An On-Shell Approach to Gauge Anomalies in an EFT

Andrew Gomes GGI Winter School 2020 Work in progress with C. Csaki and O. Telem

Chiral Anomaly

- Quantum violation of a classical symmetry
- A QFT is given by its Lagrangian and path integral measure
- Specifically, the axial current is classically conserved for massless fermions

$$\mathcal{L} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\alpha\mu\nu} - \overline{\psi} \mathcal{D}\psi \qquad J^{\mu}_{5} = iq \,\overline{\psi} \gamma^{\mu} \gamma_{5} \psi$$

 We can most easily see the anomaly with the Fujikawa path integral method, in the case of a single U(1) gauge field...

A Change in the Measure

Applying an infinitesimal axial transformation,

$$\int \mathcal{D}\psi \mathcal{D}\overline{\psi}e^{-i\bar{\psi}\mathcal{D}\psi} = \int \mathcal{D}\psi \mathcal{D}\overline{\psi}e^{-i\bar{\psi}\mathcal{D}\psi} \left[1 + i\int d^4x \epsilon(x)\left(a(x) + \partial_\mu J_5^\mu(x)\right) + \dots\right]$$
$$a(x) = -\frac{q^3}{16\pi^2} \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu}(x) F_{\rho\sigma}(x)$$

- The axial current is not conserved when gauge field is present
- This topological quantity is related to the difference in the number of left- and right-handed fermion zero modes (and hence the breaking of chiral symmetry)
- Triangle diagrams motivate the on-shell realization

Gauge Anomalies

- If the current is gauged, the change to the fermion measure will break gauge invariance
- Alternatively, it is meaningless to couple a gauge field to an unconserved current
- The Standard Model has fermions in anomaly free representations
- This means the charges are such that all U(1),SU(2), and SU(3) anomalies cancel

On-Shell (Massless) Amplitudes

- Forget fields, forget gauge symmetry
- Use only locality and unitarity (later)
- Particles are representations of the little group (the stabilizer of the particle momentum in the Lorentz group), which is U(1)* for massless particles
- Scattering amplitudes should carry the correct "helicity weight" of each external particle

 The angle and square brackets are the usual Weyl spinors, fundamental representations of the little group

Locality for Points

- The little group fixes the three points
- We use factorization to find higher point amplitudes
- The residue on poles (that field theory tells us means that an internal propagator goes on-shell), is the product of left and right sub-amplitudes
- Chen, Huang, and McGady (2014) consider a theory of massless spin-1 particles in the adjoint of SU(N)* and a single fundamental (anomalous) representation of fermions
- The tree-level, colour-ordered 4-gluon amplitude is Parke-Taylor $$\langle 24 \rangle^4$$

$$\overline{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 41 \rangle}$$

Unitarity for Lööps

- We calculate loops by making "unitarity cuts", sort of...
- The product of sub-amplitudes allows us to compute the coefficients of standard box, triangle, and bubble integrals (Passarino-Veltman)
- Details of calculation in Forde (2007)
- TL;DR: Be clever about parameterizing loop momenta

$$A^{++} = A^{\text{PT}} \left[c_4 I_4 \left(s_{12}, s_{14} \right) + \left(c_3^{(12)} + c_3^{(34)} \right) I_3 \left(s_{12} \right) \right]$$

$$A^{++} \left[c_4 I_4 \left(s_{12}, s_{14} \right) + \left(c_3^{(12)} + c_3^{(34)} \right) I_3 \left(s_{12} \right) \right]$$

$$A^{++} \left[c_3^{(14)} + c_3^{(23)} \right] I_3 \left(s_{14} \right) + c_2^{(12)} I_2 \left(s_{12} \right) + c_2^{(14)} I_2 \left(s_{14} \right) + R(s_{12}, s_{13}, s_{14}) \right]$$

Locality Fights Back

Going to the u-pole one sees

$$\lim_{s_{13}\to 0} A^{1-\text{loop}} = \lim_{s_{13}\to 0} A^{\text{PT}} \left[\sum c_i I_i + R \right] = \lim_{s_{13}\to 0} A^{\text{PT}} \left[-\frac{s_{12}}{s_{13}} + R \right]$$

 To eliminate this pole, respecting colour-ordered cyclicity, the rational term is fixed to be

$$R = \frac{s_{12} - s_{14}}{2s_{13}}$$

 However, now the s- and t-poles have changed with nothing to account for them – anomaly!

$$\operatorname{Res}_{s_{12} \to 0} A^{\text{PT}} R = \frac{[13]^2 \langle 24 \rangle^2}{2s_{14}}$$

A Spontaneously Broken Gauge Theory

 D'Hoker and Farhi (1984) introduce a theory that is anomaly-free (the sum of the charges must be zero)

$$\mathcal{L} = -\frac{1}{4}F_{1\mu\nu}^2 - \frac{1}{2}\operatorname{Tr} F_{2\mu\nu}^2 + \sum_{i=1}^{N} \left[i\overline{\psi}_L^i \mathcal{D}_L^i \psi_L^i + i\overline{\psi}_R^i \mathcal{D}_R^i \psi_R^i\right]$$

$$D_{L;\mu}^{i} = \partial_{\mu} + ig_{2}A_{\mu} + ig_{1}y_{i}B_{\mu} \qquad D_{R;\mu}^{i} = \partial_{\mu} + ig_{1}\left(y_{i} + \tau_{3}\right)B_{\mu}$$

