Asymptotic safety and Conformal Standard Model

Frederic Grabowski² Jan H. Kwapisz^{1,2}, Krzysztof A. Meissner ¹

¹ Faculty of Physics University of Warsaw

² Faculty of Mathematics, Informatics and Mechanics University of Warsaw

21 January 2019

GGI Fundamental Interactions Student Seminar

Asymptotic safety

In the quantum field theory the couplings change with energy ("run") due to renormalisation group equations:

$$k\frac{\partial g_i(k)}{\partial k} = \beta_i\left(\{g_i(k)\}\right),\tag{1}$$

where β functions are calculated for a given theory. Standard possibilities:

- Landau pole: $g \to \infty$ for some μ_0 . Example: QED.
- $g \to \infty$ for $\mu \to \infty$. Example: Square of Higgs mass.
- asymptotic freedom, $\lim_{\mu\to\infty} g = 0, \forall_i\beta_i(g^*) = 0$. Theory has a UV fixed point. Example: QCD.

Non standard possibilities are:

- Asymptotic safety, lim_{µ→∞} g ≠ 0, ∀_iβ_i(g*) = 0. Theory has a UV fixed point. Example: Weinberg hypothesis: Gravity.
- Oscillating g. Theory has a limit cycle. Quantum mechanics: $-g/r^2$ potential.

Fixed point for a given coupling can be:

- repulsive. Example: QED
- attractive. Example: QCD

For repulsive fixed point there is only one IR value of a parameter, which will result in asymptotic safe (free) theory! For attractive fixed point there is a range of allowed parameters.

For the Standard Model beta one can calculate the gravitational corrections:

$$\beta(g_j) = \beta_{SM}(g_j) + \beta_{grav}(g_j, k), \qquad (2)$$

where due to universal nature of gravitational interactions the $\beta_{\rm grav}$ are given by:

$$\beta_{grav}(g_j, k) = \frac{a_j k^2}{M_P^2 + 2\xi k^2} g_j,$$
(3)

with $\xi \approx 0.024$. The a_j are unknown parameters, however they can be calculated. Then, depending on a sign of a_j , we have repelling/attracting fixed point at 0 in the perturbative region of couplings.

The Higgs mass (self coupling) was calculated by Mikhail Shaposhnikov and Christof Wetterlich using this approach. They obtained the correct value

 $m_H=126{\rm GeV}$

two years before the detection.

Conformal Standard Model

Conformal Standard Model

• Sterile complex (real) scalar ϕ coupled to Higgs doublet:

$$\mathcal{L}_{scalar} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + (\partial_{\mu}\phi^{\star}\partial^{\mu}\phi) - V(H,\phi).$$
 (4)

$$V(H,\phi) = -m_1^2 H^{\dagger} H - m_2^2 \phi^* \phi + \lambda_1 (H^{\dagger} H)^2 + \lambda_2 (\phi^* \phi)^2 + 2\lambda_3 (H^{\dagger} H) \phi^* \phi.$$
(5)

• The scalar particles are combined from two mass states:

$$m_1^2 = \lambda_1 v_H^2 + \lambda_3 v_{\phi}^2, \qquad m_2^2 = \lambda_3 v_H^2 + \lambda_2 v_{\phi}^2,$$
 (6)

and the ligher is identified with Higgs particle.

Conformal Standard Model also includes right handed neutrinos coupled to ϕ with the coupling y_M :

$$\mathcal{L} \ni \frac{1}{2} Y_{ji}^{M} \phi N^{j\alpha} N_{\alpha}^{i}, \tag{7}$$

where $Y_{ij}^{M} = y_{M}\delta_{ij}$. To resolve the baryogenesis problem via resonant leptogenesis the right handed neutrinos have to be unstable:

$$M_N > y_M v_\phi / \sqrt{2}. \tag{8}$$

Furthermore this model can resolve the SM problems like: inflation candidates, triviality, hierarchy problem and has dark matter candidates.

The running of couplings

We run following couplings: g_1, g_2, g_3 (Gauge couplings), y_t (top Yukawa coupling), $\lambda_1, \lambda_2, \lambda_3, y_M$. The CSM beta functions are $\hat{\beta} = 16\pi^2\beta$:

$$\hat{\beta}_{g_{1}} = \frac{41}{6}g_{1}^{3},
\hat{\beta}_{g_{2}} = -\frac{19}{6}g_{2}^{3},
\hat{\beta}_{g_{3}} = -7g_{3}^{3},
\hat{\beta}_{y_{t}} = y_{t} \left(\frac{9}{2}y_{t}^{2} - 8g_{3}^{2} - \frac{9}{4}g_{2}^{2} - \frac{17}{12}g_{1}^{2}\right),
\hat{\beta}_{\lambda_{1}} = 24\lambda_{1}^{2} + 4\lambda_{3}^{2} - 3\lambda_{1} \left(3g_{2}^{2} + g_{1}^{2} - 4y_{t}^{2}\right)
+ \frac{9}{8}g_{2}^{4} + \frac{3}{4}g_{2}^{2}g_{1}^{2} + \frac{3}{8}g_{1}^{4} - 6y_{t}^{4},
\hat{\beta}_{\lambda_{2}} = \left(20\lambda_{2}^{2} + 8\lambda_{3}^{2} + 6\lambda_{2}y_{M}^{2} - 3y_{M}^{4}\right),
\hat{\beta}_{\lambda_{3}} = \frac{1}{2}\lambda_{3} \left[24\lambda_{1} + 16\lambda_{2} + 16\lambda_{3}
- \left(9g_{2}^{2} + 3g_{1}^{2}\right) + 6y_{M}^{2} + 12y_{t}^{2}\right],
\hat{\beta}_{y_{M}} = \frac{5}{2}y_{M}^{3}.$$

