GRAVITATIONAL WAVE BACKGROUNDS

OUTLINE

1 st Bloc

1) Cosmology/GR + GWs
2) GWs from Inflation
3) GWs from Preheating
4) GWs from Phase Transitions
5) GWs from Cosmic Defects

OUTLINE

1 st Bloc
2) GWs from Inflation
3) GWs from Preheating
4) GWs from Phase Transitions
5) GWs from Cosmic Defects

A PRIMER ON GRAVITATIONAL WAVES

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

$$
\left[m_{p}=(8 \pi G)^{-1 / 2}=2.44 \cdot 10^{18} \mathrm{GeV}\right] \begin{aligned}
& \text { Reduced } \\
& \text { planck mass }
\end{aligned}
$$

$$
d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu}
$$

DIFF: $\quad x^{\mu} \rightarrow x^{\prime \mu}(x)$ symmetry

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

Cosmological Principle Background metric and matter Homogeneous \& Isotropy

FLRW expanding Universe!

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=a^{2}(t)\left(-d t^{2}+d \mathbf{x}^{2}\right)
$$

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

How do we define GWs ?

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

$$
g_{\alpha \beta}=\bar{g}_{\alpha \beta}+\delta g_{\alpha \beta}
$$

How do we define GWs ?

Gravitational Framework

General Relativity (GR)

$$
G_{\mu \nu}=\frac{1}{m_{p}^{2}} T_{\mu \nu}
$$

geometry matter

$$
g_{\alpha \beta}=\bar{g}_{\alpha \beta}+\delta g_{\alpha \beta}
$$

How do we define GWs ?

$$
\begin{aligned}
& g_{\alpha \beta}=\bar{g}_{\alpha \beta}+\delta g_{\alpha \beta} \\
& \text { Let's continue } \\
& \text { this approach... }
\end{aligned}
$$

I hope you took a good load of coffee ('cause you are gonna need it)

Definition of GWs 1st approach

Gravitational Wave Definition

Minkowski
1st approach to GWs

$$
\begin{array}{r}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
$$

Gravitational Wave Definition

Minkowski

$$
\begin{array}{r}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
$$

Gravitational Wave Definition

Minkowski
1st approach to GWs

$$
\begin{array}{r}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\overbrace{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

DIFF: $\begin{aligned} & x^{\mu} \rightarrow x^{\prime \mu}(x) \\ & \text { symmetry? }\end{aligned}$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

DIFF: $x^{\mu} \not x^{\prime \mu}(x)$

Gravitational Wave Definition

Minkowski
1st approach to GWs

$$
\begin{gathered}
\left.g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}\right) . \text { frame }
\end{gathered}
$$

DIFF : $\quad x^{\mu}>x^{\prime \mu}(x)$

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x) \\
\left(\left|\partial_{\mu} \xi_{\nu}(x)\right| \lesssim\left|h_{\mu \nu}\right|\right)
\end{gathered}
$$

$$
h_{\mu \nu}(x) \rightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\partial_{(\mu} \xi_{\nu)}
$$

Gravitational Wave Definition

Minkowski
1st approach to GWs

DIFF : $x^{\mu} \neq x^{\prime \mu}(x)$

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x) \\
\left(\left|\partial_{\mu} \xi_{\nu}(x)\right| \lesssim\left|h_{\mu \nu}\right|\right)
\end{gathered}
$$

$$
h_{\mu \nu}(x) \rightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\partial_{(\mu} \xi_{\nu)}
$$

Notation: $\left\{\begin{array}{c}\partial_{(\mu} \xi_{\nu)} \equiv \partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \\ \partial_{[\mu} \xi_{\nu]} \equiv \partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}\end{array}\right.$

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}^{\uparrow}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\text { frame }
\end{array} \\
& \left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

Gravitational Wave Definition

Minkowski
1st approach to GWs

$$
\begin{gathered}
\left.g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}\right) . \text { frame }
\end{gathered}
$$

DIFF : $\quad x^{\mu}>x^{\prime \mu}(x)$

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x) \\
\left(\left|\partial_{\mu} \xi_{\nu}(x)\right| \lesssim\left|h_{\mu \nu}\right|\right)
\end{gathered}
$$

$$
h_{\mu \nu}(x) \rightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\partial_{(\mu} \xi_{\nu)}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{g_{\mu \nu}}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

Let's expand Einstein Equations!

Gravitational Wave Definition

1st approach to GWs

$$
\begin{aligned}
& \text { Minkowski } \\
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\text { frame }
\end{array} \\
& \left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}
$$

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \rightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded
residual $x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
symm. $\quad\left(\left|\partial_{\mu} \xi_{\nu}(x)\right| \lesssim\left|h_{\mu \nu}\right|\right)$

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

```
residual }\mp@subsup{\partial}{}{\nu}\mp@subsup{\overline{h}}{\mu\nu}{}=
```


Gravitational Wave Definition

1st approach to GWs

$$
\begin{aligned}
& \text { Minkowski } \\
& \left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded
symm. Lorentz gauge

Technical Note: If $\partial^{\mu} \bar{h}_{\mu \nu} \neq 0$

$$
\begin{aligned}
x^{\mu} & \rightarrow x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x) \\
h_{\mu \nu}(x) & \rightarrow h_{\mu \nu}^{\prime}\left(x^{\prime}\right)=h_{\mu \nu}(x)-\partial_{(\mu} \xi_{\nu)}
\end{aligned}
$$

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

Gravitational Wave Definition

1st approach to GWs

$$
\left(\left|h_{\mu \nu}\right| \ll 1\right)
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded
symm. Lorentz gauge

Technical Note: If $\partial^{\mu} \bar{h}_{\mu \nu} \neq 0$

$$
\begin{aligned}
\partial^{\prime \mu} \bar{h}_{\mu \nu}^{\prime}\left(x^{\prime}\right)= & \underbrace{\partial^{\mu} \bar{h}_{\mu \nu}(x)}-\square \xi_{\nu}=0 \quad \Longleftrightarrow \quad \square \xi_{\nu}=f(x) \\
& \equiv f(x) \neq 0
\end{aligned}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{aligned}
& \text { Minkowski } \\
& \left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

Gravitational Wave Definition

1st approach to GWs

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$\mathcal{O}\left(h_{* *}\right)$ Einstein tensor expanded

```
residual }\mp@subsup{\partial}{}{\nu}\mp@subsup{\overline{h}}{\mu\nu}{}=
```


Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \stackrel{\text { fixed }}{\text { frame }} \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{gathered}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \longrightarrow \partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\underbrace{\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}}_{=0}-\underbrace{\partial^{\alpha} \partial_{(\mu} \bar{h}_{\alpha \nu)}}_{=0}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

$$
\text { residual } \partial^{\nu} \bar{h}_{\mu \nu}=0
$$

symm. Lorentz gauge

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \stackrel{\text { fixed }}{\text { frame }} \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{gathered}
$$

Trace-reversed

$$
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \rightarrow \partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu \nu} \bar{h}_{\alpha \nu)}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
$$

residual $\partial^{\nu} \bar{h}_{\mu \nu}=0$
symm. Lorentz gauge

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \stackrel{\text { fixed }}{\text { frame }} \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{gathered}
$$

Trace-reversed

$$
\begin{aligned}
& \quad \begin{array}{|}
\bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu}
\end{array} \underbrace{\partial^{\alpha} \partial_{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\lambda \mu} \bar{h}_{\alpha \nu)}=\underbrace{-\frac{2}{m_{p}^{2}} T_{\mu \nu}}} \begin{array}{l}
\begin{array}{r}
\text { residual } \\
\text { symm. } \partial^{\nu} \bar{h}_{\mu \nu}=0 \\
\text { Lorentz gauge }
\end{array}
\end{array}>\partial_{\alpha} \partial^{\alpha} \bar{h}_{\mu \nu}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
\end{aligned}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \stackrel{\text { fixed }}{\text { frame }} \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{gathered}
$$

Trace-reversed

$$
\begin{aligned}
& \quad \bar{h}_{\mu \nu} \equiv h_{\mu \nu}-\frac{1}{2} h \eta_{\mu \nu} \\
& \begin{array}{l}
\text { residual } \\
\text { symm. } \partial^{\nu} \bar{h}_{\mu \nu}=0 \\
\text { Lorentz gauge }
\end{array} \rightarrow \underbrace{\alpha^{\alpha} \bar{h}_{\mu \nu}+\eta_{\mu \nu} \partial^{\alpha} \partial^{\beta} \bar{h}_{\alpha \beta}-\partial^{\alpha} \partial_{(\mu \mu} \bar{h}_{\alpha \nu)}}_{\lambda^{\alpha} \partial_{\alpha} \partial^{\alpha} \bar{h}_{\mu \nu}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}}=\underbrace{-\frac{2}{m_{p}^{2}} T_{\mu \nu}}
\end{aligned}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \underset{\left(\left|h_{\mu \nu}\right| \ll 1\right)}{\text { fixed }} \text { frame }
\end{gathered}
$$

Trace-reversed

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \underset{\left(\left|h_{\mu \nu}\right| \ll 1\right)}{\text { fixed }} \text { frame }
\end{gathered}
$$

Is that all ?

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{\uparrow} g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \underset{\left(\left|h_{\mu \nu}\right| \ll 1\right)}{\text { fixed }} \text { frame }
\end{gathered}
$$

Is that all ? Not really ...

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{q_{\mu \nu}}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$
(further residual gauge)

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\overbrace{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$ (further residual gauge)
$\left(\partial^{\mu} \bar{h}_{\mu \nu}=0 \rightarrow \partial^{\prime \mu} \bar{h}_{\mu \nu}^{\prime}=0\right)$
(Lorentz preserving)

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{q_{\mu \nu}}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$
(further residual gauge)

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
\stackrel{\text { Minkowski }}{q_{\mu \nu}}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$
(further residual gauge)
IF $T_{\mu \nu}=0$
Outside
source

Gravitational Wave Definition

1st approach to GWs

$$
g_{\mu \nu}=\overbrace{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \begin{gathered}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$
(further residual gauge)
IF $T_{\mu \nu}=0$
Outside

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0
$$

source

Gravitational Wave Definition

1st approach to GWs

Minkowski

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$ (further residual gauge)

IF $T_{\mu \nu}=0$
Outside source

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { transverse- }
$$ traceless gauge)

Gravitational Wave Definition

1st approach to GWs

Minkowski

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}(x) \begin{array}{c}
\text { fixed } \\
\left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{array}
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$ (further residual gauge)

IF $T_{\mu \nu} \neq 0$
Inside
source!

$$
\begin{array}{|l}
\hline h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0 \\
\partial_{\alpha} \partial^{\alpha} \bar{h}_{\mu \nu}=-\frac{2}{m_{p}^{2}} T_{\mu \nu}
\end{array} \begin{gathered}
\text { (transverse } \\
\text { traceless } \\
\text { gauge })
\end{gathered}
$$

Gravitational Wave Definition

1st approach to GWs

Minkowski

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}^{\uparrow}+h_{\mu \nu}(x) \begin{array}{l}
\text { fixed } \\
\text { frame }
\end{array} \\
& \left(\left|h_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$ (further residual gauge)

IF $T_{\mu \nu} \neq 0$
Inside

$$
\begin{aligned}
& \text { Inslar } \\
& \text { source }
\end{aligned}
$$

$$
\begin{array}{|c}
\partial_{\alpha} \partial^{\alpha} \bar{h}_{\mu \nu}=-\frac{2}{m_{p}^{2}} T_{\mu \nu} \\
6-4=2 \text { d.o.f. ? }
\end{array} \begin{gathered}
\left(\begin{array}{c}
\text { transvelse- } \\
\text { tra/ess } \\
\text { gange }
\end{array}\right.
\end{gathered}
$$

Gravitational Wave Definition

1st approach to GWs

$$
\begin{gathered}
g_{\mu \nu}=\eta_{\mu \nu}^{\text {Minkowski }}+h_{\mu \nu}(x) \underset{\left(\left|h_{\mu \nu}\right| \ll 1\right)}{\text { fixed }} \text { frame }
\end{gathered}
$$

$x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$
with $\partial_{\alpha} \partial^{\alpha} \xi_{\mu}=0$ (further residual gauge)

IF $T_{\mu \nu} \neq 0$
Inside
source !

Cannot make $h_{* 0}=0$

$$
\begin{gathered}
\partial_{\alpha} \partial^{\alpha} \bar{h}_{\mu \nu}=-\frac{2}{m_{p}^{2}} T_{\mu \nu} \\
(6-4=2 \text { d.o.f. })
\end{gathered}
$$

Yet there are still only 2 radiative dof!

Gravitational Wave Definition

1st approach to GWs (TT gauge: 6-4=2 d.o.f.) \quad	$h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0$
$\begin{array}{l}\text { Outside } \\ \text { source }\end{array}$	

Gravitational Wave Definition

	(TT gauge: 6-4 $=2$ d.o.f.)	
1st approach to GWs	$h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0$	$\begin{array}{l}\text { Outsidee } \\ \text { source }\end{array}$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

Gravitational Wave Definition

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away' ?

Gravitational Wave Definition

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves ! }
$$

can GW be 'gauged away'? No!

Gravitational Wave Definition

$$
\text { (TT gauge: 6-4 = } 2 \text { d.o.f.) }
$$

1st approach to GWs

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0 \quad \begin{aligned}
& \text { Outside } \\
& \text { source }
\end{aligned}
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away'? No!

