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Lecture 1
• Introduction to probability
• Subjective/Bayesian probability vs Frequentist probability
• Kolmogorov axiomatic approach to probability
• Probability distributions: discrete, continuous, in more dimensions
• Conditional probability, independent events and variables
• The Bayes theorem
• Examples of application of Bayes theorem
• Bayes rule and likelihood function
• Bayesian approach to probability as learning process
• Inference with the Bayesian approaches
• Choice of credible and confidence intervals: upper and lower limits
• Error propagation with Bayesian estimates
• Issues with prior PDF with the Bayesian approach



The goals of a physicist
• Measurements • Discoveries

mt = 173.49 ± 1.07 GeV Higgs boson!
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Probability & measurements
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• Measurements are closely 
related to random processes 
and probability

• Repeated measurements 
always give the same result 
only for trivial cases

• Many physical processes 
have intrinsic randomness
– Quantum Mechanics: P ∝

|A|2

• Detector response is 
somewhat random
– Fluctuations, resolution, 

efficiency, …



Repeatable experiments
• What’s the probability to extract one ace in 

a deck of cards?
• What is the probability to win a lottery

(or bingo, …)?
• What is the probability that a pion is 

incorrectly identified as a muon in CMS?

• What is the probability
that a fluctuation in the 
background can produce a
peak in the γγ spectrum with a 
magnitude at least equal to what 
has been observed by ATLAS?

• Note: different question w.r.t.: what is the 
probability that the peak is due to a 
background fluctuation? (non repeatable!)
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• More in general, 
it’s about unknown events:
– What is the probability that dark 

matter is made of particles 
heavier than 1 TeV?

– What is the probability that 
climate changes are mainly due 
to human intervention?

Non repeatable claims
• Could be about future events:

– what is the probability that tomorrow it 
will rain in Geneva?

– what’s the probability that your favorite 
team will win next championship?

• But also past events:
– What’s the probability that dinosaurs 

went extinct because of an asteroid?
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Introduction to probability
• Probability can be defined in different ways
• The applicability of each definition depends  

on the kind of claim we are considering to 
applying the concept of probability

• One subjective approach expresses the 
degree of belief/credibility of the claim, which 
may vary from subject to subject 

• For repeatable experiments, probability may 
be a measure of how frequently the claim is 
true
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Classical probability
• Probability determined by symmetry properties of a 

random device
• “Equally undecided” about event outcome, according 

to Laplace definition

P = 1/2

P = 1/10
P = 1/4

P = 1/6 
(each dice)

Probability: P   = 
Number of favorable cases

Number of total cases Pierre Simon Laplace
(1749-1827)
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Composite cases
• Composite cases are managed via combinatorial analysis
• Reduce the (composite) event of interest into elementary 

equiprobable events (sample space)

• Statements about an event can be defined via set algebra
– and/or/not ⇒ intersection/union/complement

– E.g.:

“sum of two dices is even and greater than four”

E.g:

2 = {(1,1)}
3 = {(1,2), (2,1)}
4 = {(1,3), (2,2), (3,1)} 
5 = {(1,4), (2,3), (3,2), (4,1)}
etc. …

{(d1, d2): mod(d1 + d2, 2) = 0} ∩ {(d1, d2): d1 + d2 > 4} 
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Binomial distribution
• Probability to extract n red balls over N trials, given 

the fraction p of red balls in a basket
• Each trial is called Bernoulli process

• Red:      p = 3/10

• White:    1 – p = 7/10

p = 3/10
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Binomial distribution
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Binomial distribution
• Typical application in physics:

detector efficiency (ε = p)
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Binomial distribution
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Law of large numbers

• ∀𝜀 lim
!→#

𝑃 $
!
− 𝑝 < 𝜀 = 1
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Poisson distribution
• Limit of Binomial for 𝑁 → ∞, 𝜈 = 𝑁𝑝 = const.
• Distribution of the number of occurrences of random 

event uniformly distributed in a measurement range 
whose rate is known
– E.g.: number of rain drops in a given area and in a given 

time interval, number of cosmic rays crossing a 
detector in a 
given time 
interval

Siméon-Denis Poisson
(1781-1840)
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Poisson distribution
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Kolmogorov approach
• Axiomatic probability definition

– Terminology: Ω = sample space, F = event 
space, P = probability measure

– Let (Ω, F ⊆ 2Ω, P) be a measure space that 
satisfy:

– 1

– 2 (normalization)

– 3

• The same formalism applies to 
either frequentist and Bayesian
probability

Andrej Nikolaevič Kolmogorov

(1903-1987)

E0

E1

E2

E3

En
...

