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A PRIMER ON
GRAVITATIONAL  WAVES
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General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

ds2 = gµ⌫(x)dxµdx⌫

DIFF : xµ ! x0µ(x)

symmetry

h
mp = (8⇡G)�1/2 = 2.44 · 1018 GeV

i
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Universe ?

T [U ]
µ⌫

g[U ]
µ⌫

Cosmological Principle
Background metric and matter

Homogeneous & Isotropy

FLRW expanding Universe !
ds2 = gµ⌫dx

µdx⌫ = a2(t)
�
�dt2 + dx2
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Gravitational Framework

General Relativity (GR) Gµ⌫ = 1
m2

p
Tµ⌫

geometry matter

Gµ⌫ ⌘ D[g↵� ] m�2
p Tµ⌫(Matt,Rad,Top.Defects,DarkEnergy, ...)=

metric

source of GWs

How do we define GWs ?

expand in perturbations
g↵� = ḡ↵� + �g↵�



I hope you took a
good load of coffee

('cause you are gonna need it)

Let’s continue
this approach…

g↵� = ḡ↵� + �g↵�



Definition of GWs
1st approach 
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Gravitational Wave Definition

1st approach to GWs gµ⌫ = ⌘µ⌫ + hµ⌫(x)

( |hµ⌫ | ⌧ 1 )

Minkowski

DIFF : xµ ! x0µ(x) xµ ! x0µ = xµ + ⇠µ(x)
residual

symm.( |@µ⇠⌫(x)| . |hµ⌫ | )

fixed 

frame

hμν(x) → h′ μν(x′ ) = hμν(x) − ∂(μξν)

Notation:
∂(μξν) ≡ ∂μξν + ∂νξμ

∂[μξν] ≡ ∂μξν − ∂νξμ
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Lorentz gauge
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Technical Note: If @µh̄µ⌫ 6= 0
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

gµ⌫ = ⌘µ⌫ + �gµ⌫ (|�gµ⌫ | ⌧ 1)

(svt decomposition)
s: scalar 
v: vector 
t: tensor
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)

Class. Quantum Grav. 35 (2018) 163001

(svt metric perturbations)

(svt E/p-tensor components)

{

2 <3



Gravitational Wave Definition

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)
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Class. Quantum Grav. 35 (2018) 163001

Topical Review

8

GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
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We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
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tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)
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T00 = ρ, (24)
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Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
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somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,
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Tij = Tji = p δij + (∂i∂j −
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3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,
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Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
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irreducible parts with respect to spatial rotations,
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denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
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φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
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Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
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transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

10
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which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
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1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
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Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2
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GWs are characterised by only two physical degrees of freedom, corresponding to two polari-
sation states. However, this must be true in general, not only in globally vacuum space-times. 
In this section we develop a formalism that renders this fact manifest.

We thus maintain, in the following, the conditions of linearised gravity over a Minkowski 
background (gµν = ηµν + hµν, |hµν |! 1), but consider the more realistic situation where a 
non-vanishing stress-energy tensor is present, Tµν != 0. The rest of this section is based on 
[25] (see also [26]), which presents the "at space-time limit of Bardeen’s cosmological gauge-
invariant perturbation theory [27]. We follow standard notations in cosmology (that deviate 
somewhat from those of the previous section): the background metric is ḡµν = ηµν, and we 
denote the #rst order metric perturbation as δgµν (this corresponds to hµν in the previous sec-
tion). The main difference with the cosmological setting of [27] is that our metric background 
is Minkowski, and hence the energy momentum tensor Tµν at the background level, must 
vanish.

We begin by decomposing the metric perturbation and the energy-momentum tensor into 
irreducible parts with respect to spatial rotations,

δg00 = −2φ, (21)

δg0i = δgi0 = (∂iB + Si) , (22)

δgij = δgji = −2ψδij + (∂i∂j −
1
3
δij∇2)E + ∂iFj + ∂jFi + hij, (23)

and

T00 = ρ, (24)

T0i = Ti0 = ∂iu + ui, (25)

Tij = Tji = p δij + (∂i∂j −
1
3
δij∇2)σ + ∂ivj + ∂jvi +Πij. (26)

By construction, the above functions can be classi#ed as scalars, vectors and tensors, accord-
ing to how they transform under the 3-dimensional Euclidean rotation group,

 δgµν Tµν

Scalar(s) φ, B, ψ, E ρ, u, p, σ
Vector(s) Si, Fi ui, vi
Tensor(s) hij Πij

In order not to overcount degrees of freedom, the vector and tensor parts must satisfy the fol-
lowing conditions