Transverse
(\& Traceless)

Gravitational Wave Definition

$$
\text { (TT gauge: 6-4 = } 2 \text { d.o.f.) }
$$

1st approach to GWs

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0 \quad \begin{aligned}
& \text { Outside } \\
& \text { source }
\end{aligned}
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away'? No!

2 dof =
2 polarizations

Gravitational Wave Definition

$$
\text { (TT gauge: 6-4 = } 2 \text { d.o.f.) }
$$

1st approach to GWs

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away'? No!

2 dof = $\mathbf{2}$ polarizations $\underset{\text { transverse plane }}{h_{a b}(t, \mathbf{x})=\int_{-\infty}^{\infty} d f \int d \hat{n} h_{a b}(f, \hat{n}) e^{-2 \pi i f(t-\hat{n} \mathbf{x})} \text { (plane wave) }}$

Gravitational Wave Definition

(TT gauge: 6-4 = 2 d.o.f.)
1st approach to GWs

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away'? No!

transverse plane
$h_{a b}(f, \hat{n})=\sum_{A=+, \mathrm{x}} h_{A}(f, \hat{n}) \epsilon_{a b}^{(A)}(\hat{n})=\left(\begin{array}{ccc}h_{+} & h_{x} & 0 \\ h_{x} & -h_{+} & 0 \\ 0 & 0 & 0\end{array}\right)$
Transverse-
Traceless
(2 dof)

Gravitational Wave Definition

$$
\text { (TT gauge: 6-4 = } 2 \text { d.o.f.) }
$$

1st approach to GWs

$$
h^{0 \mu}=0, \quad h_{i}^{i}=0, \quad \partial_{j} h_{i j}=0
$$

$$
\partial_{\mu} \partial^{\mu} h_{i j}=0 \quad \text { Wave Eq. } \rightarrow \text { Gravitational Waves! }
$$

can GW be 'gauged away'? No!

Definition of GWs 2nd approach

Gravitational Wave Definition

2nd approach to GWs

$$
\begin{aligned}
& \text { Minkowski } \\
& g_{\mu \nu}=\uparrow_{\mu \nu}+\delta g_{\mu \nu} \quad\left(\left|\delta g_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

Gravitational Wave Definition

2nd approach to GWs

$$
\begin{aligned}
& \quad \text { Minkowski } \\
& g_{\mu \nu}=\uparrow_{\mu \nu}+\delta g_{\mu \nu} \quad\left(\left|\delta g_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

(gauge invariant def.)

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

Gravitational Wave Definition

2nd approach to GWs

$$
\begin{aligned}
& \quad \text { Minkowski } \\
& g_{\mu \nu}= \\
& \eta_{\mu \nu}+\delta g_{\mu \nu} \quad\left(\left|\delta g_{\mu \nu}\right| \ll 1\right)
\end{aligned}
$$

(gauge invariant def.)

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

s: scalar
v: vector
t: tensor
$T_{00}=\rho, \quad$ (Svt decomposition)
$T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}$,
$T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}$.

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j},
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}:
\end{aligned}
$$

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
$\left.\begin{array}{l}\text { Scalar(s) } \\ \operatorname{Vector(s)} \\ \operatorname{Tensor(s)}\end{array}\right\} \in \Re^{3}$	ϕ, B, ψ, E	ρ, u, p, σ

Gravitational Wave Definition

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
$\left.\begin{array}{ll}\text { Scalar(s) } \\ \hline \operatorname{Vector}(\mathrm{s}) \\ \operatorname{Tensor(s)}\end{array}\right\} \in \Re^{3}$	ϕ, B, ψ, E	ρ, u, p, σ
	S_{i}, F_{i}	u_{i}, v_{i}
	$h_{i j}$	$\Pi_{i j}$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}:
\end{aligned}
$$

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
$\left.\operatorname{Scalar(s)} \begin{array}{l}\text { (s) } \\ \operatorname{Vector(s)} \\ \operatorname{Tensor(s)}\end{array}\right\} \in \Re^{3}$	ϕ, B, ψ, E	ρ, u, p, σ
	S_{i}, F_{i}	u_{i}, v_{i}
	$h_{i j}$	$\Pi_{i j}$

Gravitational Wave Definition

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
$\left.\begin{array}{ll}\text { Scalar(s) } \\ \operatorname{Vector}(\mathrm{s}) \\ \hline \text { Tensor(s) }\end{array}\right\} \in \Re^{3}$	ϕ, B, ψ, E	ρ, u, p, σ
	$\rightarrow S_{i}, F_{i} \longleftarrow$	u_{i}, v_{i} $h_{i j}$
$\Pi_{i j}$		

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

$$
T_{00}=\rho, \quad \text { (svt E/p-tensor components) }
$$

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}
$$

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
$\left.\begin{array}{l}\text { Scalar(s) } \\ \text { Vector(s) } \\ \hline \text { Tensor(s) }\end{array}\right\} \in \Re^{3}$	ϕ, B, ψ, E	ρ, u, p, σ

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
\end{aligned}
$$

	$\delta g_{\mu \nu}$	$T_{\mu \nu}$
Scalar(s)	ϕ, B, ψ, E	ρ, u, p, σ
$\operatorname{Vector}(\mathrm{s})\} \in \Re^{3}$	S_{i}, F_{i}	u_{i}, v_{i}
Tensor(s)	${ }_{h_{i j}}$	$\Pi_{i j}$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

16 degrees of freedom
$T_{00}=\rho, \quad$ (svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i},
$$

16 degrees
of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

\(\left.\begin{array}{|lll|}\hline \& \delta g_{\mu \nu} \& T_{\mu \nu}

\hline \operatorname{Scalar(s)}

\operatorname{Vector}(\mathrm{s})

Tensor(s)\end{array}\right\} \in \Re^{3} \quad\)| ϕ, B, ψ, E |
| :--- |
| S_{i}, F_{i} |
| $h_{i j}$ | | ρ, u, p, σ |
| :--- |
| u_{i}, v_{i} |

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

16 degrees of freedom
$T_{00}=\rho, \quad$ (svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}
$$

16 degrees of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

In order NOT to over-count degrees of freedom

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

16 degrees of freedom

$$
\begin{aligned}
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
\end{aligned}
$$

16 degrees of freedom

In order NOT to over-count degrees of freedom

Metric perturbations

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}:
\end{aligned}
$$

In order NOT to over-count degrees of freedom

$$
\left\{\begin{array}{ll}
\partial_{i} S_{i}=0(1 \text { constraint }), & \partial_{i} F_{i}=0(1 \text { constraint }) \\
\partial_{i} h_{i j}=0(3 \text { constraints }), & h_{i i}=0(1 \text { constraint })
\end{array}\right\}
$$

Energy/Momentum tensor
Metric perturbations

Gravitational Wave Definition

$$
\begin{array}{ll:l}
\hline \delta g_{00}=-2 \phi, & \text { (svt metric perturbations) } \\
\delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), & \begin{array}{l}
16 \text { degrees } \\
\text { of freedom }
\end{array} \\
\delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, & \\
\hline T_{00}=\rho, & (\text { svt E/p-tensor components }) \\
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j} & 16 \text { degrees } \\
\text { of freedom }
\end{array}
$$

In order NOT to over-count degrees of freedom

$$
\begin{aligned}
& \text { 6) constraints for } \\
& \text { metric perturbations } \\
& \left.\begin{array}{l}
\partial_{i} u_{i}=0(1 \text { constraint }), \quad \partial_{i} v_{i}=0(1 \text { constraint }), \\
\partial_{i} \Pi_{i j}=0(3 \text { constraints }), \quad \Pi_{i i}=0(1 \text { constraint }),
\end{array}\right\} \text { tensor comptraints for E/p }
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& \text { (svt metric perturbations) } \\
& T_{00}=\rho, \quad \text { (svt E/p-tensor components) } \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j} \text {. }
\end{aligned}
$$

In order NOT to over-count degrees of freedom

$$
\left.\begin{array}{ll}
\partial_{i} S_{i}=0(1 \text { constraint }), & \partial_{i} F_{i}=0(1 \text { constraint }), \\
\partial_{i} h_{i j}=0(3 \text { constraints }), & h_{i i}=0(1 \text { constraint })
\end{array}\right\} \begin{aligned}
& \text { (6)constraints for } \\
& \text { metric perturbations }
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& 10 \text { degrees } \\
& \text { of freedom } \\
& 10 \text { degrees } \\
& \text { of freedom } \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j} \\
& \text { (svt E/p-tensor components) }
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\partial_{i} S_{i}=0(1 \text { constraint }), & \partial_{i} F_{i}=0(1 \text { constraint }), \\
\partial_{i} h_{i j}=0(3 \text { constraints }), & h_{i i}=0(1 \text { constraint })
\end{array}\right\} \text { (6) constraints for } \begin{aligned}
& \text { metric perturbations }
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
\delta g_{00} & =-2 \phi, \\
\delta g_{0 i} & =\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
\delta g_{i j} & =\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom

$$
\begin{aligned}
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j},
\end{aligned}
$$

10 degrees of freedom

Gravitational Wave Definition

$$
\begin{aligned}
\delta g_{00} & =-2 \phi \\
\delta g_{0 i} & =\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right) \\
\delta g_{i j} & =\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}
\end{aligned}
$$

10 degrees of freedom

$$
\begin{aligned}
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
\end{aligned}
$$

10 degrees of freedom

Physical Constraints

$$
\partial^{\mu} T_{\mu \nu}=0
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom
$T_{00}=\rho, \quad$ (svt E/p-tensor components)
$T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}$,
$T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}$

10 degrees
of freedom

Physical Constraints

$$
\partial^{\mu} T_{\mu \nu}=0 \leadsto\left\{\begin{array}{l}
\nabla^{2} u=\dot{\rho}(1 \text { constraint }), \\
\nabla^{2} \sigma=\frac{3}{2}(\dot{u}-p)(1 \text { constraint }), \\
\nabla^{2} v_{i}=\dot{u}_{i}(2 \text { constraints }) .
\end{array}\right\} \begin{gathered}
4 \text { constraints } \\
(\text { due to E/p } \\
\text { conservation })
\end{gathered}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom

$$
T_{00}=\rho, \quad \quad \text { (svt E/p-tensor components) }
$$

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i},
$$ ${ }^{6}$

10 degrees
of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

Physical Constraints

$$
\partial^{\mu} T_{\mu \nu}=0 \leadsto\left\{\begin{array}{l}
\nabla^{2} u=\dot{\rho}(1 \text { constraint }), \\
\nabla^{2} \sigma=\frac{3}{2}(\dot{u}-p)(1 \text { constraint }), \\
\nabla^{2} v_{i}=\dot{u}_{i}(2 \text { constraints }) .
\end{array}\right\} \begin{gathered}
4 \text { constraints } \\
\text { (due to } \mathrm{E} / \mathrm{p} \\
\text { conservation })
\end{gathered}
$$

Gravitational Wave Definition

$$
\begin{aligned}
\delta g_{00} & =-2 \phi \\
\delta g_{0 i} & =\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right) \\
\delta g_{i j} & =\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}
\end{aligned}
$$

$$
10 \text { degrees }
$$ of freedom

$$
\begin{aligned}
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
\end{aligned}
$$

6 degrees of freedom

Physical Constraints

$$
\partial^{\mu} T_{\mu \nu}=0
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom

$$
\begin{aligned}
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
\end{aligned}
$$

6 degrees of freedom

Physical Constraints

$$
\partial^{\mu} G_{\mu \nu}=0 \Rightarrow[\ldots]
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom
$T_{00}=\rho, \quad$ (svt E/p-tensor components)
$T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}$,
$T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}$

6 degrees of freedom
$x_{\mu} \longrightarrow x_{\mu}+\xi_{\mu}$
Physical
Symmetry

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

\square

$$
T_{00}=\rho,
$$

(svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}
$$

6 degrees of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

Physical	$\begin{aligned} x_{\mu} & \longrightarrow x_{\mu}+\xi_{\mu} \\ \delta g_{\mu \nu} & \longrightarrow \delta g_{\mu \nu}-\partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}\end{aligned}$
$\begin{aligned} & \text { Symmetry } \\ & \text { (} 4 \text { d.o.f. } \\ & \text { spurious) } \end{aligned}$	$\cdots \cdots \cdots \cdots$ $\xi_{\mu}=\left(\xi_{0}, \xi_{i}\right) \equiv\left(d_{0}, \partial_{i} d+d_{i}\right)$ \quad with $\partial_{i} d_{i}=0$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

10 degrees of freedom
\square

$$
T_{00}=\rho,
$$

(svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i},
$$

6 degrees of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& \text { (svt E/p-tensor components) } \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j} \\
& T_{00}=\rho, \\
& 6 \text { degrees } \\
& \text { of freedom }
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

6 degrees of freedom
\square

$$
T_{00}=\rho,
$$

(svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}
$$

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

Physical Symmetry

$$
S_{i} \longrightarrow S_{i}-\dot{d}_{i}, \quad F_{i} \longrightarrow \quad F_{i}-2 d_{i},
$$

$$
h_{i j} \longrightarrow h_{i j} .
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j},
\end{aligned}
$$

6 degrees of freedom
\square

$$
T_{00}=\rho,
$$

(svt E/p-tensor components)

$$
T_{0 i}=T_{i 0}=\partial_{i} u+u_{i},
$$

6 degrees of freedom

$$
T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j}
$$

Physical Symmetry (4 d.o.f. spurious)

Gravitational Wave Definition

$$
\begin{aligned}
& \delta g_{00}=-2 \phi, \\
& \delta g_{0 i}=\delta g_{i 0}=\left(\partial_{i} B+S_{i}\right), \\
& \delta g_{i j}=\delta g_{j i}=-2 \psi \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) E+\partial_{i} F_{j}+\partial_{j} F_{i}+h_{i j}, \\
& \text { (svt metric perturbations) } \\
& T_{00}=\rho, \\
& T_{0 i}=T_{i 0}=\partial_{i} u+u_{i}, \\
& T_{i j}=T_{j i}=p \delta_{i j}+\left(\partial_{i} \partial_{j}-\frac{1}{3} \delta_{i j} \nabla^{2}\right) \sigma+\partial_{i} v_{j}+\partial_{j} v_{i}+\Pi_{i j} . \\
& 6 \text { degrees } \\
& \text { of freedom } \\
& \text { (svt E/p-tensor components) }
\end{aligned}
$$

Gauge Invariant !