... ...

...

Ω
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Subjective (Bayesian) probability
• Expresses one’s degree of belief that a claim is true

– How strong? How much would you bet? 
– Applicable to all unknown events/claims,

not only repeatable experiments
– Each individual may have a different

opinion/prejudice
• Quantitative rules exist about how

subjective probability should be modified
after learning about some observation/evidence
– Consistent with Bayes theorem (à will be introduced in next slides)
– Prior probability à Posterior probability (following observation)
– The more information we receive, the more Bayesian probability is 

insensitive on prior subjective prejudice
(unless in pathological cases…)
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Probability distributions
• Given a discrete random variable, we can 

assign a probability to each individual value:

• In case of a continuous variable, the probability 
assigned to an individual value may be zero

• A probability density better quantifies the 
probability content (unlike P({x}) = 0 !):

• Discrete and continuous distributions can be
combined using Dirac’s delta functions.

• E.g.: 

50% prob. to have zero (P({0}) = 0.5), 50% distributed according to f(x) 

n

x

P

f(x)
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Gaussian distribution

σ σ p  = 15.8%p  = 15.8%

p  = 68.3%

nσ Prob.
1 0.683
2 0.954
3 0.997
4 1 – 6.3×10-5

5 1 – 5.7×10-7

Carl Friedrich Gauss
(1777-1855)

• Many random variables in real experiments 
follow a Gaussian distribution

• Central limit theorem: approximate sum of 
multiple random contributions, regardless of 
the individual distributions

• Frequently used to model detector resolution

x

g
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Gaussian distribution
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Central limit theorem
• The distribution of the sum or average 

of N random variables all having the 
same distribution with finite variance 
tends to a Gaussian for large N
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Central limit theorem
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Central limit theorem
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Theory inputs
• Distributions of measured quantities

in data:
– are predicted by a theory model,
– depend on some theory parameters,
– e.g.: particle mass, cross section, etc.

• Given our data sample, we want to:
– measure theory parameters,

• e.g.: mt= 173.49 ± 1.07 GeV
– answer questions about the nature of data

• Is there a Higgs boson? è Yes!  (strong evidence? Quantify!)
• Is there a Dark Matter?  è No evidence, so far…
• If not, what is the range of theory parameters compatible with the 

observed data? What parameter range can we exclude?
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PDFs in more dimensions
• In more dimensions (n random variables), PDF can 

be defined as:

• The probability associated to an event E is obtained 
by integrating the PDF over the
corresponding set in the sample
space

Ω

E
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Mean and variance of random vars.
• Given a random variable x with distribution f(x) we can define:

• Mean or
expected value:

• Variance:

• Standard deviation:

• Covariance and correlation coefficient of two variables x and y: 

Note: integration extends over 
x and y in two dimensions 
when computing an average 
value!

r.m.s.: root mean square
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Conditional probability
• Probability of A, given B: P(A | B), i.e.: probability that 

an event known to belong to set B also belongs to set 
A:
– P(A | B)  = P(A ∩ B) / P(B) 
– Notice that:

P(A | Ω)  = P(A ∩ Ω) / P(Ω)
• Event A is said to be 

independent of B if the 
probability of A given B is 
equal to the probability of A:
– P(A | B) = P(A)

• If A is independent of B then P(A ∩ B) = P(A) P(B)
• à If A is independent on B, B is independent on A

Ω

A B
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Independent variables

• 1D projections:
(marginal distributions)

• x and y are independent if:

• We saw that A and B are 
independent events if:

• Where A = {xʹ: x < xʹ < x + δx}, B = {yʹ : y < yʹ <y + δy}
x

y

A

B
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The Bayes theorem

• P(A) = prior probability
• P(A|B) = posterior probability

Thomas Bayes (1702-1761)
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Bayesian posterior probability
• Bayes theorem allows to determine probability about 

hypotheses or claims H that not related random 
variables, given an observation or evidence E:

• P(H) = prior probability
• P(H | E) = posterior probability, given E
• The Bayes rule allows to define a rational way to 

modify one’s prior belief once some observation is 
known
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Example (frequentist): muon fake rate
• A detector identifies muons with high efficiently, ε = 95%
• A small fraction δ = 5% of pions are incorrectly identified as 

muons (“fakes”)
• If a particle is identified as a muon, what is the probability it is 

really a muon?
– The answer also depends on the composition of the sample!
– i.e.: the fraction of muons and pions in the overall sample

This example is usually 
presented as an epidemiology 
case. 

Naïve answers about fake 
positive probability are often 
wrong! 
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Fakes and Bayes theorem
• Using Bayes theorem:

– P(μ|+) = P(+|μ) P(μ) / P(+)

• Where our inputs are:
– P(+|μ) = ε = 0.95, P(+|π) = δ = 0.05

• We can decompose P(+) as:
– P(+) = P(+|μ) P(μ) + P(+|π) P(π)

• Putting all together:
– P(μ|+) = ε P(μ) / (ε P(μ) + δ P(π))

• Assume we have a sample made of P(μ)=4% muons
and P(π)=96% pions, we have:
– P(μ|+) = 0.95 × 0.04 / (0.95 × 0.04 + 0.05 × 0.96) ≅ 0.44

• Even if the selection efficiency is very high, the low 
sample purity makes P(μ|+) lower than 50%.

E0

E1

E2

E3

En
...

... ...

...

Ω

A1

A3

A2
An

...

...

...

E0 = ‘+’, Ai= μ, π

Law of total 
probability

normalization
term

+ denotes a positive id
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Before any muon id. information

Muons: P(μ) = 4%

Pions: P(π) = 96%
All particles:
P(Ω) = 100%
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After the muon id. measurement

Muons: P(μ) = 4%

Pions: P(π) = 96%

P(+|μ) = ε = 95% P(−|μ) = 1 − ε = 5%

P(−|π) =1 − δ = 95%

P(+|π) = δ = 5%

P(+) = 8.6% 

P(−) = 91.4% 

Luca Lista GGI Lectures 2023



The same approach to unknowns
• ESP: extra-sensory perception:

Supernatural (?) prediction of a set of 
cards
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50%-50% prior
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Skeptical prior
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Suspicious prior
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Conspiracy theories
• Note that claiming that all scientific 

evidences are fakes is the approach of 
conspiracy theorists

• The main difference is that the prior 
chosen by conspiracy theorists ignore 
most of the evidence in favour of 
fantasy inventions

• Scientific reasoning is closely related to 
the Bayesian approach, provided that 
evidences are not discarded on purpose
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The likelihood function
• In many cases, the outcome of our experiment can be modeled as a 

set of random variables x1, …, xn whose distribution takes into account:
– intrinsic sample randomness (quantum physics is intrinsically random),
– detector effects (resolution, efficiency, …).

• Theory and detector effects can be described according to some 
parameters θ1, ..., θm, whose values are, in most of the cases, unknown

• The overall PDF, evaluated at our observation x1, …, xn, is called 
likelihood function:

• In case our sample consists of N independent measurements (collision 
events) the likelihood function can be written as:
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Bayes rule and likelihood function
• Given a set of measurements x1, …, xn, Bayesian posterior PDF 

of the unknown parameters�θ1, …, θm can be determined as:

• Where π(θ1, …, θm) is the subjective prior probability
• The denominator ∫ L(x, θ ) π(θ ) dmθ is a normalization factor
• The observation of x1, …, xn modifies the prior knowledge of the 

unknown parameters θ1, …, θm
• If π(θ1, …, θm) is sufficiently smooth and L is sharply peaked 

around the true values θ1, …, θm, the resulting posterior will not 
be strongly dependent on the prior’s choice
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Feedbacks and reliability
• The number of positive/negative feedbacks of an online seller 

can be assumed to to follow a binomial distribution
• If a seller has 100% of positive feedbacks (8/8) and another one 

has 97% (97/100), which one is more reliable?
• The posterior a special case of the so-called Beta distribution,

prop to: 𝑝!(1 − 𝑝)!"#:

𝑝 𝑥; 𝛼, 𝛽 =
𝑥$"%(1 − 𝑥)&"%

Γ(𝛼)Γ(𝛽)/Γ(𝛼 + 𝛽)
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Repeated use of Bayes theorem
• Bayes theorem can be applied sequentially for repeated independent

observations (posterior PDF = learning from experiments)

Prior

Conditioned posterior 1

observation 1

Conditioned posterior 2

observation 2

Conditioned posterior 3

observation 3

P0 = Prior

P1 ∝ P0 ⨉ L1

P2 ∝ P1 ⨉ L2 ∝ P0 ⨉ L1⨉ L2

P3 ∝ P0 ⨉ L1⨉ L2⨉ L3

Note that applying Bayes theorem directly
from prior to (obs1 + obs2) leads to the 
same result:

P1+2 = P0 ⨉ L1+2 = P0 ⨉ L1 ⨉ L2 = P2

Composite likelihood = product of 
individual likelihoods
(for independent observations)
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Bayesian inference as learning
• Inference of a Binomial parameter as repeated application of 

Bayes rule for many Bernoulli extractions:
• 1 → 𝑝'(% = 𝑝' × 𝑝
• 0 → 𝑝'(% = 𝑝' × (1 − 𝑝)
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Inference
• Determinig information about unknown 

parameters using probability theory

Theory 
Model Data

Data fluctuate according 
to process randomness

Theory 
Model Data

Inference

Probability

Model parameters uncertainty
due to fluctuations of the data 
sample
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Bayesian inference
• The posterior PDF provides all the information about the 

unknown parameters (let’s assume here it’s just a single 
parameter θ for simplicity)

• Given P(θ |x), we can determine:
– The most probable value 

(best estimate)
– Intervals corresponding to a 

specified probability
• Notice that if π(θ ) is a constant,

the most probable value of θ
correspond to the maximum of 
the likelihood function

p  = 68.3%, as 1σ 
for a Gaussian

δ δ

θ

P(
θ|

x)
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Bayesian inference of a Poissonian
• Posterior PDF, assuming

the prior to be π(s):

• If is π(s) is uniform:

• Note:                   ,
• For n = 0, one may quote an upper 

limit at 90% or 95% CL:
• s < 2.303 (90% CL)
• s < 2.996 (95% CL)

P(
s|n

)

s

n = 5

p  = 15.8%

p  = 15.8%
f(s|n) = max è s = n

P(
s|0

)

s

n = 0

p  = 10%

f(s|0) = e−s

zero observed
events
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Choice of 68% prob. intervals
• Different interval choices are possible, corresponding to the 

same probability level (usually 68%, as 1σ for a Gaussian)
– Equal areas in the right and left tails
– Symmetric interval
– Shortest interval
– …

• Reported as 𝜃 = @𝜃 ± 𝛿 (sym.) or 𝜃 = @𝜃")!
()" (asym.) 

p  = 15.8%

p  = 15.8%

Symmetric intervalEqual tails interval

All equivalent for a 
symmetric distribution
(e.g. Gaussian)

p  = 68.3% p  = 68.3%

δ δ

θθ

P(
θ)

P(
θ)
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Upper and lower limits

p  = 90%

p  = 90%

• A fully asymmetric interval choice is obtained setting one 
extreme of the interval to the lowest or highest allowed range

• The other extreme indicates an upper or lower limits to the 
“allowed” range

• For upper or lower limits, usually a probability of 90% or 95% is 
preferred to the usual 68% adopted for central intervals

• Reported as: θ < θup (90% CL) or θ > θlo (90% CL) 

θθ

P(
θ)

P(
θ)
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Error propagation: Bayesian inference
• Applying a parameter transformation, say η = H(θ), results in a 

transformed central value and transformed uncertainty interval  
• The error propagation can be done transforming the posterior 

PDF, then computing the interval on the transformed PDF:

• Transformations for cases with more than one variable proceed 
in a similar way:

η = H(θ1, θ2) :

η1 = H1(θ1, θ2), η1 = H1(θ1, θ2):
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Choosing the prior PDF
• If the prior PDF is uniform in a choice of variable, it won’t be uniform 

when applying coordinate transformation
• Given a prior PDF in a random variable, there is always a 

transformation that makes the PDF uniform
• The problem is: chose one metric where the PDF is uniform
• Harold Jeffreys’ prior: chose the prior form that is invariant under 

parameter transformation

• Some commonly used cases:
– Poissonian mean:
– Poissonian mean with background b:
– Gaussian mean:
– Gaussian standard deviation:
– Binomial parameter: 

• Problematic with PDF in more than one dimension!

Note: the previous 
simple Poissonian 
example was 
obtained with 
π(μ) = const.!
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Lifetime estimate
𝐿 𝑡%, … , 𝑡# 𝜏 =

1
𝜏#G'*%

#
𝑒"+#/-

• The posterior for 𝜏 is:

𝑝 𝜏 𝑡%, … , 𝑡# =
𝜋 𝜏 𝑒"∑#$"

% +#/-/𝜏#

∫𝜋 𝜏/ 𝑒"∑#$"% +#/-//𝜏/#d𝜏′
• The prior can chosen in a different way:

– Uniform in 𝜏, 𝜋 𝜏 = const.
– Uniform in λ = 1/𝜏, 𝜋 𝜏 = 1/𝜏!

– Jeffrey’s prior, 𝜋 𝜏 = 1/τ
• All choices give as posterior a gamma distribution with different 

parameters (𝑘 = 𝑁, 𝑁 + 2, 𝑁 + 1)
– 𝑝 𝜏 𝑡", … , 𝑡# = 𝐶 𝜏$𝑒% ∑!"#

$ '!/)

• The maximum of the PDF is at 𝜏 = ∑*+"# 𝑡* /𝑘 which is equal to 
𝑁 ̅𝑡/𝑘, that, for large 𝑁, tends to ̅𝑡, regardless of the prior choice.
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Prior dependence: lifetime
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Prior dependence: lifetime
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Prior dependence: lifetime
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Lecture 2
• Law of large numbers and frequentist probability
• Inference with the frequentist approach: coverage
• The maximum likelihood method
• Extended likelihood functions
• Binned and unbinned fits
• Properties of frequentist estimators
• Neyman's confidence interval
• Binomial confidence intervals according to Clopper and Pearson
• Error estimates with the maximum likelihood method
• Issues with asymmetric uncertainties
• Two-dimensional uncertainty contours
• Binned fits: the minimum chi-squared method
• Goodness of the fit with chi-squared test
• Baker-Cousins  binned likelihood ratio fits
• Combination of measurements and the BLUE method



Law of large numbers
• The mean of a large number of random extractions following the 

same distribution tends to the expected value
• This laws assumes an underlying probability model
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• Probability P = frequency of occurrence of an event in 
the limit of very large number (N→∞) of repeated trials

• Exactly realizable only with an infinite number of trials
– Conceptually may be 

unpleasant
– Pragmatically acceptable

by physicists
• Only applicable to

repeatable experiments

Frequentist probability

Probability: P =  lim
Number of favorable cases

N = Number of trialsN→∞
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Large numbers and probability
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Frequentist inference
• Assigning a probability level of an unknown parameter makes 

no sense in the frequentist approach
– Parameters are not random variables!

• A frequentist inference procedure determines a central value 
and an uncertainty interval that depend on the observed 
measurements

• The central value and interval extremes are random variables
• No subjective element is introduced in the determination

• The function that returns the central value given an observed 
measurement is called estimator

• Different estimator choices are possible, the most frequently 
adopted is the maximum likelihood estimator because of its 
statistical properties discussed in the following
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Frequentist coverage
• Repeating the experiment will result 

each time in a different data sample
• For each data sample, the estimator

returns a different central value !𝜃
• An uncertainty interval [ !𝜃 − δ, !𝜃 + δ] 

can be associated to the estimator’s 
value !𝜃

• Some of the confidence intervals 
contain the fixed and unknown true 
value of θ, corresponding to a fraction 
equal to 68% of the times, in the limit 
of very large number of experiments 
(coverage)

