Searching in CMS Open Data for Dimuon Resonances with Substantial Transverse Momentum

Cari Cesarotti¹

with Yotam Soreq $^{2,3},$ Matthew J. Strassler 1, Jesse Thaler 2, and Wei Xue 3 Jan 21, 2019

GGI Lectures on the Theory of Fundamental Interactions

¹Department of Physics, Harvard University
 ²Center for Theoretical Physics, Massachusetts Institute of Technology
 ³Theoretical Physics Department. CERN

CERN Open Data Portal: http://opendata.cern.ch/

What is **Open Data**?

- LHC data publicly available
- Research grade data from CMS made public in 2014 CMS Run 2011a: $\sqrt{s} = 7$ TeV, $\mathcal{L} = 2.11$ fb⁻¹

Where can we look for new physics in old data?

- LHC is powerful probe in energy, intensity frontier
- Might have looked in the wrong place for new physics
 - \rightarrow How you look determines what you find
 - \rightarrow New physics signature buried in phase space
- First ever BSM search on Open Data

Consider class of models: new physics with dimuon signatures and substantial $p_T^{\mu\mu}$

Previous searches at ATLAS & CMS with dimuons: $m_{\mu\mu}$ resonances

- High-mass: *m*_{Z'} ∈ [120 GeV, 3.36 TeV]
- Pairs of light bosons: $m_{Z'} \in [0.25, 8.5]$ GeV

LHCb searched for light new physics from direct production in *pp* collisions

• $m_{\phi} < 70 \text{ GeV}$

We are considering a new vector particle V produced via decay, therefore with substantial p_T^V

- Decays to dimuon pairs $(\mu^+\mu^-)$
- Produced by SM (W/Z/Higgs/t) or new particle
- Probing mass range of 14 GeV to 66 GeV

We propose a search strategy that increases sensitivity for semi-inclusive searches with indirect production of new particle

 $pp \rightarrow V + X, \quad V \rightarrow \mu^+ \mu^-$

Overview

We propose a search strategy that increases sensitivity for semi-inclusive searches with indirect production of new particle $pp \rightarrow V + X, \quad V \rightarrow \mu^+ \mu^-$

- Produced via decay: substantial p_T^V from recoil
- Cut on $p_T^{\mu\mu}$ preserves signal while reducing background

We propose a search strategy that increases sensitivity for semi-inclusive searches with indirect production of new particle $pp \rightarrow V + X, \quad V \rightarrow \mu^+ \mu^-$

- Produced via decay: substantial p_T^V from recoil
- Cut on $p_T^{\mu\mu}$ preserves signal while reducing background
- Further reduce background: isolation and prompt cuts

Improving sensitivity: remove background, keep signal $\left(\frac{S}{\sqrt{B}}\right)$

Backgrounds

Further suppressed by isolation or prompt cuts

Isolated vs. Prompt Sample

Isolated

- Both μ are isolated in detector
- Virtually eliminates QCD (heavy flavor) background

Prompt

- No isolation cut imposed
- $IP_{xy} < 100 \mu m$
- QCD bgd. \sim DY bgd.
- Need Open Data to understand

Isolated vs. prompt sample are sensitive to different classes of models

New, largely model-independent, analysis strategy for limits on:

$$rac{N_V}{\mathcal{L}} = \sigma \left(pp
ightarrow V + X
ight) \mathcal{B} \left(V
ightarrow \mu^+ \mu^-
ight) A_V \epsilon^V_{
m tr} \epsilon^V_{
m iso}$$

Goal: Increase sensitivity by imposing $p_T^{\mu\mu}$ cuts.

- Dimuon trigger ($p_T^{1,2} > 13, 8 \text{ GeV}$)
- Only opposite-sign (OS) muons
- Define isolated and prompt samples
- Apply increasingly restrictive $p_T^{\mu\mu}$ cuts (substantial p_T^V)
- Look for a bump

Prompt vs. Isolation

Isolated Sample

PT > 60 GeV

factor of ~ 6

Cut flow for the $V \to \mu^+ \mu^-$ search on CMS11a

	Dimuon Events	
Baseline Acceptance and Tight Muons Cuts		
$(ho_{\mathcal{T},1}>15$ GeV, $ ho_{\mathcal{T},2}>10$ GeV, $ \eta_{\mu} <$ 2.1,	2,155,900	
$d_0 < 2 { m mm}, z_0 < 10 { m mm})$		
Search Region		
(OS, $m_{\mu\mu}\in [11,78]$ GeV,	486,242	
$d_0 < 250\mu{ m m},~z_0 < 2000\mu{ m m})$		
	Isolated Sample	Prompt Sample
	$(I_{ m comb} < 0.15)$	$(IP_{xy} < 100\mu{ m m})$
$p_T^{\mu\mu}>0$	139,282	343,519
$p_T^{\mu\mu} > 25{ m GeV}$	34,550	72,434
$p_T^{\mu\mu} > 60 { m GeV}$	5,206	7,736