Physical

 Symmetry (4 d.o.f. spurious)

Gravitational Wave Definition

Gauge Invariant!

$$
\begin{align*}
\Phi & \equiv-\phi+\dot{B}-\frac{1}{2} \ddot{E}, \\
\Theta & \equiv-2 \psi-\frac{1}{3} \nabla^{2} E, \tag{1}\\
\Sigma_{i} & \equiv S_{i}-\frac{1}{2} \dot{F}_{i}, \quad\left(\partial_{i} \Sigma_{i}=0\right) \tag{2}\\
h_{i j} & \equiv h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right) \tag{2}
\end{align*}
$$

Gravitational Wave Definition

Gauge Invariant!

$$
\begin{align*}
\Phi & \equiv-\phi+\dot{B}-\frac{1}{2} \ddot{E}, \quad(1) \tag{1}\\
\Theta & \equiv-2 \psi-\frac{1}{3} \nabla^{2} E, \quad(1) \tag{1}\\
\Sigma_{i} & \equiv S_{i}-\frac{1}{2} \dot{F}_{i}, \quad\left(\partial_{i} \Sigma_{i}=0\right) \tag{2}\\
h_{i j} & \equiv h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right) \tag{2}
\end{align*}
$$

> 6 gauge invariant degrees of freedom

Gauge Invariant Einstein Tensor

$$
\begin{aligned}
G_{00} & =-\nabla^{2} \Theta \\
G_{0 i} & =-\frac{1}{2} \nabla^{2} \Sigma_{i}-\partial_{i} \dot{\Theta} \\
G_{i j} & =-\frac{1}{2} \square h_{i j}-\partial_{(i} \dot{\Sigma}_{j)}-\frac{1}{2} \partial_{i} \partial_{j}(2 \Phi+\Theta)+\delta_{i j}\left[\frac{1}{2} \nabla^{2}(2 \Phi+\Theta)-\ddot{\Theta}\right]
\end{aligned}
$$

Gravitational Wave Definition

Gauge Invariant!

$$
\begin{align*}
\Phi & \equiv-\phi+\dot{B}-\frac{1}{2} \ddot{E}, \quad(1) \tag{1}\\
\Theta & \equiv-2 \psi-\frac{1}{3} \nabla^{2} E, \quad(1) \tag{1}\\
\Sigma_{i} & \equiv S_{i}-\frac{1}{2} \dot{F}_{i}, \quad\left(\partial_{i} \Sigma_{i}=0\right) \\
h_{i j} & \equiv h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right)
\end{align*}
$$

6 gauge invariant degrees of freedom

Gauge Invariant (perturbed)
 Einstein Eqs.

$$
\begin{array}{ll}
\nabla^{2} \Theta=-\frac{1}{m_{p}^{2}} \rho, & \nabla^{2} \Phi=\frac{1}{2 m_{p}^{2}}(\rho+3 p-3 \dot{u}) \\
\nabla^{2} \Sigma_{i}=-\frac{2}{m_{p}^{2}} S_{i}, & \square h_{i j}=-\frac{2}{m_{p}^{2}} \Pi_{i j}
\end{array}
$$

Gravitational Wave Definition

Gauge Invariant!

$$
\begin{align*}
\Phi & \equiv-\phi+\dot{B}-\frac{1}{2} \ddot{E}, \quad(1) \tag{1}\\
\Theta & \equiv-2 \psi-\frac{1}{3} \nabla^{2} E, \quad(1) \tag{1}\\
\Sigma_{i} & \equiv S_{i}-\frac{1}{2} \dot{F}_{i}, \quad\left(\partial_{i} \Sigma_{i}=0\right) \\
h_{i j} & \equiv h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right)
\end{align*}
$$

6 gauge invariant degrees of freedom

Gauge Invariant (perturbed) Einstein Eqs.

$$
\begin{array}{ll}
\nabla^{2} \Theta=-\frac{1}{m_{p}^{2}} \rho, & \nabla^{2} \Phi=\frac{1}{2 m_{p}^{2}}(\rho+3 p-3 \dot{u}) \\
\nabla^{2} \Sigma_{i}=-\frac{2}{m_{p}^{2}} S_{i}, & \square h_{i j}=-\frac{2}{m_{p}^{2}} \Pi_{i j} .
\end{array}
$$

Gravitational Wave Definition

Gravitational Wave Definition

Gravitational Wave Definition

$$
h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right)
$$

transverse \& traceless
(tensor dof)

Only radiative (~ propagating wave Eq.) gauge invariant degrees of freedom !

Gravitational Wave Definition

$$
h_{i j}, \quad\left(h_{i i}=\partial_{i} h_{i j}=0\right)
$$

Only radiative (~ propagating wave Eq.) gauge invariant degrees of freedom !

Gravitational Waves (GWs) are TT d.o.f. metric perturbations, independently of system of reference

Cosmological Backgrounds of Gravitational Waves

Chiara Caprini
Laboratoire Astroparticule et Cosmologie, CNRS UMR 7164, Université Paris-Diderot, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France.

Daniel G. Figueroa

Laboratory of Particle Physics and Cosmology Institute of Physics (LPPC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Abstract. Gravitational waves (GWs) have a great potential to probe cosmology. We review early universe sources that can lead to cosmological backgrounds of GWs We hecin by nresenting nroner-definitions_of GWs in flat snace-time and in a

*Notice that under a Lorentz transformation $x_{\mu}^{\prime}=\Lambda_{\mu}{ }^{\nu} x_{\nu}, g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\Lambda_{\mu}{ }^{\alpha} \Lambda_{\nu}{ }^{\beta} g_{\alpha \beta}(x)$, preservation of Eq. (3) requires $\left|\Lambda_{\mu}{ }^{\alpha} \Lambda_{\nu}{ }^{\beta} h_{\alpha \beta}(x)\right| \ll 1$, so that it remains true that $\left|h_{\mu \nu}^{\prime}\left(x^{\prime}\right)\right| \ll 1$. Rotations do not spoil the condition $\left|h_{\mu \nu}(x)\right| \ll 1$, but boosts could, and therefore must be restricted to those that do not spoil such condition. As $h_{\mu \nu}(x)$ is invariant under constant displacements $x^{\mu} \longrightarrow x^{\mu}+a^{\mu}$, linearised gravity Eq. (3) is also invariant under Poincaré transformations.

Definition of GWs 3rd approach

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Gravitational Wave Definition

3rd approach to GWs (for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=\bar{g}_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

$$
\begin{aligned}
& =a^{2}(t)\left(-d t^{2}+d \mathbf{x} \cdot d \mathbf{x}\right) \\
& =a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu}
\end{aligned}
$$

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

Flat-FLRW + GWs : $\quad d s^{2}=a^{2}(t)\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}$
where $\quad h_{0 \mu}=0, h_{i i}=0, \partial_{i} h_{i j}=0$ Traceless (TT) d.o.f.

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

Flat-FLRW + GWs : $\quad d s^{2}=a^{2}(t)\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}$

$$
\text { where } \quad h_{0 \mu}=0, \quad h_{i i}=0, \partial_{i} h_{i j}=0 \text { Traceless (TT) }
$$ d.o.f.

Conformal Transf.: $\quad d s^{2}=\tilde{g}_{\mu \nu}(x) d x^{\mu} d x^{\nu}=\Omega^{2}(x) g_{\mu \nu}(x) d x^{\mu} d x^{\nu}$

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

Flat-FLRW + GWs : $\quad d s^{2}=a^{2}(t)\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}$

$$
\text { where } \quad h_{0 \mu}=0, \quad h_{i i}=0, \quad \partial_{i} h_{i j}=0 \quad \begin{gathered}
\text { Traceless (TT) } \\
\text { d.o.f. }
\end{gathered}
$$

Conformal Transf.: $\quad d s^{2}=\tilde{g}_{\mu \nu}(x) d x^{\mu} d x^{\nu}=\underbrace{\Omega^{2}(x)}_{a^{2}(t)} \underbrace{\left.g_{\mu \nu}(x)+h_{\mu \nu}\right]}_{\mu \nu} d x^{\mu} d x^{\nu}$

Gravitational Wave Definition

3rd approach to GWs
(for a FLRW space-time)

$$
g_{\mu \nu}(x)=\underbrace{\bar{g}_{\mu \nu}(x)}_{(\mathrm{FLRW})}+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1
$$

Flat-FLRW: $\quad d s^{2}=a^{2}(t) \eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad(t \rightarrow$ Conformal time $)$

Flat-FLRW + GWs : $\quad d s^{2}=a^{2}(t)\left[\eta_{\mu \nu}+h_{\mu \nu}\right] d x^{\mu} d x^{\nu}$

$$
\text { where } \quad h_{0 \mu}=0, \quad h_{i i}=0, \quad \partial_{i} h_{i j}=0 \begin{gathered}
\text { Traceless (TT) } \\
\text { d.o.f. }
\end{gathered}
$$

Conformal Transf.: $\quad d s^{2}=\tilde{g}_{\mu \nu}(x) d x^{\mu} d x^{\nu}=\underbrace{g_{\mu \nu}(x)}_{\frac{a^{2}(t)\left[\eta_{\mu \nu}+h_{\mu \nu}\right]}{\Omega^{2}(x)} \underbrace{}_{\mu \nu}(x)} d x^{\mu} d x^{\nu}$

Gravitational Wave Definition

Einstein Eqs: $G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{p}^{-2} T_{\mu \nu}$

Gravitational Wave Definition

Einstein Eqs: $G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{p}^{-2} T_{\mu \nu}$

$$
\begin{array}{r}
\bar{R}_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \rightleftharpoons \\
R_{\mu \nu}=m_{p}^{-2} \bar{T}_{\mu \nu} \\
{\left[\bar{T}_{\mu \nu} \equiv T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right]}
\end{array}
$$

Gravitational Wave Definition

Einstein Eqs: $G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{p}^{-2} T_{\mu \nu}$

$$
\begin{array}{r}
\bar{R}_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \leadsto \\
R_{\mu \nu}=m_{p}^{-2} \bar{T}_{\mu \nu} \\
{\left[\bar{T}_{\mu \nu} \equiv T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right]}
\end{array}
$$

Question: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *} \equiv \Omega^{2}(x) g_{* *}\right]$?

Gravitational Wave Definition

Einstein Eqs: $G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{\rho}^{-2} T_{\mu \nu}$

$$
\begin{aligned}
& \bar{R}_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \leadsto R_{\mu \nu}=m_{p}^{-2} \bar{T}_{\mu \nu} \\
& {\left[\bar{T}_{\mu \nu} \equiv T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right] }
\end{aligned}
$$

Question: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *} \equiv \Omega^{2}(x) g_{* *}\right]$?

Note: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv\left(\partial_{\lambda} \tilde{\Gamma}_{\mu \nu}^{\lambda}-\partial_{\nu} \tilde{\Gamma}_{\mu \lambda}^{\lambda}\right)+\left(\tilde{\Gamma}_{\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu}^{\lambda}-\tilde{\Gamma}_{\nu \lambda}^{\alpha} \tilde{\Gamma}_{\mu \alpha}^{\lambda}\right)$

Gravitational Wave Definition

Einstein Eqs: $G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{p}^{-2} T_{\mu \nu}$

$$
\begin{aligned}
& \bar{R}_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \rightleftharpoons R_{\mu \nu}=m_{p}^{-2} \bar{T}_{\mu \nu} \\
& {\left[\bar{T}_{\mu \nu} \equiv T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right] }
\end{aligned}
$$

Question: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *} \equiv \Omega^{2}(x) g_{* *}\right]$?

Note: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv\left(\partial_{\lambda} \tilde{\Gamma}_{\mu \nu}^{\lambda}-\partial_{\nu} \tilde{\Gamma}_{\mu \lambda}^{\lambda}\right)+\left(\tilde{\Gamma}_{\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu}^{\lambda}-\tilde{\Gamma}_{\nu \lambda}^{\alpha} \tilde{\Gamma}_{\mu \alpha}^{\lambda}\right)$
Notation: $\left\{\begin{array}{l}\partial_{(\mu} \xi_{\nu)} \equiv \partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} \\ \partial_{[\mu} \xi_{\nu]} \equiv \partial_{\mu} \xi_{\nu}-\partial_{\nu} \xi_{\mu}\end{array}\right.$

Gravitational Wave Definition

Einstein Eqs: $\begin{aligned} & G_{\mu \nu} \equiv R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \\ & \bar{R}_{\mu \nu}=m_{p}^{-2} T_{\mu \nu} \Rightarrow R_{\mu \nu}=m_{p}^{-2} \bar{T}_{\mu \nu} \\ & {\left[\bar{T}_{\mu \nu}=T_{\mu \nu}-\frac{1}{2} T_{\left.g_{\mu \mu}\right]}\right.}\end{aligned}$
Question: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *} \equiv \Omega^{2}(x) g_{* *}\right]$?

