
DANIEL G. FIGUEROA
IFIC, Valencia

GGI LECTURES ON THE THEORY OF FUNDAMENTAL INTERACTIONS — 2022 Program (3rd week)

— BACKGROUNDS —
GRAVITATIONAL WAVE



MOTIVATION
(just to warm up)



Let us celebrate …

These are special times !



[LIGO & Virgo Scientific Collaborations]

[LIGO & Virgo Scientific Collaborations (arXiv:1602.03841)]

Let us celebrate …

Gravitational
Waves (GW)
detected !

[LIGO/VIRGO]



[LIGO & Virgo Scientific Collaborations (arXiv:1602.03841)]

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

Let us celebrate …



[LIGO & Virgo Scientific Collaborations (arXiv:1602.03841)]

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

Let us celebrate …

Einstein 1915 … LIGO/VIRGO 2015-2021



[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

What have we learnt ?



* O(10) Solar mass 
Black Holes (BH) exist

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

What have we learnt ?



* O(10) Solar mass 
Black Holes (BH) exist

* We can test the 
BH's paradigm, and 

Neutron Star physics

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

What have we learnt ?



* O(10) Solar mass 
Black Holes (BH) exist

* We can test the 
BH's paradigm, and 

Neutron Star physics

* We can further test
General Relativity (GR)

[so far no deviation]

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

What have we learnt ?



* O(10) Solar mass 
Black Holes (BH) exist

* We can test the 
BH's paradigm, and 

Neutron Star physics

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

[LIGO & Virgo Scientific Collaborations]

Gravitational
Waves (GWs)

detected !
[LIGO/VIRGO]
milestone

in physics

What have we learnt ?



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

* We can test the 
BH's paradigm, and 

Neutron Star physics

How did we learn this?



[LIGO & Virgo Scientific Collaborations]

* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

Inspiral Merger             Ringdown

Binary wave functions 

* We can test the 
BH's paradigm, and 

Neutron Star physics

How did we learn this?



[LIGO & Virgo Scientific Collaborations]

* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

Inspiral Merger             Ringdown* We can test the 
BH's paradigm, and 

Neutron Star physics

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

Extremely 
interesting !

   BUT …(binaries)

* We can test the 
BH's paradigm, and 

Neutron Star physics

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

Extremely 
interesting !

   BUT …(binaries)

* We can test the 
BH's paradigm, and 

Neutron Star physics

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]
… We will focus

on something else !

(binaries)

* We can test the 
BH's paradigm, and 

Neutron Star physics

Extremely 
interesting !

   BUT …

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]
… We will focus

on something else !

(binaries)

* We can test the 
BH's paradigm, and 

Neutron Star physics

Extremely 
interesting !

   BUT …

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

* We can test the 
BH's paradigm (or 

Neutron Star physics)

… We will focus
on something else !

(binaries)

Stay tuned !

more fun 

guaranteed

to come …

Extremely 
interesting !

   BUT …

Let us celebrate !



* O(10) Solar mass 
Black Holes (BH) exist

* We can observe the 
Universe through GWs

* …

* We can further test
General Relativity (GR)

[so far no deviation]

* We can test the 
BH's paradigm (or 

Neutron Star physics)

Extremely 
interesting !

but …

… We will focus
on something else !

(binaries)

Stay tuned !

more fun 

guaranteed

to come …



* We can observe the 
Universe through GWs



* We can observe the 
Universe through GWs



* We can observe the 
Universe through GWs

* Cosmology with GWs



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics 



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 
Standard sirens: distances in cosmology;  
Measuring H0 and EoS dark energy;  
cosmological parameters;  
modify gravity, lensing, …



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics

Are we going to forget about this ?



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Late Universe: Hubble diagram from Binaries 

* Early Universe:   High Energy Particle Physics High Energy Particle Physics

Nope, we simply postpone …



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Early Universe:   High Energy Particle Physics High Energy Particle Physics



* We can observe the 
Universe through GWs

* Cosmology with GWs

* Early Universe:   High Energy Particle Physics High Energy Particle Physics

Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?



Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?



Answering these questions lies at the heart
of what these lectures are about !

Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?



Can we really probe High Energy Physics
using Gravitational Waves (GWs) ? How ?

Before answering … 
    …  let us ask another question



GWs: probe of the early Universe

Cosmic Defects

WHY ??



