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CERN Open Data Portal: http://opendata.cern.ch/

What is ?

e LHC data publicly available

e Research grade data from CMS made public in 2014
CMS Run 2011a: /s =7 TeV, L =211 fb !



New Physics at LHC

Where can we look for physics in data?

e LHC is powerful probe in energy, frontier

e Might have looked in the wrong place for new physics
— How you look determines what you find
— New physics signature buried in phase space

Consider class of models:
new physics with signatures
and substantial pf"




New Physics at LHC

Previous searches at ATLAS & CMS with dimuons: m,,,, resonances
e High-mass: mz € [120 GeV,3.36 TeV] %M
e Pairs of light bosons: mz € [0.25,8.5] GeV P

LHCb searched for light new physics from direct production in pp
collisions

e my < 70 GeV 3
e
I »



We are considering a new vector particle V
produced via decay, therefore with substantial p¥

e Decays to dimuon pairs (uTp7)
e Produced by SM (W /Z/Higgs/t) or new particle
e Probing mass range of 14 GeV to 66 GeV



Overview

We propose a search strategy that increases sensitivity for semi-inclusive
searches with indirect production of new particle
pp—= V+X, V—=putu
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Overview

We propose a search strategy that increases sensitivity for semi-inclusive
searches with indirect production of new particle
pp—= V+X, V—=putu

e Produced via decay: substantial p¥ from recoil
e Cut on p4* preserves signal while reducing background

e Further reduce background: isolation and prompt cuts
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New Physics Search

Improving sensitivity: remove background, keep signal (%)

Backgrounds
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Isolated vs. Prompt Sample

Isolated Prompt

e Both p are isolated in detector e No isolation cut imposed

e Virtually eliminates QCD e IP,, < 100um
(heavy flavor) background e QCD bgd. ~ DY bgd.
e Need Open Data to
understand

Isolated vs. prompt sample are sensitive to different classes of models



General Search Strategy

New, largely model-independent, analysis strategy for limits on:

F=o(pp—= V+X)B(V = prum) Avelel,

Goal: Increase sensitivity by imposing p7' cuts.

Dimuon trigger (p%* > 13,8 GeV)

Only opposite-sign (OS) muons

Define isolated and prompt samples

Apply increasingly restrictive pi"* cuts (substantial py)

Look for a bump



Prompt vs. Isolation
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General Search Strategy

Cut flow for the V — u i~ search on CMS11a

Dimuon Events

Baseline Acceptance and Tight Muons Cuts
(pr.1 > 15 GeV, pr2 > 10 GeV, [n,| < 2.1, 2,155,900
do <2 mm, zp < 10 mm)
Search Region
(0S, my,, €[11,78] GeV, 486,242
do < 250 zm, zp < 2000 pm)

Isolated Sample  Prompt Sample
(lcomb < 015) (/P\ ‘ 100//m)

pi >0 139,282 343,519
pi > 25 GeV 34,550 72,434
pi* > 60 GeV 5,206 7,736
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Resonance Search

Finding a resonance — ‘bump hunting’

Background fit with polynomial

Center window around m,,,

e Width of window is 35 p\, spread over 140 bins
Fit with fifth-order polynomial (x° to x)
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Resonance Search

Place new bound on pp — V + X,V — upu

e 95% CLg upper limits on
o(pp— V+X)B(V = putp”)Aven(dio)
e Acceptance Ay and isolation €5, have some model dependence

e We only gain on cross section bound if we don't lose acceptance
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95% CLson o (pp — V + X)B(V — u"u™) Avéwetiso

Isolated Sample

2011 CMS Open Data
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95% CLsono(pp — V+ X)B(V — pu~) Avew

Prompt Sample
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Resonance Search

Consider region m,,, > 40 GeV

alpp = V+X)B(V = ptu™) Averéiso

p" Cut Isolated Upper Lim. Prompt Upper Lim.
No pf* cut 100 fb 150 fb
Pl > 25 GeV 45 b (2x) 60 b (2.5%)
P > 60 GeV 17 fb (6x) 18 fb (8x)
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Resonance Search

Consider region m,,, > 40 GeV

alpp = V+X)B(V = ptu™) Averéiso

pi"" Cut lsolated Upper Lim. Prompt Upper Lim.

No pf* cut 100 fb 150 fb
Pl > 25 GeV 45 fb (2x) 60 fb (2.5x)
P > 60 GeV 17 fb (6x) 18 fb (8x)

pT cuts enhance sensitivity if Ay does not drop too rapidly!
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Benchmark Scenarios

What models will retain acceptance across p4" cuts?