Note: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \frac{1}{2} \tilde{g}^{\lambda \sigma}\left(\partial_{(\mu \mu} \tilde{\sigma}_{\sigma \nu}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)\right]
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left.\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \frac{1}{2} \tilde{g}^{\lambda \sigma}\left(\partial_{(\mu} \tilde{\sigma}_{\sigma \nu}\right)-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)\right]
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \frac{1}{2} \tilde{g}^{\lambda \sigma}\left(\partial_{(\mu} \tilde{\sigma}_{\sigma \nu)}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)\right]
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left.\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \underline{\frac{1}{2} \tilde{g}^{2 \sigma}\left(\partial_{(\mu} \tilde{\sigma}_{\sigma \nu}\right)}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)\right]
$$

$$
\begin{aligned}
\tilde{\Gamma}_{\mu \nu}^{\lambda}\left[\tilde{g}_{* *} \equiv \Omega^{2} g_{* *}\right]= & \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\underset{ }{\delta} \underset{\Gamma_{\mu \nu}^{\lambda}}{\lambda}\left[g_{* *}, \omega\right] ; \quad \omega \equiv \log (\Omega) \\
& \text { where } \delta \Gamma_{\mu \nu}^{\lambda}=g^{\lambda \sigma}\left(\partial_{(\mu} \omega \cdot g_{\sigma \nu)}-g_{\mu \nu} \partial_{\sigma} \omega\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \underline{\frac{1}{2} \tilde{g}^{\lambda \sigma}\left(\partial_{(\mu} \tilde{g}_{\sigma \nu}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)}\right]
$$

$$
\begin{gathered}
\tilde{\Gamma}_{\mu \nu}^{\lambda}\left[\tilde{g}_{* *} \equiv \Omega^{2} g_{* * *}\right]=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\dagger}\left[g_{* *}, \omega\right] ; \omega \equiv \log (\Omega) \\
\text { where } \delta \Gamma_{\mu \nu}^{\lambda}=g^{\lambda \sigma}\left(\partial_{(\mu} \omega \cdot g_{\sigma \nu}-g_{\mu \nu} \partial_{\sigma} \omega\right) \\
\tilde{R}_{\mu \nu} \equiv \partial_{[\lambda}\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu]}^{\lambda}\right)+\left(\Gamma_{[\alpha \lambda}^{\alpha}+\delta \Gamma_{[\alpha \lambda}^{\alpha}\right)\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu]}^{\lambda}\right)
\end{gathered}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \underline{\frac{1}{2} \tilde{g}^{2 \sigma}\left(\partial_{(\mu} \tilde{\sigma}_{\sigma \nu}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)}\right]
$$

$$
\begin{aligned}
& \tilde{\Gamma}_{\mu \nu}^{\lambda}\left[\tilde{g}_{* *} \equiv \Omega^{2} g_{* * y}\right]=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right] ; \omega \equiv \log (\Omega) \\
& \text { where } \delta \Gamma_{\mu \nu}^{\lambda}=g^{\lambda \sigma}\left(\partial_{(\mu \mu} \omega \cdot g_{\sigma \nu)}-g_{\mu \nu} \partial_{\sigma} \omega\right) \\
& \tilde{R}_{\mu \nu} \equiv \partial_{[\lambda}\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu \nu}^{\lambda}\right)+\left(\Gamma_{[\alpha \lambda}^{\alpha}+\delta \Gamma_{[\alpha \lambda}^{\alpha}\right)\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu]}^{\lambda}\right) \\
& =R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv \partial_{[\lambda} \tilde{\Gamma}_{\mu \nu]}^{\lambda}+\tilde{\Gamma}_{[\alpha \lambda}^{\alpha} \tilde{\Gamma}_{\mu \nu]}^{\lambda}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda} \equiv \underline{\frac{1}{2} \tilde{g}^{2 \sigma}\left(\partial_{(\mu} \tilde{g}_{\sigma \nu}-\partial_{\sigma} \tilde{g}_{\mu \nu}\right)}\right]
$$

$$
\begin{aligned}
\tilde{\Gamma}_{\mu \nu}^{\lambda}\left[\tilde{g}_{* *} \equiv \Omega^{2} g_{* * *}\right]= & \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\underset{ }{\delta} \stackrel{\Gamma}{\dagger} \stackrel{\Gamma_{\mu}}{\dagger}\left[g_{* *,}, \omega\right] ; \quad \omega \equiv \log (\Omega) \\
& \text { where } \delta \Gamma_{\mu \nu}^{\lambda}=g^{\lambda \sigma}\left(\partial_{(\mu} \omega \cdot g_{\sigma \nu)}-g_{\mu \nu} \partial_{\sigma} \omega\right)
\end{aligned}
$$

$$
\tilde{R}_{\mu \nu} \equiv \partial_{[\lambda}\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu]}^{\lambda}\right)+\left(\Gamma_{[\alpha \lambda}^{\alpha}+\delta \Gamma_{[\alpha \lambda}^{\alpha}\right)\left(\Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{\mu \nu]}^{\lambda}\right)
$$

$$
=R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right]\right]
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right]\right]
$$

$\delta R_{\mu \nu}=\partial_{[\lambda} \delta \Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \Gamma_{\mu \nu]}^{\sigma}+\Gamma_{\lfloor\lambda \sigma}^{\lambda} \delta \Gamma_{\mu]]}^{\sigma}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}$
where $\delta \Gamma_{\mu \nu}^{\lambda}=\omega_{(\mu} \delta_{\nu)}^{\lambda}-g_{\mu \nu} \omega^{\lambda} ; \quad \omega_{\mu} \equiv \omega_{, \mu}, \omega^{\mu} \equiv \omega^{\mu}$

$$
[\omega \equiv \log (\Omega)]
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right]\right]
$$

$\delta R_{\mu \nu}=\partial_{[\lambda} \delta \Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \Gamma_{\mu \nu]}^{\sigma}+\Gamma_{\lfloor\lambda \sigma}^{\lambda} \delta \Gamma_{\mu]]}^{\sigma}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}$
where $\delta \Gamma_{\mu \nu}^{\lambda}=\omega_{(\mu} \delta^{\lambda}{ }_{\nu)}-g_{\mu \nu} \omega^{\lambda} ; \quad \omega_{\mu} \equiv \omega_{, \mu}, \omega^{\mu} \equiv \omega^{, \mu}$

How does it look $\delta R_{\mu \nu}$?

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right]\right]
$$

$\delta R_{\mu \nu}=\partial_{[\lambda} \delta \Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \Gamma_{\mu \nu]}^{\sigma}+\Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}$
where $\quad \delta \Gamma_{\mu \nu}^{\lambda}=\omega_{(\mu} \delta_{\nu)}^{\lambda}-g_{\mu \nu} \omega^{\lambda} ; \quad \omega_{\mu} \equiv \omega_{, \mu} ; \quad \omega^{\mu} \equiv \omega^{, \mu}$

$$
\delta R_{\mu \nu}\left[g_{* *}, \omega\right] \equiv A \omega_{\mu} \omega_{\mu}+B \omega_{\mu ; \nu}+C g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}+D g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}
$$

(A, B, C, D constants)

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}\left[g_{* *}\right]+\delta \Gamma_{\mu \nu}^{\lambda}\left[g_{* *}, \omega\right]\right]
$$

$\delta R_{\mu \nu}=\partial_{[\lambda} \delta \Gamma_{\mu \nu]}^{\lambda}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \Gamma_{\mu \nu]}^{\sigma}+\Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}+\delta \Gamma_{[\lambda \sigma}^{\lambda} \delta \Gamma_{\mu \nu]}^{\sigma}$
where $\quad \delta \Gamma_{\mu \nu}^{\lambda}=\omega_{(\mu} \delta_{\nu)}^{\lambda}-g_{\mu \nu} \omega^{\lambda} ; \quad \omega_{\mu} \equiv \omega_{, \mu} ; \quad \omega^{\mu} \equiv \omega^{, \mu}$
$\delta R_{\mu \nu}\left[g_{* *}, \omega\right] \equiv A \omega_{\mu} \omega_{\mu}+B \omega_{\mu ; \nu}+C g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}+D g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}$

After some Calculation... $A=+2, B=-2, C=-2, D=-1$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\delta R_{\mu \nu}$

$$
\left[\delta R_{\mu \nu}=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{, \mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega_{; \alpha}^{\alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[g_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{\mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}
$$

Gravitational Wave Definition

$$
\begin{array}{ll}
\text { Then: } & \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}[\overbrace{\eta * *}^{g_{* *}} h_{* *}]+\mathscr{D}_{\mu \nu} \omega \\
& {\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)}
\end{array}
$$

$$
\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{\mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{\mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{\mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}
$$

$$
2 \omega_{\mu} \omega_{\nu}=2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{, \mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right]
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{\mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega_{;, \alpha}^{\alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$\omega_{\mu} \equiv \omega_{, \mu}=\partial_{\mu} \omega \quad \omega^{\mu} \equiv \omega^{, \mu}=g^{\mu \nu} \partial_{\nu} \omega \quad \omega_{\mu ; \nu}=\omega_{\mu, \nu}-\Gamma_{\mu \nu}^{\lambda} \omega_{\lambda} \quad \omega^{\alpha}{ }_{; \alpha}=\omega_{\alpha}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \omega^{\beta}$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* * *}+h_{* * *}\right] \equiv \frac{1}{2} g^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \quad g^{\alpha \beta} \equiv\left(\eta^{\alpha \beta}-h^{\alpha \beta}+h_{r}^{\alpha} h^{\nu \beta}+\ldots\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \frac{1}{2} g^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \quad g^{\alpha \beta} \equiv\left(\eta^{\alpha \beta}-h^{\alpha \beta}+h_{r}^{\alpha} h^{\nu \beta}+\ldots\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \frac{1}{2}\left(\eta^{\alpha \beta}-h^{\alpha \beta}+h_{\gamma}^{\alpha} h^{\gamma \beta}+\ldots\right)\left(\frac{\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}}{\mathcal{O}\left(h_{* *}\right)}\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* * *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* *}+h_{* *}\right]\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \frac{1}{2}\left(\eta^{\alpha \beta}-h^{\alpha \beta}+h_{\gamma}^{\alpha} h^{\gamma \beta}+\ldots\right)\left(\frac{\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}}{\mathcal{O}\left(h_{* *}\right)}=\stackrel{\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\Gamma_{\mu \nu}^{(2)}+\ldots}{\uparrow}\right.
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & =2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H} \Gamma_{\mu \nu}^{0}\left[\eta_{* *}+h_{* *}\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H} \Gamma_{\alpha 0}^{\alpha}\left[\eta_{* * *}+h_{* *}\right]\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \Gamma_{\mu \nu}^{(1)}+\Gamma_{\mu \nu}^{(2)}+\ldots\left\{\begin{array}{l}
(1) \\
\Gamma_{\mu \nu}^{\alpha} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\Gamma_{\mu \nu}^{(2)} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu}\left[\tilde{g}_{* *}\right] \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\mathscr{D}_{\mu \nu} \omega$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & \left.=2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H}\left(\Gamma_{\mu \nu}^{0}+\Gamma_{\mu \nu}^{0}\right)\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H}\left(\Gamma_{\alpha 0}^{\alpha}+\Gamma_{\alpha 0}^{\alpha}\right)\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$

$$
\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)
$$

$$
\begin{aligned}
2 \omega_{\mu} \omega_{\nu} & =2 \mathscr{H}^{2} \delta_{\mu 0} \delta_{\nu 0}, \quad \mathscr{H} \equiv a^{\prime} / a \\
-2 \omega_{\mu ; \nu} & \left.=2\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+2 \mathscr{H}\left(\Gamma_{\mu \nu}^{0}+\Gamma_{\mu \nu}^{0}\right)\right] \\
-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha} & =+2\left(\eta_{\mu \nu}+h_{\mu \nu}\right) \mathscr{H}^{2} \\
-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha} & =\left(\eta_{\mu \nu}+h_{\mu \nu}\right)\left(\mathscr{H}^{\prime}+\mathscr{H}\left(\Gamma_{\alpha 0}^{\alpha}+\Gamma_{\alpha 0}^{\alpha}\right)\right)
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

Gravitational Wave Definition

Then:

$$
\begin{aligned}
& \tilde{R}_{\mu \nu} \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)} \\
& {\left[\mathscr{D}_{\mu \nu} \omega=2 \omega_{\mu} \omega_{\mu}-2 \omega_{\mu ; \nu}-2 g_{\mu \nu} \omega_{\alpha} \omega^{\alpha}-g_{\mu \nu}\left(\omega^{\alpha}\right)_{; \alpha}\right] ; \omega \equiv \log a(t)}
\end{aligned}
$$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu}-\partial_{\beta} h_{\mu \nu}\right) \\
\Gamma_{\mu \nu}^{(2)} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underline{R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$ $?$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \Gamma_{\mu \nu}^{(1)}+\Gamma_{\mu \nu}^{(2)}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{2}_{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underline{R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$ $?$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \Gamma_{\mu \nu}^{(1)}+\Gamma_{\mu \nu}^{(2)}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{2}_{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

$$
R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right] \equiv \partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\Gamma_{[\alpha \lambda}^{\alpha} \Gamma_{\mu \nu]}^{\lambda}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underline{R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$ $?$

$$
\Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
{ }_{\Gamma_{\mu \nu}^{(2)}}^{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
$$

$$
R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right] \equiv \partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\Gamma_{[\alpha \lambda}^{\alpha} \Gamma_{\mu \nu]}^{\lambda}
$$

$$
\partial_{[\lambda}\left(\Gamma_{\mu \nu]}^{(1)}+\stackrel{\Gamma}{\Gamma}_{\mu \nu]}^{(2)}+\ldots\right)+\left(\stackrel{\Gamma}{\Gamma}_{[\alpha \lambda}^{(1)}+\Gamma_{[\alpha \lambda}^{(2)}+\ldots\right)\left(\Gamma_{\mu \nu]}^{(1)}+\Gamma_{\mu \nu]}^{\lambda}+\ldots\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underline{R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$ $?$