We impose two conditions:

- absence of Landau poles
- $\lambda_1(\mu) > 0$, $\lambda_2(\mu) > 0$, $\lambda_3(\mu) > -\sqrt{\lambda_2(\mu)\lambda_1(\mu)}$.

Furthermore we take:

$$a_{g_i} = a_{y_M} = -1, a_{y_t} = -0.5, a_{\lambda_1} = +3$$
 (10)

and

$$a_{\lambda_2} = \pm 3, a_{\lambda_3} = \pm 3, \tag{11}$$

hence we have four possibilities.

Values of parameters

For $a_{\lambda_3} = +3$, we get that: $\lambda_3 = 0$. So SM and ϕ decouple.

Coefficient: $a_{\lambda_2} = a_{\lambda_3} = -3$, set of allowed couplings $\lambda_2, \lambda_3, y_M$

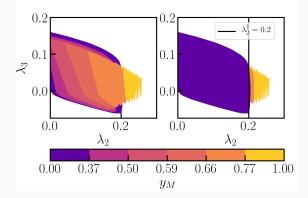


Figure 1: Maximal (left) and minimal (right) $y_M(\lambda_3, \lambda_2)$, $a_{\lambda_2} = -3, a_{\lambda_3} = -3$

Coefficient: $a_{\lambda_2} = a_{\lambda_3} = -3$, λ_1

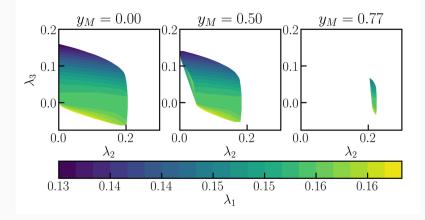


Figure 2: Plot of $\lambda_1(\lambda_2, \lambda_3, y_M)$

With the tree level relations:

$$m_1^2 = \lambda_1 v_H^2 + \lambda_3 v_{\phi}^2,$$
(12)
$$m_2^2 = \lambda_2 v_{\phi}^2 + \lambda_3 v_H^2,$$
(13)

and with m_1 taken as Higgs mass, $v_{\phi} = 226$ GeV we are able to constrain the second scalar mass as:

270 GeV
$$< m_2 < 328$$
 GeV. (14)

We can also constraint the neutrino mass with the leptogenesis condition($M_N > y_M v_{\phi}/\sqrt{2}$):

$$M_N = 342^{+41}_{-41} \,\,\mathrm{GeV} \tag{15}$$

Moreover for $y_M = 0.0$ we found out that:

$$m_2 = 160^{+103}_{-100} \text{ GeV},$$
 (16)

so classically it is stable.

Summary

Take home message:

- Standard Model supplemented by the gravitational corrections can be a fundamental theory, yet not a complete one
- Applying the gravitational corrections can give the quantitive predictions for new particles, which can be tested in near future

Further work:

- The remaining a_i 's have to be calculated
- The (higher)-loop corrections have to be taken into account

Talk based on article: arxiv.org/abs/1810.08461 To contact me use my mail: jkwapisz@fuw.edu.pl

Backup slides

One can parametrize the discrepancies from SM as:

$$\tan \beta = \frac{\lambda_0 - \lambda_1}{\lambda_3} \frac{v_H}{v_\phi}.$$
 (17)

- $|\tan\beta| < 0.35$. At μ_0 ,
- Global stability condition of the potential: $\lambda_3(\mu_0) < \sqrt{\lambda_2(\mu_0)\lambda_1(\mu_0)},$
- un-stability condition for the second particle: $m_2 > 2m_1$.

Coefficient: $a_{\lambda_3} = +3(2)$

For $a_{\lambda_3} = +3$, we get that: $\lambda_3 = 0$. So SM and ϕ decouple.

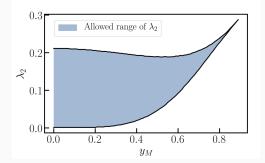


Figure 3: λ_2 dependence on y_M

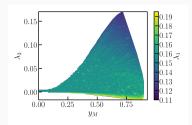
The case when $a_{\lambda_2} = +3$ follows the lower bound of the plot.

We found that there are only two sets of parameters satisfying the imposed conditions

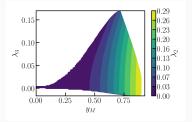
$$y_M = 0.84, m_2 = 275, v_\phi = 538, M_N = 319,$$
 (18)

and

$$y_M = 0.85, m_2 = 296, v_\phi = 574, M_N = 345.$$
 (19)



(a) λ_1 dependence on λ_3, y_M



(b) λ_2 dependence on λ_3, y_M