∂iSi = 0 (1 constraint), ∂iFi = 0 (1 constraint), (27)

∂ihij = 0 (3 constraints), hii = 0 (1 constraint) (28)

and

∂iui = 0 (1 constraint), ∂ivi = 0 (1 constraint), (29)

∂iΠij = 0 (3 constraints), Πii = 0 (1 constraint), (30)
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where we have implicitly assumed that all terms vanish ρ, u, ui, p,σ, vi,Πij −→ 0 at in!nity. 
The total number of degrees of freedom is as follows. For the metric perturbation, the total 
number of functions introduced in equations (21)–(23) is 16  =  4 scalars (φ, B, ψ, E)  +  6 vec-
tor components (Si, Fi)  +  6 tensor components of the 3× 3 symmetric tensor hij. The total 
number of constraints in equations (27), (28) is 6, so the number of independent functions 
in the decomposition de!ned by equations (21)–(23) is 10  =  16  −  6, as expected for a 4× 4 
symmetric tensor. Analogous consistent counting follows for the energy-momentum tensor, 
decomposed in equations (24)–(26), and subject to the constraint equations (29) and (30).

Given our assumptions about metric perturbations over a #at background ηµν, and asymp-
totic #atness δgµν −→ 0, the decomposition of the metric perturbation into scalar, vector and 
tensor pieces, de!ned by equations (21)–(23), is actually unique. Given a metric perturbation 
δgµν, one can always solve unequivocally for φ, B, ψ, E, Si, Fi and hij, as a function of δgµν. 
Similarly, the decomposition of the energy-momentum tensor by equations (24)–(26) is also 
unique.

All functions introduced so far (scalars, vectors and tensors) are assumed to be arbitrary 
functions of space-time coordinates and, in general, they are not independent from each other. 
For instance, from the conservation of the stress-energy tensor ∂µTµν = 0, it follows that the 
functions introduced in equations (24)–(26), must satisfy

∇2u = ρ̇ (1 constraint), (31)

∇2σ =
3
2
(u̇− p) (1 constraint), (32)

∇2vi = 2u̇i (2 constraints). (33)

Therefore, considering these 4 extra constraints, in the case of the energy-momentum tensor, 
out of the 10 seemingly independent functions ρ, u, ui, p,σ, vi,Πij, there are in reality only 
6  =  10  −  4 independent degrees of freedom. For instance ρ, ui, p,Πij can be set arbitrarily, 
whereas the remaining functions u,σ, vi can be derived from the latter, by solving the system 
of equations (31)–(33).

Similarly, from the conservation of the Einstein tensor ∂µGµν = 0 (which amounts to 4 
constraints), it follows that out of the 10 metric functions φ, B, Si, ψ, E, Fi, hij in the metric 
decomposition equations (21)–(23), only 6  =  10  −  4 functions are truly independent degrees 
of freedom. The relation among metric components is however more complicated than in the 
case of the stress-energy tensor components equations (31)–(33), as it is the metric perturba-
tion δgµν (and not the Einstein tensor Gµν), that we have decomposed into scalar, vector, 
and tensor parts. In order to reduce the number of independent degrees of freedom in equa-
tions (21)–(23) from 10 to 6, it is more practical to exploit the invariance of linearised gravity, 
under arbitrary in!nitesimal coordinate transformations xµ −→ xµ + ξµ. Following the logic 
of the metric decomposition in equations (21)–(23), let us !rst express an arbitrary in!nitesi-
mal 4-vector displacement as

ξµ = (ξ0, ξi) ≡ (d0, ∂id + di) with ∂idi = 0, (34)

where d, d0, di are general functions of the space-time coordinates (t, x). As the metric perturbation 
transforms under an arbitrary in!nitesimal diffeomorphism as δgµν −→ δgµν − ∂µξν − ∂νξµ, 
see equation (4), one obtains that scalar parts of the metric perturbation in equations (21)–
(23), transform as

φ −→ φ− ḋ0, B −→ B− d0 − ḋ, (35)
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ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)

Class. Quantum Grav. 35 (2018) 163001

Topical Review

10

ψ −→ ψ +
1
3
∇2d, E −→ E − 2d, (36)

the vector parts as
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freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
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∂i∂j (2Φ+Θ) + δij
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. (44)
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
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Note that for the energy momentum tensor, we did not need to perform a coordinate trans-
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scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
2

Ë, (39)

Θ ≡ −2ψ − 1
3
∇2E, (40)