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \Gamma_{\mu \nu}^{(1)}+\Gamma_{\mu \nu}^{\alpha}+\ldots\left\{\begin{array}{c}
\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{(2)}_{\Gamma_{\mu \nu}^{\alpha} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)} \\
R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right] \equiv \partial_{[\lambda} \Gamma_{\mu \nu]}^{(1)}+\partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\Gamma_{[\alpha \lambda}^{\alpha} \Gamma_{\mu \nu]}^{\lambda}+\ldots
\end{array}\right.
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underline{R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$ $?$

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{2}_{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right. \\
& \text { (1) (2) } \\
& R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right] \equiv \partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\Gamma_{[\alpha \lambda}^{\alpha} \Gamma_{\mu \nu]}^{\lambda}+\ldots
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right]+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$

$$
0+\delta R_{\mu \nu}+\delta R_{\mu \nu}
$$

$$
\begin{aligned}
& \Gamma_{\mu \nu}^{\alpha}\left[\eta_{* *}+h_{* *}\right] \equiv \stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}}+\stackrel{(2)}{\Gamma_{\mu \nu}^{\alpha}}+\ldots\left\{\begin{array}{c}
\stackrel{(1)}{\Gamma_{\mu \nu}^{\alpha}} \equiv+\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\stackrel{(2)}{2}_{\Gamma_{\mu \nu}^{\alpha}} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right. \\
& \text { (1) (2) } \\
& R_{\mu \nu}\left[\eta_{* *}+h_{* *}\right] \equiv \partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\partial_{[\lambda} \Gamma_{\mu \nu]}^{\lambda}+\Gamma_{[\alpha \lambda}^{\alpha} \Gamma_{\mu \nu]}^{\lambda}+\ldots
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \delta R_{\mu \nu}^{(1)}+\delta R_{\mu \nu}^{(2)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}+\left(\delta R_{\mu \nu}^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}\right)+\left(\delta R_{\mu \nu}^{(2)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}\right)$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underbrace{\left(\mathscr{D}_{\mu \nu} \omega\right)^{(0)}}_{\mathscr{O}\left(h_{* *}^{0}\right)}+\frac{\left(\delta R_{\mu \nu}^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}\right)}{\mathscr{O}\left(h_{* *)}\right.}+\frac{\left(\delta R_{\mu \nu}^{(2)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}\right)}{\mathscr{O}\left(h_{* *}^{2}\right)}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underbrace{\left(\tilde{D}_{\mu \nu} \omega\right)^{(0)}}_{(0)}+\underbrace{\left(\delta \tilde{R}_{\mu \nu}^{(1)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(1)}\right)}_{\tilde{R}_{\mu \nu}^{(1)}}+\underbrace{\left(\delta R_{\mu \nu}^{(2)}+\left(\mathscr{D}_{\mu \nu} \omega\right)^{(2)}\right)}_{\left(\tilde{R}_{\mu \nu}^{(2)}\right.}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
$\stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad$ [Background]

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+{\stackrel{(1)}{\tilde{R}^{\prime}}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$

$$
\begin{aligned}
& \stackrel{(0)}{\tilde{R}}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] } \\
& \stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+{\stackrel{(1)}{\tilde{R}_{\mu \nu}}}_{\mu \nu}^{(\stackrel{(2)}{\tilde{R}}} \underset{\mu \nu}{ }$

$$
\stackrel{(0)}{\tilde{R}}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] }
$$

$$
{\stackrel{(1)}{\tilde{R}^{\prime}}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
$$

$$
\stackrel{(2)}{R}_{\mu \nu}=-\frac{1}{2} \mathscr{H} \eta_{\mu \nu} h^{\alpha \beta} h_{\alpha \beta}^{\prime}+\delta{\stackrel{(2)}{R_{\mu \nu}}}_{\partial_{[\lambda}^{(2)} \Gamma_{\mu \nu]}^{(2)}+\Gamma_{[\alpha \lambda}^{(1)} \Gamma_{\mu \nu]}^{(1)}}^{\Gamma_{\mu}^{\alpha}}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
Let's forget for the moment of second order parts ...

$$
\left(\sim_{\sim}^{0}\right)
$$

$$
\tilde{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] }
$$

$$
\stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
$$

$$
\stackrel{(2)}{R}_{\mu \nu}=-\frac{1}{2} \mathscr{H} \eta_{\mu \nu} h^{\alpha \beta} h_{\alpha \beta}^{\prime}+\delta{\stackrel{(2)}{R_{\mu \nu}}}_{\overbrace{[\lambda}^{(2)} \Gamma_{\mu \nu]}^{(2)}+\Gamma_{[\alpha \lambda}^{(1)} \Gamma_{\mu \nu]}^{(1)}}^{\Gamma_{[1}^{\alpha}}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}$
Let's forget for the moment of second order parts ...

$$
\begin{aligned}
& \stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] } \\
& \stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$

Let's focus on the Einstein Equations

$$
\begin{aligned}
& \stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] } \\
& \stackrel{(1)}{R}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=S_{\mu \nu}$

$$
\left[S_{\mu \nu} \equiv T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} g^{\alpha \beta} T_{\alpha \beta}\right]
$$

$\stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad$ [Background]
$\stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \underbrace{\stackrel{(0)}{R}_{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=S_{\mu \nu}$

$$
\begin{aligned}
& \stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad \text { [Background] } \\
& \stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
\end{aligned}
$$

Gravitational Wave Definition

Then:

$$
\tilde{R}_{\mu \nu} \equiv \underbrace{\stackrel{(0)}{\tilde{R}_{\mu \nu}}+\stackrel{(1)}{R}_{\mu \nu}} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=\overbrace{{\underset{\sim}{S}}_{\mu \nu}^{(0)}+\stackrel{(1)}{S}_{\mu \nu}}^{S_{\mu \nu}}
$$

$\stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad$ [Background]

$$
\stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)
$$

Gravitational Wave Definition

$\stackrel{(0)}{R}_{\mu \nu}=2\left(2 \mathscr{H}^{2}-a^{\prime \prime} / a\right) \delta_{\mu 0} \delta_{\nu 0}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) \eta_{\mu \nu} \quad$ [Background]
$\stackrel{(1)}{\tilde{R}}_{\mu \nu}=\delta_{i \mu} \delta_{j \nu}\left(-\frac{1}{2} \eta^{\alpha \beta} \partial_{\alpha} \partial_{\beta} h_{i j}+\mathscr{H} h_{i j}^{\prime}+\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}\right)$

Gravitational Wave Definition

Th: $\tilde{R}_{\mu \nu}^{(0)}$

$$
\left\{\begin{array}{l}
m_{p}^{2} \stackrel{(0)}{R}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu} \\
m_{p}^{2} \stackrel{(1)}{\tilde{R}}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}
\end{array}\right.
$$

$$
S_{\mu \nu}=\underbrace{(\rho+p) u_{\mu} u_{\nu}+\frac{1}{2}(\rho-p) \tilde{g}_{\mu \nu}}_{\text {Perfect fluid }} \underbrace{+\Pi_{i j}}_{\begin{array}{c}
\text { Anisotropic } \\
\text { Stress }
\end{array}} ; u_{\mu} \equiv(a, 0,0,0)
$$

Gravitational Wave Definition

$$
\begin{aligned}
S_{\mu \nu} & =(\rho+p) u_{\mu} u_{\nu}+\frac{1}{2}(\rho-p) \tilde{g}_{\mu \nu}+\Pi_{i j} \quad ; \quad u_{\mu} \equiv(a, 0,0,0) \\
& =\frac{(\rho+p) a^{2} \delta_{\mu 0} \delta_{\mu 0}+\frac{1}{2}(\rho-p) a^{2} \eta_{\mu \nu}+}{+\frac{1}{2}(\rho-p) a^{2} h_{\mu \nu}+\Pi_{i j}} \\
& =\stackrel{(0)}{S}_{\mu \nu}^{\left.()^{1}\right)}
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& S_{\mu \nu}=(\rho+p) u_{\mu} u_{\nu}+\frac{1}{2}(\rho-p) \tilde{g}_{\mu \nu}+\Pi_{i j} \quad ; \quad u_{\mu} \equiv(a, 0,0,0) \\
&=\frac{(\rho+p) a^{2} \delta_{\mu 0} \delta_{\mu 0}+\frac{1}{2}(\rho-p) a^{2} \eta_{\mu \nu}}{+\frac{1}{2}(\rho-p) a^{2} h_{\mu \nu}+\Pi_{i j}} \\
&+\frac{(0)}{S_{\mu \nu}} \\
& {\left[\Pi_{i j}=\Pi_{i j}^{(\mathrm{S})}+\Pi_{i j}^{(\mathrm{V})}+\Pi_{i j}^{(\mathrm{T})}\right] }
\end{aligned}
$$

Gravitational Wave Definition

Gravitational Wave Definition

Background: $m_{p}^{2} \stackrel{(0)}{\tilde{R}}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu}$

Gravitational Wave Definition

Background: $m_{p}^{2} \stackrel{(0)}{\tilde{R}}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu}$

$$
\left\{\begin{array}{l}
(\mu, \nu)=(0,0):\left(\mathscr{H}^{2}-a^{\prime \prime} / a\right)=\frac{a^{2}}{6 m_{p}^{2}}(\rho+3 p) \\
(\mu, \nu)=(i, i):\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right)=\frac{a^{2}}{2 m_{p}^{2}}(\rho-p) \tag{II}
\end{array}\right.
$$

Gravitational Wave Definition

Background: $m_{p}^{2} \stackrel{(0)}{\tilde{R}}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu}$

$$
\begin{cases}(\mathrm{I})+(\mathrm{II}): & \mathscr{H}^{2}=\frac{a^{2}}{3 m_{p}^{2}} \rho \\ (\mathrm{II})-(\mathrm{I}): & \frac{a^{\prime \prime}}{a}=\frac{a^{2}}{6 m_{p}^{2}}(\rho-3 p)\end{cases}
$$

Friedmann Equations !

Gravitational Wave Definition

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

Gravitational Wave Definition

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

$$
h_{i j}^{\prime \prime}-\nabla^{2} h_{i j}+2 \mathscr{H} h_{i j}^{\prime}+2\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}=\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}+\frac{a^{2}(\rho-p)}{m_{p}^{2}} h_{i j}
$$

Gravitational Wave Definition

Then:

> Th $\tilde{R}_{\mu \nu}^{(0)}$
> (1)

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

$$
\underbrace{h_{i j}^{\prime \prime}-\nabla^{2} h_{i j}+2 \mathscr{H} h_{i j}^{\prime}}_{\text {wave operator }}+\underbrace{2\left(\mathscr{H}^{2}+a^{\prime \prime} / a\right) h_{i j}}_{\text {mass term? }}=\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}+\frac{a^{2}(\rho-p)}{m_{p}^{2}} h_{i j}
$$

Gravitational Wave Definition

T- $\tilde{R}_{\mu \nu}^{(0)}$
Then:

$$
\tilde{R}_{\mu \nu} \equiv \underbrace{\stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=\underbrace{}_{=S_{\mu \nu}^{(0)}+\stackrel{(1)}{S}_{\mu \nu}} \underbrace{-(1)}}\left\{\begin{array}{l}
m_{p}^{2} \tilde{R}_{\mu \nu}^{(0)}=\stackrel{(0)}{S}_{\mu \nu} \\
m_{p}^{2} \tilde{R}_{\mu \nu}^{(1)}=S_{\mu \nu}^{(1)}
\end{array}\right.
$$

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

$$
\underbrace{h_{i j}^{\prime \prime}-\nabla^{2} h_{i j}+2 \mathscr{H} h_{i j}^{\prime}}_{\text {wave operator }}+\underbrace{2\left(\mathscr{H}^{2}+a^{\prime \prime}+a\right) h_{i j}}_{\text {mass term? }}=\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}+\frac{a^{2}(\rho-p)}{m_{p}^{2}} h_{i j}
$$

Gravitational Wave Definition

Then:

$$
\text { Then: } \quad \tilde{R}_{\mu \nu} \equiv \underbrace{\stackrel{(0)}{\tilde{R}}_{\mu \nu}+\tilde{R}_{\mu \nu}^{(1)}} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=\underbrace{S_{\mu \nu}}_{(0)}
$$

$$
\left\{\begin{array}{l}
m_{p}^{2} \stackrel{(0)}{R}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu} \\
m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}
\end{array}\right.
$$

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

$$
h_{i j}^{\prime \prime}-\nabla^{2} h_{i j}+2 \mathscr{H} h_{i j}^{\prime}=\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}
$$

Grav. Wave Eq. of motion

Gravitational Wave Definition

Then:

$$
\text { Then: } \quad \tilde{R}_{\mu \nu} \equiv \underbrace{\stackrel{(0)}{R}_{\mu \nu}^{(1)}+\tilde{R}_{\mu \nu}} ; \quad m_{p}^{2} \tilde{R}_{\mu \nu}=\underbrace{S_{\mu \nu}}_{(0)}
$$

$$
\left\{\begin{array}{l}
m_{p}^{2} \stackrel{(0)}{R}_{\mu \nu}=\stackrel{(0)}{S}_{\mu \nu} \\
m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}
\end{array}\right.
$$