GWs: probe of the early Universe

Cosmic Defects

WHY ??
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FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ε, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ε+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ε+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)

∣

∣

∣

2

. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw %
0.71, and the others weak deflagrations with vw % 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw % 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ε+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power
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We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw %
0.71, and the others weak deflagrations with vw % 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw % 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.
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Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
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FIG. 19: Time evolution of the spatial distribution of the magnetic energy density B2 (in units of m4) along the process of
the Higgs symmetry breaking. The images have been obtained with a N = 256 lattice simulation with an IR cut-o↵ kIR = 0.1
m, and parameters g2 = 2� = 0.25, Vc = 0.024 and e = 6

p
�. From left to right, top to bottom, the snapshots correspond to

mt = 5.5, 11.0, 17.3, 19.0, 21.0 and 23.0. At early times, before the Higgs bubbles percolate, the magnetic field is still very
small and has not acquired yet the distinctive shape of topological string configurations. At times mt ⇠ 17� 19, the string-like
spatial distributions of the magnetic energy density have finally developed, following the locus of points which corresponds to
the intermediate regions between Higgs bubbles. The string-like distributions are most clearly seen at time mt = 19. Later,
due to the time evolution of the gauge field’s mass, the string segments fatten and start shedding away the magnetic field, see
the main text.
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 1) Cosmology/GR + GWs

  1.A) Cosmology

  1.C) GW definition

BACKGROUNDS OF 
GRAVITATIONAL WAVES  

  1.B) General Relativity
A) + B) + C)

 B) + C)
C)

3 Options:

<latexit sha1_base64="eeDDo+Md2JpToQpOWR3UXXwD8Zs=">AAAB/HicdVBNS8NAEN34WetXtUcvi0XwFJIa2noTvXisYFVoQtlsJ+3i5oPdiRCK/hUvHhTx6g/x5r9xUyuo6IOBx3szzMwLMyk0Os67NTe/sLi0XFmprq6tb2zWtrYvdJorDj2eylRdhUyDFAn0UKCEq0wBi0MJl+H1Self3oDSIk3OscggiNkoEZHgDI00qNV9CRH6MlSMg6/EaIz2oNZw7MNOq+m1qGM7TtttuiVptr0Dj7pGKdEgM3QHtTd/mPI8hgS5ZFr3XSfDYMIUCi7hturnGjLGr9kI+oYmLAYdTKbH39I9owxplCpTCdKp+n1iwmKtizg0nTHDsf7tleJfXj/HqBNMRJLlCAn/XBTlkmJKyyToUCjgKAtDGFfC3Er5mJkc0ORVNSF8fUr/JxdN223Z3pnXODqexVEhO2SX7BOXtMkROSVd0iOcFOSePJIn6856sJ6tl8/WOWs2Uyc/YL1+ADXhlSg=</latexit>

{



COSMOLOGY
FRAMEWORK



Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

(evolution of the Universe)

( )initial
cond.

BASICS of COSMOLOGY



Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

(evolution of the Universe)

( )initial
cond.

BASICS of COSMOLOGY



Cosmology

hot Big Bang (hBB)

theoretical pillars

observational pillars

(evolution of the Universe)

( )initial
cond.

BASICS of COSMOLOGY

Inflation =             'cures' hBB



Cosmology

hot Big Bang (hBB)

theoretical pillars

observational pillars

General Relativity

Cosmological Pple

Expansion

BBN

(evolution of the Universe)

( )initial
cond.

BASICS of COSMOLOGY

CMB

Inflation =             'cures' hBB



Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

theoretical pillars

observational pillars

General Relativity

Cosmological Pple

Expansion

BBN

(evolution of the Universe)

( )initial
cond.

BASICS of COSMOLOGY

CMB



Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

theoretical pillars

observational pillars

General Relativity

Cosmological Pple

Expansion

BBN

(evolution of the Universe)

( )initial
cond.

Cosmological Pple

CMB/LSS
{

BASICS of COSMOLOGY

CMB



Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

theoretical pillars

observational pillars

General Relativity

Cosmological Pple

Expansion

BBN

(evolution of the Universe)

( )initial
cond.