Consider models with scalar S and vector V

e Final state: ;- jets -+ no missing pr

e No particle clusters near signal — use isolation cuts

pp—>S—>V+a

a pseudoscalar
prof V
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Benchmark Scenarios

In some regions of m,,, our search strategy cut strengthens cross
section limit by factor of > 2

Consider ms = mp = 125 GeV, and my = m, = 40 GeV

Av(0) = 54%, Ay(25) = 47%, — Ay(0)/Ay(25) ~ 85% (from Pythiag)
€xr ~ 85%, €iso ~ 85% (from Open Data)

B(h— Va)B(V — up) <8 x 1073
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Benchmark Scenarios

Our search sets competitive if not stronger bounds
on certain classes of models

Improve limits in comparison to inclusive searches on Run |

18



Conclusions

e Performed largely model-independent analysis for V — ptpu~
e Improve sensitivity on many models by exploiting moderately
boosted kinematics
— ATLAS & CMS can improve limits by an order of magnitude using Run Il
e Prompt limits improve sensitivity to certain classes of BSM models

— Analysis need knowledge of QCD background, impossible without Open Data
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Conclusions

e Performed largely model-independent analysis for V — ptpu~
e Improve sensitivity on many models by exploiting moderately
boosted kinematics
— ATLAS & CMS can improve limits by an order of magnitude using Run Il
e Prompt limits improve sensitivity to certain classes of BSM models

— Analysis need knowledge of QCD background, impossible without Open Data

Open Data can be used to test BSM analysis strategies!
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Back-ups
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Open Data

Lots of utility in Open Data

Exposing the QCD Splitting Function with CMS Open Data

Andrew Larkoski,![] Simone Marzani,[] Jesse Thaler,3[[] Aashish Tripathee,3[f] and Wei Xue®[Y]
! Physics Department, Reed College, Portland, OR 97202, USA
2 University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA
3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

The splitting function is a universal property of quantum chromodynamics (QCD) which describes
how energy is shared between partons. Despite its ubi in many QC]
the splitting function cannot be measured directly, since it always appears multiplied by a collinear
singularity factor. Recently, however, a new jet substructure observable was introduced which
asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose
the splitting function through jet substructure measurements at the Large Hadron Collider. In this
letter, we use public data released by the CMS experiment to study the 2-prong substructure of
jets and test the 1 — 2 splitting function of QCD. To our knowledge, this is the first ever physics
analysis based on the CMS Open Data.

e Tests long-term storage framework of data

e Source of SM events poorly modeled by MC
— QCD Splitting function (1704.05066)

e Study detector effects on new search strategies

e Search for Beyond-the-Standard-Model (BSM) phenomena
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New Physics at LHC

Previous searches at ATLAS & CMS with dimuons: m,,,, resonances

i~ =
e High-mass: mz € [120 GeV,3.36 TeV]
e Pairs of light bosons: m., € [0.25,8.5] GeV ¥ A
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Previous Searches at LHC

LHCb searched for light new physics from direct production in pp

collisions
g I
o my < 70 GeV -
e Excellent mass resolution, low p't trigger ! A
/4/\

e Inclusive search

LHCb, arXiv:1710.02867

prompt-like sample
pr(p) > 1GeV,p(p) > 20 GeV
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Model 2

S = x1xe, X2 —+x1V

e Isolation or prompt cut depends on mass hierarchy

e For xo < ms, x2 boosted, decay products are collimated
— Ruin isolation, use prompt

24



Model 2

ms = 200 GeV, m,, = 10 GeV

Acceptance, No Dilepton Cuts Ay(25)/Av(0)
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Model 2

m,, [GeV]

160

ms = 200 GeV, m,, = 10 GeV

Acceptance, No Dilepton Cuts Ay(25)/Ay(0)
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Acceptance ratio > 50% for most of kinematic range

Good candidate for pr enhanced search
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Validation Studies

All CMS11a results compared to CMS10 reported values

Trigger Efficiency

e Measured from MC truth vs. MC reconstructed

e Compared against CMS public 2011 muon results
Isolation Efficiency

e Compare tag & probe results from MC and Open Data
e Agree within 1%

Kinematic Acceptance

e Cuts listed previously

e Detector depedent
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Resonance Search

Fitting Disclaimer

e Muon pt resolution is a function of 1, p1
— dimuon mass resolution is also a function of 7, pt
— Resolution py is dependent on V' kinematics

e Bump has non-Gaussian tails
— Photon emission for m,,, < my
— Mismeasuring, scattering
— Gaussian smearing is function of

Correct for these effects on bounds

27



Resonance Search

Why study this range and p7* cuts?

e At low mass my and/or large p4*, muons are too collimated and
triggering begins to fail

e At high mass my and/or large p4", fewer event counts — larger

uncertainty
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Resonance Search

Why study this range and p7* cuts?

e At low mass my and/or large p4*, muons are too collimated and
triggering begins to fail

e At high mass my and/or large p4", fewer event counts — larger
uncertainty

Experimentalists with better trigger/reco knowledge and larger
data set could extend kinematic regions!
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