First Order: $\quad m_{p}^{2} \stackrel{(1)}{R}_{\mu \nu}=\stackrel{(1)}{S}_{\mu \nu}$

$$
h_{i j}^{\prime \prime}-\nabla^{2} h_{i j}+2 \mathscr{H} h_{i j}^{\prime}=\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}
$$

Grav. Wave Eq. of motion

Friction

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion]

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ $\underset{\text { Equations] }}{\substack{\text { [Friedmann } \\ \text { [GW Eq. } \\ \text { motion] }}} \begin{aligned} & \text { ? }\end{aligned}$

$$
\begin{aligned}
& \stackrel{(2)}{\tilde{R}}_{\mu \nu}=-\frac{1}{2} \mathscr{H} \eta_{\mu \nu} h^{\alpha \beta} h_{\alpha \beta}^{\prime}+\delta \stackrel{(2)}{R}_{\mu \nu} \quad ; \quad \stackrel{(2)}{R}_{\mu \nu} \equiv \partial_{[\lambda} \stackrel{(2)}{\mu}_{\mu \nu]}^{\lambda}+\stackrel{(1)}{\Gamma}_{[\alpha \lambda}^{\alpha} \stackrel{(1)}{\Gamma_{\mu \nu}^{\lambda}} \\
& \left\{\begin{array}{l}
\stackrel{(1)}{1)}_{\Gamma_{\mu \nu}^{\mu} \equiv+\frac{1}{2} \eta^{\alpha \beta}}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right) \\
\Gamma_{\mu \nu}^{(2)} \equiv-\frac{1}{2} h^{\alpha \beta}\left(\partial_{(\mu} h_{\beta \nu)}-\partial_{\beta} h_{\mu \nu}\right)
\end{array}\right.
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?

$$
S_{\mathrm{HE}}=\frac{m_{p}^{2}}{2} \int d^{4} x \sqrt{-\tilde{g}} \tilde{R}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?

$$
\begin{aligned}
S_{\mathrm{HE}} & =\frac{m_{p}^{2}}{2} \int d^{4} x \sqrt{-\tilde{g}} \tilde{R} \\
& =\frac{m_{p}^{2}}{2} \int d^{4} x \sqrt{-\tilde{g}} \tilde{g}^{\mu \nu} \tilde{R}_{\mu \nu} \\
& =\frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?

$$
S_{\mathrm{HE}}=\frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu}
$$

Gravitational Wave Definition

$\tilde{R}^{(0)}$
(1) (2)

Then:

$$
\tilde{R}_{\mu \nu} \equiv \underset{\substack{\text { [Friedmann } \\ \text { Equations] }}}{\tilde{R}_{\mu \nu}^{\text {[GW Eq. }}} \underset{\text { motion] }}{ }+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}
$$

$$
\begin{aligned}
& S_{\mathrm{HE}}=\frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu} \\
& \tilde{f}^{\mu \nu} \equiv \sqrt{-\tilde{g}} \tilde{g}^{\mu \nu}=a(t)^{4}\left(1-\frac{1}{4} h_{\mu \nu} h^{\mu \nu}\right) a^{-2}\left(\eta^{\mu \nu}-h^{\mu \nu}+h^{\mu}{ }_{\alpha} h^{\alpha \nu}\right)
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann [GW Eq.
Equations] motion]
?

$$
\begin{aligned}
& S_{\mathrm{HE}}=\frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu} \\
& \tilde{f}^{\mu \nu} \equiv \sqrt{-\tilde{g}} \tilde{g}^{\mu \nu}=a(t)^{4}\left(1-\frac{1}{4} h_{\mu \nu} h^{\mu \nu}\right) a^{-2}\left(\eta^{\mu \nu}-h^{\mu \nu}+h^{\mu}{ }_{\alpha} h^{\alpha \nu}\right) \\
&=\underbrace{+\tilde{f}^{\mu \nu}}_{\underset{(0)}{a(t)^{2} \eta^{\mu \nu}}-\frac{a(t)^{2} h^{\mu \nu}}{\tilde{f}^{\mu \nu}}+\underbrace{h^{\mu} h^{\alpha \nu}-\frac{1}{4} \eta^{\mu \nu} h_{\alpha \beta} h^{\alpha \beta}}_{\alpha}+\tilde{f}^{\mu \nu}}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$
$\underset{\substack{\text { [Friedmann } \\ \text { Equations] }}}{\text { [GW Eq. }} \begin{aligned} & \text { motion] }\end{aligned}$?

$$
\begin{aligned}
S_{\mathrm{HE}} & =\frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu} \\
& =\frac{m_{p}^{2}}{2} \int d^{4} x\left(\tilde{f}^{\mu \nu}+\tilde{f}^{\mu \nu}+\tilde{f}^{\mu \nu}\right)\left(\tilde{R}_{\mu \nu}^{(0)}+\tilde{R}_{\mu \nu}^{(1)}+\tilde{R}_{\mu \nu}^{(2)}\right) \\
& =\stackrel{(0)}{\mathrm{S}}_{\mathrm{HE}}+\stackrel{(1)}{\mathrm{SE}}_{\mathrm{HE}}+\stackrel{(2)}{\mathrm{SE}}_{\mathrm{HE}}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$ $\begin{array}{cc}\text { [Friedmann } & \text { [GW Eq. } \\ \text { Equations] } & ?\end{array}$

$$
S_{\mathrm{HE}}={\stackrel{(0)}{S_{\mathrm{HE}}}}_{\text {(}}^{\mathrm{S}_{\mathrm{HE}}^{(1)}}+\stackrel{(2)}{S_{\mathrm{HE}}}
$$

$$
S_{\mathrm{HE}}^{(0)} \equiv \frac{m_{p}^{2}}{2} \int d^{4} x \tilde{f}^{(0)} \tilde{\tilde{R}}_{\mu \nu}^{(0)}
$$

$$
S_{\mathrm{HE}}^{(1)} \equiv \frac{m_{p}^{2}}{2} \int d^{4} x\left(\tilde{f}^{(0)} \tilde{\tilde{R}}_{\mu \nu}^{(1)}+\tilde{\tilde{f}}^{(1)} \tilde{R}_{\mu \nu}^{(0)}\right)
$$

$$
S_{\mathrm{HE}}^{(2)} \equiv \frac{m_{p}^{2}}{2} \int d^{4} x\left(\tilde{f}^{(0)} \tilde{R}_{\mu \nu}^{(2)}+\tilde{f}^{(1)} \tilde{R}_{\mu \nu}^{(1)}+\tilde{f}^{\mu \nu} \tilde{R}_{\mu \nu}^{(2)}\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
(0) [Friedmann [GW Eq. Equations] motion] ?

$$
S_{\mathrm{HE}}^{(0)}=3 m_{p}^{2} \int d^{4} x a(t) a^{\prime \prime}(t)
$$

$$
\stackrel{(1)}{S_{\mathrm{HE}}}=0
$$

$$
\stackrel{(2)}{S_{\mathrm{HE}}} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}(t)\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h_{i j} \partial_{\nu} h_{i j}+2 \mathscr{H} h_{i j} h_{i j}^{\prime}+3 \frac{a^{\prime \prime}}{a} h_{i j} h_{i j}\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{R}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
(0)
[Friedmann [GW Eq.
Equations] motion]
?

$$
S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}(t)\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h_{i j} \partial_{\nu} h_{i j}+2 \mathscr{H} h_{i j} h_{i j}^{\prime}+3 \frac{a^{\prime \prime}}{a} h_{i j} h_{i j}\right)
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
$\begin{array}{ll}\text { [Friedmann } \\ \text { Equations] } & \begin{array}{l}\text { [GW Eq. } \\ \text { motion] }\end{array}\end{array}$

$$
S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}(t)\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h_{i j} \partial_{\nu} h_{i j}+2 \mathscr{H} h_{i j} h_{i j}^{\prime}+3 \frac{a^{\prime \prime}}{a} h_{i j} h_{i j}\right)
$$

Consistency check: Find Eq.'s of motion of $h_{i j}$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations] $\begin{aligned} & \text { [GW Eq. } \\ & \text { motion] }\end{aligned} \quad ?$

$$
\begin{aligned}
S_{\mathrm{HE}}^{(2)} & \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}(t)\left(\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} h_{i j} \partial_{\nu} h_{i j}+2 \mathscr{H} h_{i j} h_{i j}^{\prime}+3 \frac{a^{\prime \prime}}{a} h_{i j} h_{i j}\right) \\
\delta S_{\mathrm{HE}}^{(2)} & \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}(\underbrace{h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}}_{\text {wave operator }}+\frac{2\left(\mathscr{H}^{\prime}+a^{\prime \prime} / a\right)}{-\frac{2 a^{2} p}{m_{p}^{2}}} h_{i j}) \delta h_{i j}
\end{aligned}
$$

Gravitational Wave Definition

Then: $\tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}_{\mu \nu}}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}^{\text {[Friedmann }} \underset{\substack{\text { Equations] } \\ \text { [Gw Eq. } \\ \text { motion] }}}{ }+\stackrel{(2)}{\tilde{R}} \underset{\mu \nu}{?}$
(0)

$$
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j}
$$

Gravitational Wave Definition

 $\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?$$
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j}
$$

$$
S_{\mathrm{m}} \equiv \int d^{4} x \sqrt{-\tilde{g}} \mathscr{L}_{\mathrm{m}} \quad \text { (matter sector) }
$$

Gravitational Wave Definition

 $\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?$$
\begin{aligned}
& \delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
& S_{\mathrm{m}} \equiv \int d^{4} x \sqrt{-\tilde{g}} \mathscr{L}_{\mathrm{m}}=\stackrel{(0)}{S}_{\mathrm{m}}+\stackrel{(1)}{S}_{\mathrm{m}}+\stackrel{(2)}{S}_{\mathrm{m}}+\ldots
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$

$$
\begin{array}{ccc}
{\left[\begin{array}{c}
\text { [Friedmann } \\
\text { Equations] }
\end{array}\right.} & \begin{array}{l}
\text { [GW Eq. } \\
\text { motion] }
\end{array} & ?
\end{array}
$$

$$
S_{\mathrm{m}}^{(2)} \equiv-\frac{1}{2} \int d^{4} x \sqrt{-\tilde{g}} T_{\mu \nu} \delta \tilde{g}^{\mu \nu}-\frac{1}{4} \int d^{4} x \sqrt{-\tilde{g}}\left(\frac{1}{\sqrt{-\tilde{g}}} \frac{\delta\left(\sqrt{-\tilde{g}} T_{\mu \nu}\right)}{\delta \tilde{g}^{\alpha \beta}}\right) \delta \tilde{g}^{\mu \nu} \delta \tilde{g}^{\alpha \beta}
$$

$$
\begin{aligned}
& \delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
& S_{\mathrm{m}} \equiv \int d^{4} x \sqrt{-\tilde{g}} \mathscr{L}_{\mathrm{m}}=\stackrel{(0)}{S}_{\mathrm{m}}+\stackrel{(1)}{S}_{\mathrm{m}}+\stackrel{(2)}{S}_{\mathrm{m}}+\ldots
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$

$$
\begin{array}{cc}
\text { [Friedmann } & \text { [GW Eq. } \\
\text { Equations] } & \text { motion] }
\end{array}
$$

$$
\begin{gathered}
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
S_{\mathrm{m}} \equiv \int d^{4} x \sqrt{-\tilde{g}} \mathscr{L}_{\mathrm{m}}=\stackrel{(0)}{S_{\mathrm{m}}}+\stackrel{(1)}{S}_{\mathrm{m}}+\stackrel{(2)}{\mathrm{m}}_{\mathrm{m}}+\ldots \\
\stackrel{(2)}{\mathrm{m}}^{(2)} \equiv-\frac{1}{\frac{1}{2} \int d^{4} x \sqrt{-\tilde{g}} T_{\mu \nu} \delta \tilde{g}^{\mu \nu}}-\frac{\frac{1}{4} \int d^{4} x \sqrt{-\tilde{g}}\left(\frac{1}{\sqrt{-\tilde{g}}} \frac{\delta\left(\sqrt{-\tilde{g}} T_{\mu \nu}\right)}{\delta \tilde{g} \alpha \beta}\right) \delta \tilde{g}^{\mu \nu} \delta \tilde{g}^{\alpha \beta \beta}}{\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} h_{i j}}
\end{gathered}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{\tilde{R}}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
(0) [Friedmann [GW Eq. Equations] motion]
?

$$
\begin{aligned}
\delta S_{\mathrm{HE}}^{(2)} & \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
\stackrel{(2)}{\mathrm{m}}_{(2)} & \equiv \frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} h_{i j}-\frac{1}{4} \int d^{4} x a^{4}(t) p h_{i j} h_{i j}
\end{aligned}
$$

Gravitational Wave Definition

 $\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?$$
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j}
$$

$$
\delta S_{\mathrm{m}}^{(2)}=\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} \delta h_{i j}-\frac{1}{2} \int d^{4} x a^{4}(t) p h_{i j} \delta h_{i j}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$ $\begin{array}{ll}\text { [Friedmann } \\ \text { Equations] } & \begin{array}{l}\text { [GW Eq. } \\ \text { motion] }\end{array}\end{array}$

$$
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j}
$$

$$
\delta S_{\mathrm{m}}^{(2)}=\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} \delta h_{i j}-\frac{1}{2} \int d^{4} x a^{4}(i) p h_{i j} \delta h_{i j}
$$

$$
\delta S_{\mathrm{m}}^{(2)}+\delta S_{\mathrm{HE}}^{(2)}=0
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$