Σi ≡ Si −
1
2

Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)
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Introducing now equations  (42)–(44) in the left hand side of the Einstein equa-
tions Gµν = 1

m2
p
Tµν , and equations (24)–(26) in the right hand side, one "nds, with the help of 

equations (31)–(33), that
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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the vector parts as

Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
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Ḟi, with ∂iΣi = 0, (41)

which are directly invariant under arbitrary in!nitesimal coordinate transformations.
Note that for the energy momentum tensor, we did not need to perform a coordinate trans-

formation to exhibit the gauge-invariant independent degrees of freedom, as we just did 
for the metric perturbations: they followed simply after imposing energy-momentum con-
servation, see discussion after equations  (31)–(33). This is a consequence of the fact that, 
in our approach, the energy momentum tensor must be zero in the background, because of 
the assumption of linearisation around Minkowski. In fact, the !rst-order perturbation of a 
generic tensor Tµν = T̄µν + δTµν transforms under an in!nitesimal coordinate transforma-
tion as δTµν −→ δTµν + LξT̄µν, where LξT̄µν denotes the Lie derivative of the background 
component T̄µν, along the vector !eld ξµ (which reduces to equation (4) in #at spacetime and 
for the metric tensor). Therefore, a tensor with T̄µν = 0 is automatically gauge invariant, i.e. 
it is invariant under arbitrary in!nitesimal coordinate transformations. This is the so-called 
Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)
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Si −→ Si − ḋi, Fi −→ Fi − 2di, (37)

and the tensor part as

hij −→ hij. (38)

The 2 degrees of freedom encoded in the tensor perturbation hij are therefore gauge invariant, 
i.e. independent of the system of coordinates (as long as we preserve the in!nitesimal condi-
tion |δgµν |! 1). Since we know that there should be only 6 (= 10− 4) physical degrees of 
freedom, it must be possible to reduce the above scalar and vector perturbations (8 functions) 
to only 4 (= 6− 2) degrees of freedom. In light of equations (35)–(37), one can build new 
scalar and vector perturbations

Φ ≡ −φ+ Ḃ− 1
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Stewart Walker lemma [28, 29].

As the set of variables Φ,Θ,Σi and hij are gauge invariant, and all together represent in total 
6 degrees of freedom (=1 (Φ)  +  1 (Θ)  +  2 (Σi)  +  2 (hij)), we are certain that these variables 
represent the truly physical degrees of freedom of the metric. It must be possible therefore, 
to express the Einstein equations as a function exclusively of these variables. As a matter of 
fact, the Einstein tensor can be written purely in terms of such gauge invariant quantities, as

G00 = −∇2Θ, (42)

G0i = −
1
2
∇2Σi − ∂iΘ̇, (43)

Gij = −
1
2
!hij − ∂(iΣ̇j) −

1
2
∂i∂j (2Φ+Θ) + δij

[
1
2
∇2 (2Φ+Θ)− Θ̈

]
. (44)

Class. Quantum Grav. 35 (2018) 163001

(1)

(1)

(2)

(2)

Gauge Invariant !

hij ⌘ hij , (hii = @ihij = 0)(hii = @ihij = 0)

(@i⌃i = 0)

Gauge Invariant 
(perturbed) 

Einstein Eqs.

Topical Review

11

Introducing now equations  (42)–(44) in the left hand side of the Einstein equa-
tions Gµν = 1

m2
p
Tµν , and equations (24)–(26) in the right hand side, one "nds, with the help of 

equations (31)–(33), that
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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It appears that only the tensor part of the metric hij obeys a wave equation. The other variables 
Θ, Φ and Σi , obey Poisson-like equations. Indeed, in a globally vacuum space-time, the above 
equations reduce to "ve Laplace equations and a wave equation,

∇2Θ = 0, ∇2Φ = 0,

∇2Σi = 0, !hij = 0.
 (46)

This demonstrates explicitly that, among the gauge-invariant degrees of freedom of the metric 
perturbation Θ,Φ,Σi and hij, only the tensor part hij (which has two independent components) 
represents radiative degrees of freedom that can propagate in vacuum.

The above statement is actually independent of the system of reference, as long as the met-
ric perturbation remains as such, i.e. a perturbation |δgµν |! 1. In section 2.1 we found that 
the invariance under in"nitesimal coordinate transformations of the linearised theory, allows 
to saturate the gauge freedom once one reduces the metric perturbations to only 2 degrees of 
freedom, in the transverse-traceless gauge and in vacuum. However, identifying correctly the 
truly gauge invariant and radiative degrees of freedom is not just a matter of a gauge choice. 
In some gauges, as e.g. the Lorentz one, it is possible to have all metric components satisfying 
a wave equation, but this is only a ‘gauge artefact’, arising due to the choice of coordinates. 
Such gauge choices, although useful for calculations, may mistakenly led to identify pure 
gauge modes, with truly physical gravitational radiation.