- They Higgs the theory down to a $U(1)_V$, and use an order one Yukawa to send the last fermion to the Higgs scale
- Finally, they integrate out the Higgs and the (charged) fermion

The Effective Action

$$\mathcal{S}_{\rm EFT} = \underbrace{\mathcal{S}_{\rm nl\sigma m}(A_{\mu}, B_{\mu}, \psi^{i}, U)}_{\rm H} + \Gamma_{\rm WZW}(U) + \int d^{4}x \, g_{1} \, y_{N} \, B_{\mu} J^{\mu}_{\rm GW}$$

Fixed by the nonlinear realization of SU(2)xU(1)

 $U \in \frac{\mathrm{SU}(2)_L \times U(1)_R}{\mathrm{U}(1)_V}$ is the Goldstone matrix

 Where the Wess-Zumino-Witten term cancels the nonperturbative SU(2) anomaly, and the Goldstone-Wilczek current

$$J_{\rm GW}^{\mu} = \frac{1}{24\pi^2} \epsilon^{\mu\alpha\beta\gamma} \text{Tr} \left[U^{\dagger} D_{\alpha} U U^{\dagger} D_{\beta} U U^{\dagger} D_{\gamma} U - i \frac{3g_2}{2} F_{2\alpha\beta} D_{\gamma} U U^{\dagger} - i \frac{3g_1}{2} F_{1\alpha\beta} \tau_3 U^{\dagger} D_{\gamma} U - g_2^2 \left(A_{\alpha} F_{2\beta\gamma} - \frac{1}{2} i g_2 A_{\alpha} A_{\beta} A_{\gamma} \right) \right]$$

 The top line cancels the anomaly while the bottom pseudo-Chern-Simons (pCS) term shifts the would-be-anomaly between the gauge groups

This is Fine

- Preskill (1991) argues that these anomaly canceling terms are gauge artifacts
- Going to unitary gauge, the U fields are set to zero (alternatively, their mass is sent to infinity with this gauge choice)
- Therefore, there is no physical difference between a theory with and without these terms
- An anomalous EFT with massive gauge bosons is consistent (it must be since it came from a consistent theory in the UV)

On-Shell and Massive

- This is where we come in to the story
- We repeat Chen, Huang, and McGady's calculation for a massless fermion loop with four massive massive gauge boson legs
- The little group is now SU(2) and spinors carry extra indices (Arkani-Hamed, Huang, and Huang, 2017)

$$p_{i}^{\mu}\bar{\sigma}_{\mu}^{\dot{\alpha}\alpha}=\left|\mathbf{i}\right\rangle_{I}^{\dot{\alpha}}\left[\mathbf{i}\right]^{I\alpha}$$

 Required to carry these indices through to the coefficients of the scalar integrals

$$\begin{array}{l} \mathbf{4} & \begin{array}{c} \ell \\ \ell_{3} \\ \vdots \\ \mathbf{3} \end{array} \\ \mathbf{3} \end{array} \\ \mathbf{3} \end{array} = \frac{1}{m^{4}} \left\langle \ell \mathbf{1} \right\rangle \left[\mathbf{1} \ell_{1} \right] \times \left\langle \ell_{1} \mathbf{2} \right\rangle \left[\mathbf{2} \ell_{2} \right] \times \\ \times \left\langle \ell_{2} \mathbf{3} \right\rangle \left[\mathbf{3} \ell_{3} \right] \times \left\langle \ell_{3} \mathbf{4} \right\rangle \left[\mathbf{4} \ell \right] \\ = \frac{1}{m^{4}} \left\langle \mathbf{4} | \ell | \mathbf{1} \right] \left\langle \mathbf{1} | \ell_{1} | \mathbf{2} \right] \left\langle \mathbf{2} | \ell_{2} | \mathbf{3} \right] \left\langle \mathbf{3} | \ell_{3} | \mathbf{4} \right]$$

Massless limit

- We have completed the calculation of the coefficients
- Checked that the massless limit is reproduced

$$\begin{aligned} \langle \mathbf{1} | \to m \frac{\langle n_1 |}{\langle n_1 1 \rangle} \,, \quad |\mathbf{1}] \to |\mathbf{1}] & \langle \mathbf{2} | \to \langle 2 | \,, \quad |\mathbf{2}] \to m \frac{|n_2|}{[2n_2]} \\ \langle \mathbf{3} | \to m \frac{\langle n_3 |}{\langle n_3 3 \rangle} \,, \quad |\mathbf{3}] \to |\mathbf{3}] & \langle \mathbf{4} | \to \langle 4 | \,, \quad |\mathbf{4}] \to m \frac{|n_4]}{[4n_4]} \end{aligned}$$

- The reference spinors reflect the reemergence of gauge symmetry in this limit
- The operations of going to a pole and taking the massless limit do not commute

Checking the u-pole

- Next need to check the residue on the u-pole
- Possible that there is no pole
- Most likely, will have to add a rational term
- May not correct the s- and t-poles, or may correspond to factorizations with a pCS vertex (expect them to emerge at 1-loop)
- In any case, field theory and Preskill tell us that a consistent computation should be possible
- Finally, try to figure out what goes wrong in the massless limit

Summary

- Anomalous symmetries are broken at the quantum level
- These symmetries cannot be gauged
- Unless they are symmetries already broken by a Higgs mechanism in an EFT
- Then you can imagine there are fermions above the cutoff that cancel the anomaly in the high energy limit
- We trade gauge invariance for on-shell locality and unitarity
- A tension arises for massless anomalous theories
- Should see it resolved when the theory is a consistent EFT