> [Friedmann $\underset{\text { Equations] }}{ }$$\underset{\text { motion] }}{\text { [GW Eq. }} \quad \boldsymbol{?}$

$$
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j}
$$

$$
\delta S_{\mathrm{m}}^{(2)}=\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} \delta h_{i j}-\frac{1}{2} \int d^{4} x a^{4}(\pi) p h_{i j} \delta h_{i j}
$$

$$
\delta S_{\mathrm{m}}^{(2)}+\delta S_{\mathrm{HE}}^{(2)}=0=\int d^{4} x a^{2}\left[-\frac{m_{p}^{2}}{4}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right)+\frac{1}{2} \Pi_{i j}^{(\mathrm{T})}\right] \delta h_{i j}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$

> [Friedmann Equations] $\begin{aligned} & \text { [GW Eq. } \\ & \text { motion] }\end{aligned} \quad ?$

$$
\begin{gathered}
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
\delta S_{\mathrm{m}}^{(2)}=\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} \delta h_{i j}-\frac{1}{2} \int d^{4} x a^{4}(1) p h_{i j} \delta h_{i j} \\
\delta S_{\mathrm{m}}^{(2)}+\delta S_{\mathrm{HE}}^{(2)}=-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2} \underbrace{h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}}_{\text {wave operator }} \underbrace{\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}}_{\text {Source }}) \delta h_{i j}=0
\end{gathered}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$

$$
\begin{array}{cc}
\text { [Friedmann } & \text { [GW Eq. } \\
\text { Equations] } & ? \\
\text { motion] }
\end{array} \quad ?
$$

$$
\begin{gathered}
\delta S_{\mathrm{HE}}^{(2)} \equiv-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}\right) \delta h_{i j}+\frac{1}{2} \int d^{4} x a^{4} p h_{i j} \delta h_{i j} \\
\delta S_{\mathrm{m}}^{(2)}=\frac{1}{2} \int d^{4} x a^{2}(t) \Pi_{i j}^{(\mathrm{T})} \delta h_{i j}-\frac{1}{2} \int d^{4} x a^{4}(i) p h_{i j} \delta h_{i j} \\
\delta S_{\mathrm{m}}^{(2)}+\delta S_{\mathrm{HE}}^{(2)}=-\frac{m_{p}^{2}}{4} \int d^{4} x a^{2}\left(h_{i j}^{\prime \prime}+2 \mathscr{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}-\frac{2}{m_{p}^{2}} \Pi_{i j}^{(\mathrm{T})}\right) \delta h_{i j}=0 \\
\text { Correct Eq. of motion! }
\end{gathered}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$ [Friedmann [GW Eq. Equations] motion] ?

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
$\stackrel{(2)}{R}_{\mu \nu}$
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\stackrel{(2)}{S_{\mathrm{tot}}} \equiv \stackrel{(2)}{S}_{\mathrm{m}}+{\stackrel{(2)}{S_{\mathrm{HE}}}}^{2}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{\tilde{R}}{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \rightarrow$ GW's Energy-momentum ?

$$
\begin{aligned}
& \stackrel{(2)}{S_{\mathrm{tot}}} \equiv \stackrel{(2)}{S}_{\mathrm{m}}^{\mathrm{m}}+{\stackrel{(2)}{S_{\mathrm{HE}}}}^{(2)} \\
& =-\frac{m_{p}^{2}}{4} \int d^{4} x \sqrt{-g}\left[-\frac{1}{2} g^{\mu \nu} \partial_{\mu} h_{i j} \partial_{\nu} h_{i j}+4 \mathscr{H} h_{i j} g^{0 \mu} \partial_{\mu} h_{i j}\right. \\
& \left.+\frac{1}{a^{2}}\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j} h_{i j}-\frac{2}{a^{2} m_{p}^{2}} h_{i j} \Pi_{i j}^{(\mathrm{T})}\right]
\end{aligned}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\quad \mathcal{O}\left(h_{* *}^{2}\right)$

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{\tilde{R}}{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\rightarrow GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]}
$$

$$
\text { Noether's Theorem: } \quad T_{\mu \nu} \equiv-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{\tilde{R}}{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\rightarrow GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]}
$$

$$
\text { Noether's Theorem: } \quad T_{\mu \nu} \equiv-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}+\partial_{\lambda} f^{\lambda \mu \nu}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{\tilde{R}}{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\rightarrow GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]}
$$

$$
\text { Noether's Theorem: } \quad T_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}+\partial_{\lambda} f^{\lambda \mu \nu}\right\rangle
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \stackrel{\tilde{R}}{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\rightarrow GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv} \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]
$$

$$
\text { Noether's Theorem: } \quad T_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}+\partial f^{f^{\prime \mu \nu}}\right\rangle
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{\sim}_{\mu \nu}+\stackrel{(1)}{R}_{\mu \nu}+\stackrel{(2)}{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \rightarrow$ GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv} \equiv d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]
$$

$$
\text { Noether's Theorem: } \quad \bar{T}_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}\right\rangle
$$

[Volume averaging over $V \gg \lambda^{3}$]

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\stackrel{(2)}{S}_{\mathrm{tot}}^{\equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]}
$$

Noether's Theorem: $\quad \bar{T}_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}\right\rangle$

$$
\rho_{\mathrm{GW}}=a^{-2} \bar{T}_{00} \equiv\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* * *}^{2}\right) \rightarrow$ GW's Energy-momentum ?

$$
S_{\mathrm{tot}}^{(2)} \equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]
$$

Noether's Theorem: $\quad \bar{T}_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}\right\rangle$
$\rho_{\mathrm{GW}}=a^{-2} \bar{T}_{00} \equiv\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle$
Kinetic Gradient
Interaction

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \widetilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \rightarrow$ GW's Energy-momentum ?

$$
S_{\mathrm{tot}}^{(2)} \equiv \int d^{4} x \sqrt{-g} \mathscr{L}\left(h_{i j}, \partial_{\mu} h_{i j}\right) \quad ; \quad g_{\mu \nu} \equiv a^{2}(t) \eta_{\mu \nu} \quad[\mathrm{FLRW}]
$$

$$
\text { Noether's Theorem: } \quad \bar{T}_{\mu \nu} \equiv\left\langle-\frac{\partial \mathscr{L}}{\partial\left(\partial^{\mu} h_{i j}\right)} \partial_{\nu} h_{i j}+g_{\mu \nu} \mathscr{L}\right\rangle
$$

$$
\rho_{\mathrm{GW}}=a^{-2} \bar{T}_{00} \equiv\langle\frac{m_{p}^{2}}{4}(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\underbrace{\left.\left.\left.\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle\right) .}
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\quad \mathcal{O}\left(h_{* *}^{2}\right)$

$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle
$$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\quad \mathcal{O}\left(h_{* *}^{2}\right)$
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle
$$

Sub-horizon :
$\sim k^{2} h^{2} \gg \sim \mathscr{H}^{2} h^{2}$
$(k \gg \mathscr{H})$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\quad \mathcal{O}\left(h_{* *}^{2}\right)$
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\frac{\left.\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}}{a}\right)-\frac{1}{2 a^{2}} \Pi_{i j}^{(\mathrm{T})} h_{i j}\right\rangle\right.
$$

Sub-horizon :

$$
\sim k^{2} h^{2} \gg \sim \mathscr{H}^{2} h^{2}
$$

$(k \gg \mathscr{H})$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\longrightarrow GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\frac{\left.\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}}{a}\right)-\frac{1}{2 a^{2}} \nabla_{i j}^{(1)} h_{i j}\right\rangle\right.
$$

Sub-horizon:

$$
\sim k^{2} h^{2} \gg \sim \mathscr{H}^{2} h^{2}
$$

$(k \gg \mathscr{H})$

Free fields :
(after emission)

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}+\left(\frac{\left.\mathscr{H}^{2}+\frac{a^{\prime \prime}}{a}\right) h_{i j}^{2}}{a}\right)-\frac{1}{2 a^{2}} \nabla_{i j}^{(1)} h_{i j}\right\rangle\right.
$$

Sub-horizon :

$$
\sim k^{2} h^{2} \gg \sim \mathscr{H}^{2} h^{2}
$$

$(k \gg \mathscr{H})$
$\underset{(\text { after emission) }}{\text { Free fields : }} \frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}=\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}$
$\Pi_{i j} \rightarrow 0$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion] $\mathcal{O}\left(h_{* *}^{2}\right)$
\longrightarrow GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}\right)\right\rangle
$$

Energy density carried by Grav. Waves
$\begin{array}{ccc}\text { Sub-horizon } & \& & \text { Free fields } \\ (k \gg \mathscr{H}) & & \text { (after emission) }\end{array}$
[Volume averaging over
$\left.V \gg \lambda^{3}\right]$

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann
Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\left\langle\frac{m_{p}^{2}}{4}\left(\frac{1}{2 a^{2}}\left(h_{i j}^{\prime}\right)^{2}+\frac{1}{2 a^{2}}\left(\nabla h_{i j}\right)^{2}\right)\right\rangle
$$

Energy density carried by Grav. Waves

Sub-horizon
($k \gg \mathscr{H}$)
\& Free fields
(after emission)

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv \tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}+\tilde{R}_{\mu \nu}$
[Friedmann Equations]
[GW Eq. motion]
$\mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

$$
\rho_{\mathrm{GW}}=\frac{m_{p}^{2}}{4 a^{2}}\left\langle\left(h_{i j}^{\prime}\right)^{2}\right\rangle
$$

Energy density carried by
 Grav. Waves

$$
\begin{array}{ccc}
\text { Sub-horizon } & \& & \text { Free fields } \\
(k>\mathscr{H}) & & \text { (after emission) }
\end{array}
$$

Gravitational Wave Definition

Then: $\tilde{R}_{\mu \nu} \equiv \stackrel{(0)}{R}_{\mu \nu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\stackrel{(2)}{\tilde{R}}_{\mu \nu}$
$\begin{array}{cc}\text { [Friedmann } \\ \text { Equations] } & \begin{array}{c}\text { [GW Eq. } \\ \text { motion] }\end{array}\end{array} \mathcal{O}\left(h_{* *}^{2}\right) \longrightarrow$ GW's Energy-momentum ?

Energy density carried by Gravitational Waves

$$
\frac{\rho_{\mathrm{GW}}=\frac{m_{p}^{2}}{4 a^{2}}\left\langle h_{i j}^{\prime} h_{i j}^{\prime}\right\rangle_{V \gg \lambda^{3}}}{\substack{\text { ub-horizon } \\ k \gg \mathscr{H})}}
$$

Gravitational Wave Definition

Energy density carried by Gravitational Waves

$$
\rho_{\mathrm{GW}}=\frac{m_{p}^{2}}{4 a^{2}}\left\langle h_{i j}^{\prime} h_{i j}^{\prime}\right\rangle_{V \gg \lambda^{3}}
$$

Free fields
(after emission)

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv{\stackrel{(0)}{\tilde{R}_{\mu \nu}}}_{\mu \nu}^{(1)} \stackrel{(1)}{R}_{\mu \nu}+\left\langle\stackrel{(2)}{\tilde{R}}_{\mu \nu}\right\rangle$ [Friedmann \quad [GW Eq. GW energy-momentum \longrightarrow How gravity Equations] motion] over background!
gravitates!

Energy density carried by Gravitational Waves

$$
\rho_{\mathrm{GW}}=\frac{1}{32 \pi G}\left\langle\dot{h}_{i j} \dot{h}_{i j}\right\rangle_{V \gg \lambda^{3}}
$$

Sub-horizon
$(k \gg \mathscr{H})$

Free fields
(after emission)

Gravitational Wave Definition

Then: $\quad \tilde{R}_{\mu \nu} \equiv{\stackrel{(0)}{\tilde{R}_{\mu \nu}}}_{\mu}+\stackrel{(1)}{\tilde{R}}_{\mu \nu}+\left\langle\left(\frac{(2)}{\tilde{R}} \mu \nu\right\rangle\right.$ [Friedmann
Equations] $\begin{gathered}\text { [GW Eq. } \\ \text { motion] }\end{gathered} \quad \begin{gathered}\text { GW energy-momentum } \\ \text { over background ! }\end{gathered} \longrightarrow \begin{gathered}\text { How gravity } \\ \text { gravitates ! }\end{gathered}$

Energy density carried by Gravitational Waves

$$
\rho_{\mathrm{GW}}=\frac{1}{32 \pi G}\left\langle\dot{h}_{i j} \dot{h}_{i j}\right\rangle_{V \gg \lambda^{3}}
$$

Sub-horizon $(k \gg \mathscr{H})$

Free fields
(after emission)

$$
\rho_{\mathrm{GW}}=\int d \log f\left(\frac{\partial \rho_{\mathrm{GW}}}{d \log f}\right) \rightarrow \quad \begin{gathered}
\text { Energy density Spectrum } \\
\text { of Gravitational Waves }
\end{gathered}
$$

Definition of GWs 4th approach

Gravitational Wave Definition

4th approach to GWs
(for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1$
(separation not well defined)

Gravitational Wave Definition

4th approach to GWs
(for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1$ (separation not well defined)

More subtle problem! Solution: Separation of scales! $\begin{gathered}\text { Maggiore's } 1 \text { ist } \\ \text { Book on GWs }\end{gathered}$

Gravitational Wave Definition

4th approach to GWs (for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|\delta g_{\mu \nu}\right| \ll 1$ (separation not well defined)

More subtle problem! Solution: Separation of scales !