To summarise, in general, a metric perturbation δgµν contains: (i) gauge spurious degrees 
of freedom, (ii) physical but non-radiative degrees of freedom, and (iii) physical radiative 
degrees of freedom. We have found that, using in"nitesimal coordinate transformations, 
one can arrive to the result that only two physical radiative degrees of freedom are relevant. 
However, due to the presence of the physical non-radiative degrees of freedom, these cannot 
be made explicit, unless in vacuum: it is not possible in general to write the metric perturba-
tion in the TT gauge, since usually we cannot eliminate the temporal comp onents of the stress-
energy tensor that do not vanish T00, T0i != 0. Nonetheless, here we have demonstrated that 
the linearised metric perturbation can be split up uniquely into scalar, vector and tensor parts, 
as in equations (21)–(23). This decomposition contains all type of degrees of freedom (i)–(iii). 
From Einstein equations it appears clearly that the physical radiative degrees of freedom cor-
respond only to the tensor piece of the metric perturbation, i.e. to the piece that satis"es a wave 
equation and veri"es the TT gauge conditions (often referred to as the TT piece), irrespective 
of the gauge choice. In vacuum, the TT-gauge happens to correspond to the set of coordinate 
systems where the whole metric perturbation reduces to the physical radiative degrees of 
freedom. In the presence of matter, there are instead four physical degrees of freedom on top 
of the TT ones. Yet, the latter are—unmistakably—the only physical degrees of freedom truly 
representing gravitational radiation, independently of the gauge choice, and/or the presence 
of matter.
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Notation:
∂(μξν) ≡ ∂μξν + ∂νξμ

∂[μξν] ≡ ∂μξν − ∂νξμ
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Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])

Γα
μν[η** + h**] ≡

1
2

gαβ (∂(μhβν) − ∂βhμν) gαβ ≡ (ηαβ − hαβ + hα
γhγβ + . . . )



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])

Γα
μν[η** + h**] ≡

1
2

gαβ (∂(μhβν) − ∂βhμν) gαβ ≡ (ηαβ − hαβ + hα
γhγβ + . . . )



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])

Γα
μν[η** + h**] ≡

1
2 (ηαβ − hαβ + hα

γhγβ + . . . ) (∂(μhβν) − ∂βhμν)
𝒪(h**)

<latexit sha1_base64="jXCSrcQGQr8UVoAdPxScVNuw+AE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xeBogwH5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni3Nn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rwxs+4TFKDki0XhakgJibz38mQK2RGTC2hTHF7K2FjagMwNqGSDcFbfXmdtK+qXr1ae6hVGrd5HEU4g3O4BA+uoQH30IQWMJjAM7zCm5M4L86787FsLTj5zCn8gfP5A0vjj44=</latexit> {



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])

Γα
μν[η** + h**] ≡

1
2 (ηαβ − hαβ + hα

γhγβ + . . . ) (∂(μhβν) − ∂βhμν) =
(1)
Γα

μν +
(2)
Γα

μν + . . .

𝒪(h**)

<latexit sha1_base64="jXCSrcQGQr8UVoAdPxScVNuw+AE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xeBogwH5YpbdRcg68TLSQVyNAflr/4wZmmE0jBBte55bmL8jCrDmcBZqZ9qTCib0BH2LJU0Qu1ni3Nn5MIqQxLGypY0ZKH+nshopPU0CmxnRM1Yr3pz8T+vl5rwxs+4TFKDki0XhakgJibz38mQK2RGTC2hTHF7K2FjagMwNqGSDcFbfXmdtK+qXr1ae6hVGrd5HEU4g3O4BA+uoQH30IQWMJjAM7zCm5M4L86787FsLTj5zCn8gfP5A0vjj44=</latexit> {



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a
−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋΓ0

μν[η** + h**]
−2gμνωαωα = + 2(ημν + hμν)ℋ2

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋΓα
α0[η** + h**])

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .



Gravitational Wave Definition

Then: R̃μν[g̃**] ≡ Rμν[η** + h**] + 𝒟μνω

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a

−2gμνωαωα = + 2(ημν + hμν)ℋ2

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋ(
(1)
Γ0

μν +
(2)
Γ0

μν)]

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋ(
(1)

Γα
α0 +

(2)
Γα

α0))



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

2ωμων = 2ℋ2δμ0δν0 , ℋ ≡ a′ /a

−2gμνωαωα = + 2(ημν + hμν)ℋ2

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

−2ωμ;ν = 2(ℋ2 − a′ ′ /a)δμ0δν0 + 2ℋ(
(1)
Γ0

μν +
(2)
Γ0

μν)]

−gμν(ωα);α = (ημν + hμν)(ℋ′ + ℋ(
(1)

Γα
α0 +

(2)
Γα

α0))



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

[ 𝒟μνω = 2ωμωμ − 2ωμ;ν − 2gμνωαωα − gμν(ωα);α ] ; ω ≡ log a(t)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

?



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
Rμν[η** + h**] ≡ ∂[λΓλ

μν] + Γα
[αλΓ

λ
μν]

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
?



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
Rμν[η** + h**] ≡ ∂[λΓλ

μν] + Γα
[αλΓ

λ
μν]

∂[λ(
(1)

Γλ
μν] +

(2)
Γλ

μν] + . . . ) + (
(1)

Γα
[αλ +

(2)
Γα

[αλ + . . . )(
(1)

Γλ
μν] +

(2)
Γλ

μν] + . . . )

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
?



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Rμν[η** + h**] ≡ ∂[λ

(1)
Γλ

μν] + ∂[λ

(2)
Γλ

μν] +
(1)

Γα
[αλ

(1)
Γλ

μν] + . . .

?



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Rμν[η** + h**] ≡ ∂[λ

(1)
Γλ

μν] + ∂[λ

(2)
Γλ

μν] +
(1)

Γα
[αλ

(1)
Γλ

μν] + . . .

(1)
δRμν

(2)
δRμν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
?



Gravitational Wave Definition

Then: R̃μν ≡ Rμν[η** + h**] + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)

Γα
μν[η** + h**] ≡

(1)
Γα

μν +
(2)
Γα

μν + . . .

(1)
Γα

μν ≡ +
1
2

ηαβ (∂(μhβν) − ∂βhμν)
(2)
Γα

μν ≡ −
1
2

hαβ (∂(μhβν) − ∂βhμν)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
0 +

(1)
δRμν +

(2)
δRμν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
Rμν[η** + h**] ≡ ∂[λ

(1)
Γλ

μν] + ∂[λ

(2)
Γλ

μν] +
(1)

Γα
[αλ

(1)
Γλ

μν] + . . .

(1)
δRμν

(2)
δRμν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {



Gravitational Wave Definition

Then: R̃μν ≡
(1)

δRμν +
(2)

δRμν + (𝒟μνω)(0) + (𝒟μνω)(1) + (𝒟μνω)(2)



Gravitational Wave Definition

Then: R̃μν ≡ (𝒟μνω)(0) + (
(1)

δRμν + (𝒟μνω)(1)) + (
(2)

δRμν + (𝒟μνω)(2))



Gravitational Wave Definition

Then:

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {R̃μν ≡ (𝒟μνω)(0) + (
(1)

δRμν + (𝒟μνω)(1)) + (
(2)

δRμν + (𝒟μνω)(2))
𝒪(h0

**) 𝒪(h**) 𝒪(h2
**)



Gravitational Wave Definition

Then:

(0)
R̃ μν

R̃μν ≡ (𝒟μνω)(0) + (
(1)

δRμν + (𝒟μνω)(1)) + (
(2)

δRμν + (𝒟μνω)(2))

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
(1)
R̃ μν

(2)
R̃ μν



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν [Background]



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν

(1)
R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν

(1)
R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
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1
2

ℋημνhαβh′ αβ +
(2)

δRμν

∂[λ

(2)
Γλ

μν] +
(1)

Γα
[αλ

(1)
Γλ

μν]

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
[Background]
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{
[Background]

Let’s forget for the moment
of second order parts …
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2
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Let’s forget for the moment
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(1)
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(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν

(1)
R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]

Let’s focus on the 
Einstein Equations 
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(0)
R̃ μν +

(1)
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(0)
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R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]

[ Sμν ≡ Tμν −
1
2

gμνgαβTαβ ]



Gravitational Wave Definition
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R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν
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R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
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(0)
R̃ μν +

(1)
R̃ μν ; m2
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S μν +
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<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν

(1)
R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
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(0)
R̃ μν +

(1)
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=
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<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

(0)
R̃ μν = 2(2ℋ2 − a′ ′ /a)δμ0δν0 + (ℋ2 + a′ ′ /a)ημν

(1)
R̃ μν = δiμδjν( −

1
2

ηαβ∂α∂βhij + ℋh′ ij + (ℋ2 + a′ ′ /a)hij)
[Background]



