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4+ Eftective Field Theory Ideology
4 The Standard Model as an EFT

4 BSM and the Hierarchy Paradox



Universality and Reductionism



Of lengths and energies

relativity
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quantum mechanics



Example: electrostatic potential at large distance
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n-multipole contribution is of relative size (E)

¢ fived R — large: fewer multipoles needed » Universality

accurac L
I R — small: more multipoles needed » Reductionism

R ~ a expansion breaks down: o number of parameters needed



The case of electrostatic potential is emblematic but perhaps too
simple as it is indeed ...static and classical

however the same logic carries over to dynamical situations, both
classically and quantum mechanically
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Example: molecules in Born-Oppenheimer approximation

o O
electrons move faster than nucleons o o o

Me < MN We > WN Q O i

o -

* Find electron spectrum treating X, as parameters

Schroedinger eq.

. * Solve nucleon motion in resulting effective potential
solved in two steps

P2 P2
Ho = —— + —2 4V (| X;—X
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nucleon dynamics refined in systematic expansion in YN ( € >
we



In the path integral approach effective descriptions can be viewed as
arising by integrating out the fast degrees of freedom

{Q} — {Qfasta QSlow}

/qu’LS[Q] — / DQSlow quast 6iS[Qslow7Qfast] — /DqSlow eiseff[QSlow]

<QSlow (tl) -+« Jslow (tN) > —

/ Dq qsiow (tl) .+« Jslow (tN) €iS[q] — / Dqsiow Qsiow (tl) .o« Qslow (tN) eiseff[qsww]



* Effective long distance descriptions are ubiquitous
* Their universality is the very reason we can do physics

* In fact we expect all theories of nature to appear sooner or later
as just eftective ones

* Notice: until a few decades ago there was the notion that
Quantum Field Theory had to be fundamental not just effective.
The crucial role in that view was played by renormalizable QFTs

* The modern view, however, especially after Wilson, is that QFT
should also be viewed as effective, like all else.



Effective Quantum Field Theory

Any QFT is but an effective description
characterized by a short distance cut-oft

1 1
A = —
L

T

Like in all other cases, short distance effects are
controlled by an infinite, but systematic, expansion
in powers of L = 1/A



Example: a theory with just one scalar field ¢

Lagrangian is organized in series in inverse powers of A:
close analogy with multipole expansion
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Scattering amplitudes at I/ < A
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at low energy only lowest dimension coupling matters

|

the infinite set of couplings with negative mass dimension is irrelevant .



E << A

1 5 9 4 ‘Renormalizable
L= O0updip — m ™ + A Lagrangian’
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Long distance physics described by renormalizable truncation !



The same conclusion holds for theories with gauge bosons and fermions

In general

relative
contribution
to amplitudes
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relevant at small E

relevant at all E

gi] = 4 —104]

renormalizable

irrelevant at small E :I non-renormalizable



e The same conclusion holds also when considering loop diagrams, (but

proof is more technical ) Weinberg 1980
Polchinski 1984

* Loops simply add an additional mild log E dependence

N
H gi B9~ — ng "lt+amE/pu+a(nE/u)?+...)

In conclusion, at sufhiciently low energy

* any quantum field theory is well described by a
renormalizable lagrangian

o effects from all the other (infinitely many) couplings
are suppressed by powers of E/A



the ‘renormalizable’ terms (dimension 4 or less)
fully describe elementary (pointlike) particles

‘non-renormalizable’ terms (dimension 5 or more)
describe inner structure of particles

E ~ A

needed to directly
probe structure
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The crucial role of symmetries

* mostly concerned with global symmetries (possibly
approximate)

* local (gauge) symmetries are another story: these correspond to
redundancies in the parametrization of the field variables; their
main role is to reduce the number of physical degrees of
freedom (Ex. photon field has 4 components, but carries only 2
physical polarizations)



Accidental Symmetries

*The IR relevance of just a finite number of parameters
implies a great structural simplification

*this often entails the eftfective occurrence in the long
distance dynamics of additional, accidental, symmetries
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Long Distance Physics: Simplicity & Accidental Symmetries

accidental
®
SO(3)
Ex.: electrostatic potential at large distance
1/R a/R? a*/R?
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Accidental symmetries of renormalizable Lagrangians
Ex: parity in QED
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F,., " = total derivative



Accidental symmetries of renormalizable Lagrangians
Ex: parity in QED

1 - — , a ~
EQED — _ZF,LWFMV + ZM’Y“DMb =+ ¢(m1 + Z75m2)¢ + ZF,LWF'LL

(my +isme) = mo= y/m}+m3 by chiral rotation Y — ei575¢
F,., " = total derivative

dim 6 operator 1 -

violates parity Op = A2 WWW)(WWW)



Symmetries, dimensional analysis and selection rules

it is always possible to imagine symmetry tranformations
of the parameters describing a physical system

the dependence of physical observables on such parameters
is dictated by covariance under such symmetries



Ex.: classical pendulum
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Ex: atom in external electric field

slowly turn on E

o) - |Wo(E))

electric

dipole <\P0(E)‘dj‘\PO(E)> = ?




Ex: atom in external electric field

slowly turn on E

W) > |Wo(E))

electric

dipole




Ex: Flavor Changing Neutral Currents & CKM matrix
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In general, given couplings {),}, an observable O is given by

(0) =) (0), (O)y = cq Ao .. NN

| |
) / symm. & dim.
O(1) coeft.

If [{O)exp| < max|(O),s| it seems we are missing something

4+ we overlooked a symmetry implying cancellations among the (O),

4+ there is a fine-tuning of parameters not related to symmetry



In general, given couplings {),}, an observable O is given by

(0) =) (0), (O)y = cq Ao .. NN

| |
) / symm. & dim.
O(1) coeft.

If [{O)exp| < max|(O),s| it seems we are missing something

natural

4+ we overlooked a symmetry implying cancellations among the (O),

4 there is a fine-tuning of parameters not related to symmetry

un-natural



Example of Naturalness: pion mass
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o dilations: match mass dimensions
2

A
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In the normal (lab) practice extreme fine tunings are associated to the
existence of a large set of options (a landscape) from which we can pick

Ex. quantum criticality in anti-ferromagnet (T1CuCl3)

paramagnetic

Sachdev ’09
paramagnetic Neel
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Can undo natural expectation from atomic physics by tuning the pressure
at a critical value in a landscape of possibilities