Gravitational Wave Definition

4th approach to GWs
(for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1$
(separation not well defined)

More subtle problem! Solution: Separation of scales !

$$
R_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)
$$

Gravitational Wave Definition

4th approach to GWs (for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1$ (separation not well defined)

More subtle problem! Solution: Separation of scales !

$$
R_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \longmapsto R_{\mu \nu}=\bar{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots,
$$

Gravitational Wave Definition

4th approach to GWs (for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1$
(separation not well defined)

More subtle problem! Solution: Separation of scales!

$$
R_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \longrightarrow R_{\mu \nu}=\bar{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots,
$$

Low Freq. / Long Scale: $\quad \bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}$

Gravitational Wave Definition

4th approach to GWs (for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1$
(separation not well defined)

More subtle problem! Solution: Separation of scales!

$$
R_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \longrightarrow R_{\mu \nu}=\bar{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots,
$$

Low Freq. / Long Scale: $\quad \bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}$
High Freq. / Short Scale: $R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\mathrm{High}}$

Gravitational Wave Definition

4th approach to GWs (for a curved space-time)
$g_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\delta g_{\mu \nu}(x), \quad\left|h_{\mu \nu}\right| \ll 1$
(separation not well defined)

More subtle problem! Solution: Separation of scales !

$$
R_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) \longrightarrow R_{\mu \nu}=\bar{R}_{\mu \nu}+R_{\mu \nu}^{(1)}+R_{\mu \nu}^{(2)}+\ldots,
$$

Low Freq. / Long Scale: $\bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}$
High Freq. / Short Scale: $R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\mathrm{High}}$

Gravitational Wave Definition

Low Freq. / Long Scale: $\bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}$

Gravitational Wave Definition

Low Freq. / Long Scale: $\quad \bar{R}_{\mu \nu}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {Low }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {Low }}$

Gravitational Wave Definition

Low Freq. / Long Scale: $\bar{R}_{\mu \nu}=-\left\langle R_{\mu \nu}^{(2)}\right\rangle+\frac{1}{m_{p}^{2}}\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle$ (spacerage)

Gravitational Wave Definition

Low Freq. / Long Scale: $\bar{R}_{\mu \nu}=-\left\langle R_{\mu \nu}^{(2)}\right\rangle+\frac{1}{m_{p}^{2}}\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle$ (spacerage)

Gravitational Wave Definition

$$
t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu \mu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
$$

Gravitational Wave Definition

Low Freq. / Long Scale:

$$
\begin{aligned}
& \text { ong Scale: } \quad \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu \mu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \text { Low Freq. / Long Scale: } \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& \qquad t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu u}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

$$
\left\langle R_{\mu \nu}^{(2)}\right\rangle=-\frac{1}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle \longrightarrow t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle
$$

Gravitational Wave Definition

$$
\begin{aligned}
& \text { Low Freq. / Long Scale: } \quad \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& \qquad t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu u}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

$$
\left\langle R_{\mu \nu}^{(2)}\right\rangle=-\frac{1}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle \longrightarrow t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle
$$

It can be shown that only TT dof contribute to <...>

Gravitational Wave Definition

Low Freq. / Long Scale:

$$
\begin{aligned}
& \text { ong Scale: } \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

$$
\left\langle R_{\mu \nu}^{(2)}\right\rangle=-\frac{1}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle \longrightarrow t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle
$$

It can be shown that only TT dof contribute to <... >

$$
t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{i j}^{\mathrm{TT}} \partial_{\nu} \delta g_{i j}^{\mathrm{TT}}\right\rangle
$$

GW energy-momentum tensor

Gravitational Wave Definition

Low Freq. / Long Scale:

$$
\begin{aligned}
& \text { ong Scale: } \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

$$
\left\langle R_{\mu \nu}^{(2)}\right\rangle=-\frac{1}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle \longrightarrow t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle
$$

It can be shown that only TT dof contribute to <... >

$$
t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{i j}^{\mathrm{TT}} \partial_{\nu} \delta g_{i j}^{\mathrm{TT}}\right\rangle \underset{\left(\delta q_{i j} \equiv h_{i j}\right)}{ } \quad \frac{d E}{d A d t}=\frac{m_{p}^{2}}{4}\left\langle\dot{h}_{i j}^{\mathrm{TT}} \dot{h}_{i j}^{\mathrm{TT}}\right\rangle
$$

GW energy-momentum tensor
GW power/area radiated

Gravitational Wave Definition

Low Freq. / Long Scale:

$$
\begin{aligned}
& \text { ong Scale: } \bar{R}_{\mu \nu}=\frac{1}{m_{p}^{2}}\left(t_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} t\right)+\frac{1}{m_{p}^{2}}\left(\bar{T}_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}\right) \\
& t_{\mu \nu}=-\frac{1}{m_{p}^{2}}\left\langle R_{\mu \nu}^{(2)}-\frac{1}{2} \bar{g}_{\mu \nu} R^{(2)}\right\rangle \quad\left\langle T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right\rangle=\bar{T}^{\mu u}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{T}
\end{aligned}
$$

$$
\left\langle R_{\mu \nu}^{(2)}\right\rangle=-\frac{1}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle \longrightarrow t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{\alpha \beta} \partial_{\nu} \delta g^{\alpha \beta}\right\rangle
$$

It can be shown that only TT dof contribute to <... >

$$
t_{\mu \nu}=\frac{m_{p}^{2}}{4}\left\langle\partial_{\mu} \delta g_{i j}^{\mathrm{TT}} \partial_{\nu} \delta g_{i j}^{\mathrm{TT}}\right\rangle \underset{\left(\delta g_{i j} \equiv h_{i j}\right)}{ } \quad \rho_{\mathrm{GW}} \equiv \frac{m_{p}^{2}}{4}\left\langle\dot{h}_{i j}^{\mathrm{TT}} \dot{h}_{i j}^{\mathrm{TT}}\right\rangle
$$

GW energy-momentum tensor
GW energy density

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\mathrm{High}}$

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}$

$$
\frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \quad \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible }
$$

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}$

$$
\left.\begin{array}{l}
\frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible } \\
R_{\mu \nu}^{(1)}=\bar{g}^{\alpha \beta}\left(D_{\alpha} D_{(\mu} \delta g_{\nu) \beta}-D_{\mu} D_{\nu} \delta g_{\alpha \beta}-D_{\alpha} D_{\beta} \delta g_{\mu \nu}\right) \\
D_{\mu} \overline{\delta g}_{\mu \nu}=0 \quad\left(\bar{\delta}_{\mu \nu} \equiv \delta g_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{g}^{\alpha \beta} \delta g_{\alpha \beta}\right) \\
\text { Lorentz } \\
\text { gauge }
\end{array}\right] .
$$

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}$

$$
\left.\begin{array}{l}
\frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible } \\
R_{\mu \nu}^{(1)}=\bar{g}^{\alpha \beta}\left(D_{\alpha} D_{(\mu} \delta g_{\nu) \beta}-D_{\mu} D_{\nu} \delta g_{\alpha \beta}-D_{\alpha} D_{\beta} \delta g_{\mu \nu}\right) \\
D_{\mu} \overline{\delta g}_{\mu \nu}=0 \quad\left(\overline{\delta g_{\mu \nu}} \equiv \delta g_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{g}^{\alpha \beta} \delta g_{\alpha \beta}\right) \\
\text { Lorentz } \\
\text { gauge }
\end{array}\right] .
$$

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}$

$$
\left.\begin{array}{l}
\frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible } \\
R_{\mu \nu}^{(1)}=\bar{g}^{\alpha \beta}\left(D_{\alpha} D_{(\mu} \delta g_{\nu) \beta}-D_{\mu} D_{\nu} \delta g_{\alpha \beta}-D_{\alpha} D_{\beta} \delta g_{\mu \nu}\right) \\
D_{\mu} \overline{\delta g}_{\mu \nu}=0 \quad\left(\overline{\delta g}_{\mu \nu} \equiv \delta g_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{g}^{\alpha \beta} \delta g_{\alpha \beta}\right) \\
\text { Lorentz } \\
\text { gauge }
\end{array}\right] .
$$

Gravitational Wave Propagation

What about the High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\text {High }}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)^{\text {High }}$

$$
\left.\begin{array}{c}
\frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible } \\
R_{\mu \nu}^{(1)}=\bar{g}^{\alpha \beta}\left(D_{\alpha} D_{(\mu} \delta g_{\nu) \beta}-D_{\mu} D_{\nu} \delta g_{\alpha \beta}-D_{\alpha} D_{\beta} \delta g_{\mu \nu}\right) \\
D_{\mu} \overline{\delta g}_{\mu \nu}=0 \quad\left(\overline{\delta g}_{\mu \nu} \equiv \delta g_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{g}^{\alpha \beta} \delta g_{\alpha \beta}\right) \\
\text { Lorentz } \\
\text { gauge }
\end{array}\right] .
$$

Gravitational Wave Propagation

What about the
High Freq. / Short Scale? $\quad R_{\mu \nu}^{(1)}=-\left[R_{\mu \nu}^{(2)}\right]^{\mathrm{High}}+\frac{1}{m_{p}^{2}}\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right)$

$$
\begin{aligned}
& \frac{\left|R_{\mu}^{(2)}\right|^{\mathrm{High}}}{\left|R_{\mu}^{(1)}\right|} \sim \mathcal{O}\left(\frac{\lambda_{*}}{L_{B}}\right) \longrightarrow\left|R_{\mu}^{(2)}\right|^{\mathrm{High}} \text { negligible } \\
& R_{\mu \nu}^{(1)}=\bar{g}^{\alpha \beta}\left(D_{\alpha} D_{(\mu} \delta g_{\nu) \beta}-D_{\mu} D_{\nu} \delta g_{\alpha \beta}-D_{\alpha} D_{\beta} \delta g_{\mu \nu}\right) \\
& D_{\mu} \overline{\delta g}_{\mu \nu}=0 \quad\left(\overline{\left.\delta g_{\mu \nu} \equiv \delta g_{\mu \nu}-\frac{1}{2} \bar{g}_{\mu \nu} \bar{g}^{\alpha \beta} \delta g_{\alpha \beta}\right)} \begin{array}{c}
\text { Lorentz } \\
\text { gauge }
\end{array}\right.
\end{aligned}
$$

Creation of GWs in curved space-time TT dof = truly radiative ! [no gauge choice]

GW Propagation/Creation in Cosmology

FLRW: $d s^{2}=a^{2}\left(-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right), \quad$ TT $:\left\{\begin{array}{l}h_{i i}=0 \\ h_{i j}, j=0\end{array}\right.$

GW Propagation/Creation in Cosmology

FLRW: $d s^{2}=a^{2}\left(-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right), \quad$ TT $:\left\{\begin{array}{l}h_{i i}=0 \\ h_{i j}, j=0\end{array}\right.$

Creation of GWs in curved space-time
Source: Anisotropic Stress
Eom: $h_{i j}^{\prime \prime}+2 \mathcal{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}=16 \pi G \Pi_{i j}^{\mathrm{TT}}$,

$$
\Pi_{i j}=T_{i j}-\left\langle T_{i j}\right\rangle_{\mathrm{FRW}}
$$

GW Propagation/Creation in Cosmology

FLRW: $d s^{2}=a^{2}\left(-d \eta^{2}+\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j}\right), \quad$ TT $:\left\{\begin{array}{l}h_{i i}=0 \\ h_{i j}, j=0\end{array}\right.$

Creation of GWs in curved space-time
Eom: $h_{i j}^{\prime \prime}+2 \mathcal{H} h_{i j}^{\prime}-\nabla^{2} h_{i j}=16 \pi G \Pi_{i j}^{\mathrm{TT}}$

Source: Anisotropic Stress

$$
\Pi_{i j}=T_{i j}-\left\langle T_{i j}\right\rangle_{\mathrm{FRW}}
$$

GW Source(s): (SCALARS , VECTOR , FERMIONS)

$$
\Pi_{i j}^{T T} \propto\left\{\partial_{i} \chi^{a} \partial_{j} \chi^{a}\right\}^{T T}, \quad\left\{E_{i} E_{j}+B_{i} B_{j}\right\}^{T T}, \quad\left\{\bar{\psi} \gamma_{i} D_{j} \psi\right\}^{T T}
$$

Cosmic History

GWs: probe of the early Universe

(1) WEAKNESS of GRAVITY:

ADVANTAGE: GW DECOUPLE upon Production DISADVANTAGE: DIFFICULT DETECTION

(2) ADVANTAGE: GW \rightarrow Probe for Early Universe
$\rightarrow\left\{\begin{array}{l}\text { Decouple } \rightarrow \text { Spectral Form Retained } \\ \text { Specific HEP } \Leftrightarrow \text { Specific GW }\end{array}\right.$
(3) Physical Processes: $\left\{\begin{array}{l}\text { Inflation } \\ \text { Reheating } \\ \text { Phase Transitions } \\ \text { Cosmic Defects }\end{array}\right.$

The Early Universe

GWs: probe of the early Universe

OUTLINE

1) Cosmology + GWs
2) GWs from Inflation

Early
3) GWs from Preheating Universe
4) GWs from Phase Transitions
5) GWs from Cosmic Defects

GWs: probe of the early Universe

OUTLINE