Gravitational Wave Definition
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p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Sμν = (ρ + p)uμuν +
1
2

(ρ − p)g̃μν + Πij ; uμ ≡ (a,0,0,0)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
Perfect fluid

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
Anisotropic

Stress
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<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

; uμ ≡ (a,0,0,0)

= (ρ + p)a2δμ0δμ0 +
1
2

(ρ − p)a2ημν +
1
2

(ρ − p)a2hμν + Πij

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
= + (1)

S μν

Sμν = (ρ + p)uμuν +
1
2

(ρ − p)g̃μν + Πij



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

; uμ ≡ (a,0,0,0)

= (ρ + p)a2δμ0δμ0 +
1
2

(ρ − p)a2ημν +
1
2

(ρ − p)a2hμν + Πij

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
= + (1)

S μν

[ Πij = Π(S)
ij + Π(V)

ij + Π(T)
ij ]

Sμν = (ρ + p)uμuν +
1
2

(ρ − p)g̃μν + Πij



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

= (ρ + p)a2δμ0δμ0 +
1
2

(ρ − p)a2ημν +
1
2

(ρ − p)a2hμν + Π(T)
ij

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

+
(1)
S μν

m2
p(

(0)
R̃ μν +

(1)
R̃ μν)



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Background: m2
p

(0)
R̃ μν =

(0)
S μν



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Background: m2
p

(0)
R̃ μν =

(0)
S μν

(μ, ν) = (0,0) : (ℋ2 − a′ ′ /a) =
a2

6m2
p

(ρ + 3p)

(μ, ν) = (i, i) : (ℋ2 + a′ ′ /a) =
a2

2m2
p

(ρ − p)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{ (I)

(II)



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

Background: m2
p

(0)
R̃ μν =

(0)
S μν

ℋ2 =
a2

3m2
p

ρ

a′ ′ 

a
=

a2

6m2
p

(ρ − 3p)

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{ (I) + (II) :

(II) - (I) :

Friedmann
Equations !



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

First Order: m2
p

(1)
R̃ μν =

(1)
S μν



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

First Order: m2
p

(1)
R̃ μν =

(1)
S μν

=
2

m2
p

Π(T)
ij +

a2(ρ − p)
m2

p
hijh′ ′ ij − ∇2hij + 2ℋh′ ij + 2(ℋ2 + a′ ′ /a)hij



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {

First Order: m2
p

(1)
R̃ μν =

(1)
S μν

=
2

m2
p

Π(T)
ij +

a2(ρ − p)
m2

p
hijh′ ′ ij − ∇2hij + 2ℋh′ ij + 2(ℋ2 + a′ ′ /a)hij

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> { <latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
wave operator mass term?



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν ; m2

p R̃μν = Sμν

=
(0)
S μν +

(1)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
m2

p

(1)
R̃ μν =

(1)
S μν

m2
p

(0)
R̃ μν =

(0)
S μν

<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit>

{
<latexit sha1_base64="glW3TIkineTQFGK8tpcOrZizX+g=">AAAB/HicbVBNS8NAEN3Ur1q/oj16CRbBU0hE1GPRi8cK9gOaUDbbSbt088HuRAih/hUvHhTx6g/x5r9x2+agrQ8GHu/NMDMvSAVX6DjfRmVtfWNzq7pd29nd2z8wD486KskkgzZLRCJ7AVUgeAxt5Cigl0qgUSCgG0xuZ373EaTiSfyAeQp+REcxDzmjqKWBWfcEhOiJQFIGnuSjMdoDs+HYzhzWKnFL0iAlWgPzyxsmLIsgRiaoUn3XSdEvqETOBExrXqYgpWxCR9DXNKYRKL+YHz+1TrUytMJE6orRmqu/JwoaKZVHge6MKI7VsjcT//P6GYbXfsHjNEOI2WJRmAkLE2uWhDXkEhiKXBPKJNe3WmxMdQ6o86rpENzll1dJ59x2L+2L+4tG86aMo0qOyQk5Iy65Ik1yR1qkTRjJyTN5JW/Gk/FivBsfi9aKUc7UyR8Ynz/Vw5Tm</latexit> {
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h
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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Kinetic Gradient Interaction
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∂νhij + gμνℒ
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h

(2)
Stot ≡ ∫ d4x −g ℒ(hij, ∂μhij)