Cosmological Pple

CMB/LSS
{

BASICS of COSMOLOGY

CMB



General Relativity (GR)

Gravitational Framework



Gravitational Framework

General Relativity (GR) 



Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter
h
mp = (8⇡G)�1/2 = 2.44 · 1018 GeV

i
Reduced 

Planck mass



Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

ds2 = gµ⌫(x)dxµdx⌫

h
mp = (8⇡G)�1/2 = 2.44 · 1018 GeV

i
Reduced 

Planck mass



Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

ds2 = gµ⌫(x)dxµdx⌫

DIFF : xµ ! x0µ(x)

symmetry

h
mp = (8⇡G)�1/2 = 2.44 · 1018 GeV

i
Reduced 

Planck mass



GENERAL
RELATIVITY

Primer (Introduction)

Skip (jump into GW definition)

_

Skip (continue cosmology primer)
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to be identical !
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The Equivalence Principle

(Earth gravity too 
weak to observe 
the effect, but …) e.g. the sun does a better job !

Eddington 1919 

Light does not 
change speed,  

but direction



The Equivalence Principle
Einstein understood like this…

light bending,
light red/blue-shifting, 

gravitational time dilation,
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The Equivalence Principle
Einstein understood like this…

a mathematical formulation was needed !
…
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Lorentz
Transformations
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General Relativity (GR) Gµ⌫ = 1
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p
Tµ⌫

geometry matter

Gµ⌫ ⌘ D[g↵� ] m�2
p Tµ⌫(Matt,Rad,Top.Defects,DarkEnergy, ...)=

2nd order, non-Linear
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source

Universe ?
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How can we probe the early Universe ?

early Universe (~ 1 s)
late Universe

GWs !

observational 
evidence !

The Early Universe
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Cosmic Microwave Background

t� t0 ⇠ 3 · 105 yr stable atoms start to form.

Initial time: hot soup of baryons, electrons & photons

The Universe becomes transparent!

Photons red-shifted and dispersed by gravity wells!

gravity related to matter content

Atom Formation: Free propagation of 
light !(Recombination)

Recombination & release of 
Cosmic Microwave Background 



   SMALLER SIZE,
LARGER Temperature

   BiGGER size,
SMALLER Temp

Emission of Cosmic 
Microwave Radiation !

   TODAY [Galaxies, Clusters, …]
     (13.700 Million years)

   ATOMS FORMATION
   (300.000-400.000 years)

   FIRST GALAXIES 
   (500 Millions years)

   ATOMIC NUCLEI FORMATION
                 (3 minutes !!!)

FIRST SECOND 
 of the UNIVERSE !

Cosmic Microwave Background (CMB)
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SMALLER Temp

Emission of Cosmic 
Microwave Radiation !

   TODAY [Galaxies, Clusters, …]
     (13.700 Million years)

   ATOMS FORMATION
   (300.000-400.000 years)

   FIRST GALAXIES 
   (500 Millions years)

   ATOMIC NUCLEI FORMATION
                 (3 minutes !!!)

FIRST SECOND 
 of the UNIVERSE !

Cosmic Microwave Background (CMB)

 Definitive proof of the
Big Bang Framework!



¿ Where is that light? 

Cosmic Microwave Background (CMB)



c�t

T�(1)

T�(2)

Cosmic Microwave 
Background (CMB)

¿ Where is that light? 

Cosmic Microwave Background (CMB)



(almost-)ISOTROPIC 

But ….

There are small ‘Anisotropies’
(variations of 1/100.000 only !)

PLANCK 
Satellite

Cosmic Microwave 
Background (CMB)

 Definitive proof of 

the Big Bang Framework!

¿ Where is that light? 

Cosmic Microwave Background (CMB)



Properties of the Anisotropies then …. Geometry of the Universe !

Cosmic Microwave Background (CMB)

(position of 1st acoustic peak)



Properties of the Anisotropies then …. Geometry of the Universe !

The UNIVERSE has FLAT GEOMETRY (k = 0)

Cosmic Microwave Background (CMB)

(position of 1st acoustic peak)
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Protons, 
Neutrons

Interact
strongly

  Past, 
   hotter  Afterwards, colder

Universe cools down…

… protons and neutrons don't have 
sufficient energy anymore

Then they  join together forming 
atomic nuclei: Nuclear Physics!

Atomic 
Nuclei 

created !

 (1 second)  (3 minutes) 

Big Bang 
Nucleosynthesis

Formation of atomic nuclei (1s - 3 mins)



NUCLEAR PHYSICS 
(measured in the lab)

 

Predicts abundances of

H,
4
He, D,

3
He,

7
Li, ...

 Another definitive proof 

of hot Big Bang framework !

