a
, (47)

where we have redefined fa = fφ and the pion-axion mixing angle is

ϕaπ =
md −mu

2(mu +md)

f

fa
. (48)

People uses the word axion for both φ and a. Here we will reserve the symbol a for the
physical mass eigenstate. Note that, in a sense, a takes some features of Weinberg’s missing
meson, like becoming massless in the mu limit and its mixing to the π, proportional to
mu − md. This mixing angle allows to compute axion couplings to nucleons and self-
couplings by simply taking standard expressions for axion-less theories and substituing

π3(x)→ π0(x)− ϕaπφ(x) ∼ π0(x)− ϕaπa(x). (49)
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Note that the larger the axion decay constant fa is, the smaller the axion mass and
the weaker its interactions with photons, hadrons, etc. Soon we will be forced to consider
fa > 109 GeV, so that axions will be indeed low mass and weakly interacting.

We should not forget that axions mix also with Π0. The mass eigenstate η′ = Π0(x) +
βφ(x) ∼ Π0(x) + βa(x) +O(β2) implies

Π0(x) ' η′(x) + ϕaηa(x) = η′(x)− βa(x). (50)

Note that we can treat the mixing with the Π0 and π3 directions as independendent because
β and the π3 − η′ (not discussed) mixings are small.

2.5 Axion couplings

2.5.1 Coupling to photons

We can now compute axion couplings with SM particles in this simple model. We will start
with the most important coupling to photons. Even if axions would not couple to photons
directly, they would inherit a coupling from their mixing with Π0 and π3. These anomalous
couplings follow from the divergence of the U(1)A and third generator of SU(2)A,

L 3 [6

(
2

3

)2

+ 6

(
1

3

)2

]
Π0

f

α

8π
FµνF̃

µν + [6

(
2

3

)2

− 6

(
1

3

)2

]
π3
f

α

8π
FµνF̃

µν (51)

=
10

3

Π0

f

α

8π
FµνF̃

µν + 2
π3
f

α

8π
FµνF̃

µν (52)

These follow from the same anomaly equations that we used for the colour anomaly, but
applied to the EM anomaly. Note that FµνF̃

µν is a total derivative, irrelevant if present

alone in the lagrangian, but not harmless if multiplied by a Goldstone field like FµνF̃
µνa(x).

Now use Π0 → η′ − βa and π3 = π0 − ϕaφa, the axion coupling is[
−10

3
− 2

md −mu

2(mu +md)

]
a

2fa

α

8π
FµνF̃

µν = −2

3

4md +mu

mu +md

a

fa

α

8π
FµνF̃

µν (53)

A recent world-averaged value of the up to down quark masses z ∼ 0.48 gives

−2.02× a

fa

α

8π
FµνF̃

µν (54)

but including corrections and strange mass mixing gives −1.92(4) for the coefficient.
In KSVZ models, the axion can have also electromagnetic anomaly and many quarks

contributing to both em and colour anomaly. In this case, the so-called (by me) Caγ
coefficient is

Caγ =
E
N
− 1.92 (55)
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A QCD vacuum and instantons

This section is under construction.
For more information about the topological properties of instantons and the QCD

vacuum in the context of axions, one can see [2] and references therein. A classical reference
is [8]. A nice review by Forkel can be found in [7].
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