Caution! differs
in the literature

<latexit sha1_base64="eeDDo+Md2JpToQpOWR3UXXwD8Zs=">AAAB/HicdVBNS8NAEN34WetXtUcvi0XwFJIa2noTvXisYFVoQtlsJ+3i5oPdiRCK/hUvHhTx6g/x5r9xUyuo6IOBx3szzMwLMyk0Os67NTe/sLi0XFmprq6tb2zWtrYvdJorDj2eylRdhUyDFAn0UKCEq0wBi0MJl+H1Self3oDSIk3OscggiNkoEZHgDI00qNV9CRH6MlSMg6/EaIz2oNZw7MNOq+m1qGM7TtttuiVptr0Dj7pGKdEgM3QHtTd/mPI8hgS5ZFr3XSfDYMIUCi7hturnGjLGr9kI+oYmLAYdTKbH39I9owxplCpTCdKp+n1iwmKtizg0nTHDsf7tleJfXj/HqBNMRJLlCAn/XBTlkmJKyyToUCjgKAtDGFfC3Er5mJkc0ORVNSF8fUr/JxdN223Z3pnXODqexVEhO2SX7BOXtMkROSVd0iOcFOSePJIn6856sJ6tl8/WOWs2Uyc/YL1+ADXhlSg=</latexit> {Kinetic Gradient Interaction
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>
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<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon : ∼ k2h2 ∼ ℋ2h2≫
(k ≫ ℋ)



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4 ( 1
2a2

(h′ ij)2 +
1

2a2
(∇hij)2 + (ℋ2 +

a′ ′ 

a )h2
ij) −

1
2a2

Π(T)
ij hij

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon : ∼ k2h2 ∼ ℋ2h2≫
(k ≫ ℋ)



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4 ( 1
2a2

(h′ ij)2 +
1

2a2
(∇hij)2 + (ℋ2 +

a′ ′ 

a )h2
ij) −

1
2a2

Π(T)
ij hij

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon : ∼ k2h2 ∼ ℋ2h2≫

Free fields :
(after emission)

Πij → 0

(k ≫ ℋ)



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4 ( 1
2a2

(h′ ij)2 +
1

2a2
(∇hij)2 + (ℋ2 +

a′ ′ 

a )h2
ij) −

1
2a2

Π(T)
ij hij

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon : ∼ k2h2 ∼ ℋ2h2≫

Free fields :
(after emission)

Πij → 0

(k ≫ ℋ)

1
2a2

(h′ ij)2 =
1

2a2
(∇hij)2



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4 ( 1
2a2

(h′ ij)2 +
1

2a2
(∇hij)2)

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon Free fields

(after emission)(k ≫ ℋ)
&

Energy density
carried by

Grav. Waves 

 [Volume averaging over                  ]V ≫ λ3



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4 ( 1
2a2

(h′ ij)2 +
1

2a2
(∇hij)2)

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
Sub-horizon Free fields

(after emission)(k ≫ ℋ)
&

Energy density
carried by

Grav. Waves 

 [Volume averaging over                  ]V ≫ λ3



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

ρGW =
m2

p

4a2 ⟨(h′ ij)2⟩
Sub-horizon Free fields

(after emission)(k ≫ ℋ)
&

Energy density
carried by

Grav. Waves 

 [Volume averaging over                  ]V ≫ λ3



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion] 𝒪(h2

**)  GW’s Energy-momentum ?

Sub-horizon Free fields
(after emission)(k ≫ ℋ)

&

Energy density
carried by

Gravitational Waves 
ρGW =

m2
p

4a2 ⟨ h′ ij h′ ij ⟩V≫λ3



Gravitational Wave Definition

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion]

 GW  energy-momentum
over background !

Sub-horizon Free fields
(after emission)(k ≫ ℋ)

&

Energy density
carried by

Gravitational Waves 
ρGW =

m2
p

4a2 ⟨ h′ ij h′ ij ⟩V≫λ3

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
How gravity
gravitates !



Gravitational Wave Definition

Sub-horizon Free fields
(after emission)(k ≫ ℋ)

&

Energy density
carried by

Gravitational Waves 
ρGW =

1
32πG ⟨ ·hij

·hij ⟩V≫λ3

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion]

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
 GW  energy-momentum

over background !
How gravity
gravitates !