Finding a resonance \rightarrow 'bump hunting'

- Background fit with polynomial
- Center window around $m_{\mu\mu}$
- Width of window is 35 ρ_V spread over 140 bins
- Fit with fifth-order polynomial $(x^0 \text{ to } x^5)$

Place new bound on $pp \rightarrow V + X, V \rightarrow \mu\mu$

• 95% CL_s upper limits on

$$\sigma (pp \rightarrow V + X) \mathcal{B} (V \rightarrow \mu^+ \mu^-) A_V \epsilon_{tr}(\epsilon_{iso})$$

- Acceptance A_V and isolation ϵ_{iso} have some model dependence
- We only gain on cross section bound if we don't lose acceptance

Resonance Search

95% CL_s on $\sigma (pp \rightarrow V + X) \mathcal{B} (V \rightarrow \mu^+ \mu^-) A_V \epsilon_{tr} \epsilon_{iso}$

Isolated Sample

Resonance Search

95% CL_s on $\sigma (pp \rightarrow V + X) \mathcal{B} (V \rightarrow \mu^+ \mu^-) A_V \epsilon_{tr}$

Prompt Sample

Consider region $m_{\mu\mu} >$ 40 GeV

$$\sigma \left(pp
ightarrow V + X
ight) \mathcal{B} \left(V
ightarrow \mu^+ \mu^-
ight) A_V \epsilon_{
m tr} \epsilon_{
m iso}$$

$p_T^{\mu\mu}$ Cut	Isolated Upper Lim.	Prompt Upper Lim.
No $p_T^{\mu\mu}$ cut	100 fb	150 fb
$p_T^{\mu\mu} > 25~{ m GeV}$	45 fb (2x)	60 fb <mark>(2.5x)</mark>
$p_T^{\mu\mu} >$ 60 GeV	17 fb (6×)	18 fb <mark>(8x)</mark>

Consider region $m_{\mu\mu} >$ 40 GeV

$$\sigma \left(pp
ightarrow V + X
ight) \mathcal{B} \left(V
ightarrow \mu^+ \mu^-
ight) A_V \epsilon_{
m tr} \epsilon_{
m iso}$$

$p_T^{\mu\mu}$ Cut	Isolated Upper Lim.	Prompt Upper Lim.
No $p_T^{\mu\mu}$ cut	100 fb	150 fb
$p_T^{\mu\mu} > 25~{ m GeV}$	45 fb (2x)	60 fb <mark>(2.5x)</mark>
$p_T^{\mu\mu} >$ 60 GeV	17 fb (6x)	18 fb <mark>(8x)</mark>

 p_T cuts enhance sensitivity if A_V does not drop too rapidly!

What models will retain acceptance across $p_T^{\mu\mu}$ cuts?

Consider models with scalar S and vector V

- Final state: $\mu^+\mu^-$ + jets + no missing p_T
- $\bullet\,$ No particle clusters near signal \rightarrow use isolation cuts

In some regions of $m_{\mu\mu}$, our search strategy cut strengthens cross section limit by factor of $\gtrsim 2$

Consider $m_S = m_h = 125$ GeV, and $m_V = m_a = 40$ GeV

 $A_V(0) = 54\%, A_V(25) = 47\%, \rightarrow A_V(0)/A_V(25) \sim 85\%$ (from Pythia8) $\epsilon_{tr} \sim 85\%, \epsilon_{iso} \sim 85\%$ (from Open Data)

 $\mathcal{B}\left(h
ightarrow Va
ight)\mathcal{B}\left(V
ightarrow \mu\mu
ight)\lesssim8 imes10^{-3}$

Our search sets competitive if not stronger bounds on certain classes of models

Improve limits in comparison to inclusive searches on Run I

Conclusions

- Performed largely **model-independent** analysis for $V \rightarrow \mu^+\mu^-$
- Improve sensitivity on many models by exploiting moderately boosted kinematics
 - \rightarrow ATLAS & CMS can improve limits by an order of magnitude using Run II
- Prompt limits improve sensitivity to certain classes of BSM models
 - ightarrow Analysis need knowledge of QCD background, impossible without Open Data

Conclusions

- Performed largely **model-independent** analysis for $V \rightarrow \mu^+\mu^-$
- Improve sensitivity on many models by exploiting moderately boosted kinematics
 - \rightarrow ATLAS & CMS can improve limits by an order of magnitude using Run II
- Prompt limits improve sensitivity to certain classes of BSM models
 - \rightarrow Analysis need knowledge of QCD background, impossible without Open Data

Open Data can be used to test BSM analysis strategies!