Big Bang 
Nucleosynthesis

Formation of atomic nuclei (1s - 3 mins)
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Expansion

CMB
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   BiGGER size,
SMALLER Temp    TODAY [Galaxies, Clusters, …]

     (13.700 Million years)

   ATOMS CREATION
   (300.000-400.000 years)

   FIRST GALAXIES 
   (500 Millions years)

   ATOMIC NUCLEI CREATION
                 (3 minutes !)

FIRST SECOND 
 of the UNIVERSE !

   SMALLER SIZE,
LARGER Temperature

hot Big Bang (hBB)

CMB emission
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Cosmology

hot Big Bang (hBB)

Inflation =             'cures' hBB

Expansion

CMB
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General Relativity

Cosmological Pple
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BASICS of COSMOLOGY

observational pillars

To Be Continued



BACK SLIDES

Shortcomings of the hBB framework 

Electron/Positron Annihilation



Shortcomings of
the hBB framework



UNIVERSE
GR

H & I 

1)

2)
+

✓
w ⌘ p

⇢

◆

H
2 ⌘

✓
da

dt

◆2

=
⇢

3m2
p

� K

a2

1

a

d2a

dt2
= � ⇢

6m2
p

(1 + 3w)

1

⇢

d⇢

dt
= �3

a

da

dt
(1 + w)

Friedmann Equations

hBB shortcomings
(motivation for inflation)

H
2 ⌘

✓
1

a

da

dt

◆2



Expanding 
Universe

t = 0
t = 1 s

t = 380.000 yr

t = 13.7 Gyr 

H
�1

H
�1

H
�1

hBB shortcomings
(motivation for inflation)



t = 380.000 yr

t = 13.7 Gyr H
�1

H
�1

dc(t) ⌘ a(t)

Z t

0

dt0

a(t0)

Causal Horizon

CMB

hBB shortcomings
(motivation for inflation)



t = 380.000 yr

t = 13.7 Gyr H
�1

H
�1

CMB

c�t

dc(t) ⌘ a(t)

Z t

0

dt0

a(t0)

Causal Horizon

hBB shortcomings
(motivation for inflation)



t = 13.7 Gyr 

H
�1

c�t

T�(1)

T�(2)

T�(1) = T�(2)IF

CAUSALITY 
VIOLATION !

hBB: 

H&I @ Scales >> 1/H 

iLL-defined!

hBB shortcomings
(motivation for inflation)
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Horizon Problem1) Causality Violation !

hBB shortcomings
(motivation for inflation)
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Curvature Problem
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Causality Violation !

(If curvature 6= 0, it grows unstable!)

hBB shortcomings
(motivation for inflation)



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

(If curvature 6= 0, it grows unstable!)

hBB shortcomings
(motivation for inflation)

|⌦� 1| = |k|
a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o

' 1

(1 + zeq)

✓
Teq

TBBN

◆2

|⌦� 1|o

' 10�310�12|⌦� 1|o . 10�18

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o

' 1

(1 + zeq)

✓
Teq

TBBN

◆2

|⌦� 1|o

' 10�310�12|⌦� 1|o . 10�18

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o

' 1

(1 + zeq)

✓
Teq

TBBN

◆2

|⌦� 1|o

' 10�310�12|⌦� 1|o . 10�18

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o|⌦� 1|BBN . 10�18

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o|⌦� 1|BBN . 10�18

|⌦� 1|GUT =

✓
aGUT

aBBN

◆2

|⌦� 1|BBN ⇠ (TBBN/TGUT)
2|⌦� 1|BBN

' 10�38|⌦� 1|BBN . 10�56

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

hBB shortcomings
(motivation for inflation)

Today : |⌦� 1|o . 0.1 ) |⌦� 1|BBN =

✓
aeq
ao

◆✓
aBBN

aeq

◆2

|⌦� 1|o|⌦� 1|BBN . 10�18 |⌦� 1|GUT . 10�56

(If curvature 6= 0, it grows unstable!)
|⌦� 1| = |k|

a2H2

8
<

:
/ a

2
, RD

/ a, MD

It might well be that k = 0 … 



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

(Fine-tuning)
(If curvature 6= 0, it grows unstable!)

hBB shortcomings
(motivation for inflation)



hBB

Horizon Problem

Curvature Problem

1)

2)

Causality Violation !

(Fine-tuning)
(If curvature 6= 0, it grows unstable!)

Need extra ‘Ingredient' ! INFLATION !

hBB shortcomings
(motivation for inflation)
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