Gravitational Wave Definition

Sub-horizon Free fields
(after emission)(k ≫ ℋ)

&

Energy density
carried by

Gravitational Waves 

ρGW = ∫ d log f ( ∂ρGW

d log f )  Energy density Spectrum 
of Gravitational Waves

ρGW =
1

32πG ⟨ ·hij
·hij ⟩V≫λ3

Then: R̃μν ≡
(0)
R̃ μν +

(1)
R̃ μν +

(2)
R̃ μν

[Friedmann
Equations]

[GW Eq.
motion]

<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
<latexit sha1_base64="GExURnQQW+IaXAU4DoQFaEuQldE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI9FLx4r2A9oQ9lsJ+3SzSbsboQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip0xdUjgQOyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFufOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmv5MhV8iMmFpCmeL2VsLGVFFmbEIlG4K3+vI6aV9VvXq19lCrNG7zOIpwBudwCR5cQwPuoQktYDCBZ3iFNydxXpx352PZWnDymVP4A+fzB1sQj5g=</latexit>

h
 GW  energy-momentum

over background !
How gravity
gravitates !



Definition of GWs
4th approach 



Gravitational Wave Definition

4th approach to GWs gµ⌫(x) = ḡµ⌫(x) + hµ⌫(x) , |hµ⌫ | ⌧ 1

(separation not well defined)(for a curved space-time)
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More subtle problem! Solution: Separation of scales !
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Gravitational Wave Definition

Low Freq. / Long Scale: 
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It can be shown that only TT dof contribute to  < … >
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Gravitational Wave Definition

Low Freq. / Long Scale: 

=

GW energy-momentum  tensor

It can be shown that only TT dof contribute to  < … >
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1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a
2(�d⌘

2 + (�ij + hij)dxi
dx

j), TT :

⇢
hii = 0
hij ,j = 0

Eom: h00
ij + 2Hh

0
ij �r2

hij = 16⇡G⇧TT
ij , ⇧ij = Tij � hTiji

FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT
ij / {@i�a

@j�
a}TT

, {EiEj +BiBj}TT
, { ̄�iDj }TT

FLRW:

GW Propagation/Creation
in Cosmology



Creation of GWs in curved space-time

1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a
2(�d⌘

2 + (�ij + hij)dxi
dx

j), TT :

⇢
hii = 0
hij ,j = 0

Eom: h00
ij + 2Hh

0
ij �r2

hij = 16⇡G⇧TT
ij , ⇧ij = Tij � hTiji

FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT
ij / {@i�a

@j�
a}TT

, {EiEj +BiBj}TT
, { ̄�iDj }TT

1. Gravitational Waves (GWs) [Basics]

• GW: ds2 = a
2(�d⌘

2 + (�ij + hij)dxi
dx

j), TT :

⇢
hii = 0
hij ,j = 0

Eom: h00
ij + 2Hh

0
ij �r2

hij = 16⇡G⇧TT
ij , ⇧ij = Tij � hTiji

FRW

Transverse-Traceless (TT) dof carry energy out of the source!!!

• GW Source(s): ( SCALARS , VECTOR , FERMIONS )

⇧TT
ij / {@i�a

@j�
a}TT

, {EiEj +BiBj}TT
, { ̄�iDj }TT

FLRW:

Source: Anisotropic Stress
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Creation of GWs in curved space-time Source: Anisotropic Stress



   BiGGER size,
SMALLER Temp    TODAY [Galaxies, Clusters, …]

     (13.700 Million years)

   ATOMS CREATION
   (300.000-400.000 years)

   FIRST GALAXIES 
   (500 Millions years)

   ATOMIC NUCLEI CREATION
                 (3 minutes !)

FIRST SECOND 
 of the UNIVERSE !

   SMALLER SIZE,
LARGER Temperature

Cosmic History



GRAVITATIONAL WAVES (GW): PROBING the EARLY
UNIVERSE (t . 1 s)

1 WEAKNESS of GRAVITY:

ADVANTAGE: GW DECOUPLE upon Production
DISADVANTAGE: DIFFICULT DETECTION

2 ADVANTAGE: GW ! Probe for Early Universe

!
⇢

Decouple! Spectral Form Retained

Specific HEP , Specific GW

3 Physical Processes:

8
>><

>>:

Inflation

Reheating

Phase Transitions

TurbulenceCosmic Defects

GWs: probe of the early Universe
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Production

(�t . 1s)

Cosmic
Defects

Quantum
Fluctuations

Phase
Transitions

Probe of  
the early  
UniverseGW

The Early Universe

⇧TT
ij [�, Aµ, , ...]

GWs d⇢GW

d log f



 1) Cosmology + GWs

OUTLINE

2) GWs from Inflation

3) GWs from Preheating

4) GWs from Phase Transitions

5) GWs from Cosmic Defects 

   Early 
Universe

GWs: probe of the early Universe
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GWs: probe of the early Universe

To Be … 

Continued

 1) Cosmology + GWs