Back-ups

Lots of utility in Open Data

Exposing the QCD Splitting Function with CMS Open Data

Andrew Larkoski,¹,¹ Simone Marzani,²,¹ Jesse Thaler,³,⁴ Ashish Tripathee,³,⁴ and Wei Xue³,⁴ ¹ Physics Department, Reed College, Portland, OR 97026, USA ² University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA ³ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in maxy QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this letter, we use public data released by the CMS experiment to study the 2-prog substructure of jets and test the 1 \rightarrow 2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

- Tests long-term storage framework of data
- Source of SM events poorly modeled by MC \rightarrow QCD Splitting function (1704.05066)
- Study detector effects on new search strategies
- Search for Beyond-the-Standard-Model (BSM) phenomena

Lots of utility in Open Data

Exposing the QCD Splitting Function with CMS Open Data

Andrew Larkoski,¹,¹ Simone Marzani,²,¹ Jesse Thaler,³,⁴ Ashish Tripathee,³,⁴ and Wei Xue³,⁴ ¹ Physics Department, Reed College, Portland, OR 97026, USA ² University at Buffalo, The State University of New York, Buffalo, NY 14260-1500, USA ³ Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in maxy QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this letter, we use public data released by the CMS experiment to study the 2-prog substructure of jets and test the 1 \rightarrow 2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

- Tests long-term storage framework of data
- Source of SM events poorly modeled by MC \rightarrow QCD Splitting function (1704.05066)
- Study detector effects on new search strategies
- Search for Beyond-the-Standard-Model (BSM) phenomena

New Physics at LHC

Previous searches at ATLAS & CMS with dimuons: $m_{\mu\mu}$ resonances

- High-mass: *m*_{Z'} ∈ [120 GeV, 3.36 TeV]
- Pairs of light bosons: $m_{\gamma_D} \in [0.25, 8.5]$ GeV

ATLAS, arXiv:1607.03669

CMS, arXiv:1812.00380

Previous Searches at LHC

LHCb searched for light new physics from direct production in *pp* collisions

- $m_\phi < 70 \,\, {
 m GeV}$
- Excellent mass resolution, low p_T^{μ} trigger
- Inclusive search

LHCb, arXiv:1710.02867

$$S \to \chi_1 \chi_2, \qquad \chi_2 \to \chi_1 V$$

- Isolation or prompt cut depends on mass hierarchy
- For $\chi_2 \ll m_S$, χ_2 boosted, decay products are collimated \rightarrow Ruin isolation, use prompt

Model 2

Model 2

Acceptance ratio $\gg 50\%$ for most of kinematic range

Good candidate for p_T enhanced search

All CMS11a results compared to CMS10 reported values

Trigger Efficiency

- Measured from MC truth vs. MC reconstructed
- Compared against CMS public 2011 muon results

Isolation Efficiency

- Compare tag & probe results from MC and Open Data
- Agree within 1%

Kinematic Acceptance

- Cuts listed previously
- Detector depedent

Fitting Disclaimer

- Muon p_T resolution is a function of η , p_T
 - \rightarrow dimuon mass resolution is also a function of $\eta,\ p_T$
 - \rightarrow Resolution ρ_V is dependent on V kinematics
- Bump has non-Gaussian tails
 - ightarrow Photon emission for $m_{\mu\mu} < m_V$
 - \rightarrow Mismeasuring, scattering
 - \rightarrow Gaussian smearing is function of η

Correct for these effects on bounds

Why study this range and $p_T^{\mu\mu}$ cuts?

- At low mass m_V and/or large $p_T^{\mu\mu}$, muons are too collimated and triggering begins to fail
- At high mass m_V and/or large $p_T^{\mu\mu}$, fewer event counts ightarrow larger uncertainty

Why study this range and $p_T^{\mu\mu}$ cuts?

- At low mass m_V and/or large $p_T^{\mu\mu}$, muons are too collimated and triggering begins to fail
- At high mass m_V and/or large $p_T^{\mu\mu}$, fewer event counts ightarrow larger uncertainty

Experimentalists with better trigger/reco knowledge and larger data set could extend kinematic regions!