#𝜃

True value of θ

R
ep
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te

d 
ex

pe
rim

en
ts
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• An estimator is a function of a given set of 
measurements that provides an approximate value of 
a parameter of interest which appears in our PDF 
model (“best fit”)

• Simplest example:
– Assume a Gaussian PDF with a known σ and an unknown μ
– A single experiment provides a measurement x
– We estimate μ as O𝜇 = x
– The distribution of O𝜇 (repeating the experiment many times) 

is the original Gaussian
– 68.3% of the experiments (in the limit of large number of 

repetitions) will provide an estimate within: μ − σ < O𝜇 < μ + σ
• We can quote:

Frequentist inference:

μ = x ± σ
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Coverage for frequentist inference
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The maximum-likelihood method
• The maximum-likelihood estimator is the most 

adopted parameter estimator 
• The “best fit” parameters correspond to the set of 

values that maximizes the likelihood function
– Good statistical properties (à next slides)

• The maximization can be performed analytically only 
in the simplest cases, and numerically for most of 
realistic cases

• Minuit is historically the most widely used 
minimization engine in High Energy Physics
– F. James, 1970’s; rewritten in C++ and released 

under CERN’s ROOT framework
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Gaussian case
• If we have n independent measurements all modeled with (or 

approximated to) the same Gaussian PDF, we have:

• An analytical minimization of −2ln L w.r.t μ (assuming σ2 is 
known) gives the arithmetic mean as ML estimate of μ:

• If σ2 is also unknown, the ML estimate of σ2 is:

• The above estimate can be demonstrated to have an 
unpleasant feature, called bias (à next slide)

(example of a χ2 variable)
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Some estimator properties
• Consistency: for large number of measurements the estimator 

@𝜃 should converge, in probability, to the true value θ.
– ML estimators are consistent

• Bias: the bias of a parameter is the average value of its 
deviation from the true value

– ML estimators may have a bias, but the bias decreases with large 
number of measurements (if the fit model is correct…!)

– E.g.: in the case of the estimate of a Gaussian’s σ2, the unbiased
estimate is the well known: 

ML method
underestimates
the variance σ2
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Efficiency of an estimator
• The variance of any consistent estimator is subject a lower 

bound (Cramér-Rao bound):

𝕍 @𝜃 ≥
1 + 𝜕𝑏 𝜃𝜕𝜃

0

𝔼 𝜕0𝑙𝑛𝐿 𝜃
𝜕𝜃0

0 =
1 + 𝜕𝑏 𝜃𝜕𝜃

0

𝔼 −𝜕
0𝑙𝑛𝐿 𝜃
𝜕𝜃0

= 𝑉12

• Efficiency can be defined as the ratio of Cramér-Rao bound 
and the estimator’s variance:

𝜀 @𝜃 =
𝑉12

𝕍ar @𝜃
• Efficiency for ML estimators tends to 1 for large number of 

measurements
lim
:→<

𝕍 !𝜃 = −
1

𝔼 𝜕=𝑙𝑛𝐿 𝜃
𝜕𝜃=

= ≅ −
1

\𝜕0𝑙𝑛𝐿 𝜃
𝜕𝜃0 3*43

– I.e.: ML estimates have, asymptotically, the smallest possible 
variance

Fisher information

bias of θ
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Approx. maximum likelihood errors
• A parabolic approximation of −2ln L around the 

minimum is equivalent to a Gaussian approximation
– Sufficiently accurate in many but not all cases

• Estimate of the covariance matrix from 2nd order 
partial derivatives w.r.t. fit parameters at the 
minimum:

• Implemented in Minuit as MIGRAD/HESSE function
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Asymmetric errors
• Another approximation alternative to the parabolic one may be 

to evaluate the excursion range of -2ln L.
• Error (nσ) determined by the range around the maximum for 

which -2ln L increases by +1 (+n2 for nσ intervals)

θ

-2lnL

-2lnLmax

-2lnLmax+ 1

#𝜃 #𝜃 + δ+#𝜃 – δ−

• Errors can be 
asymmetric

• For a Gaussian PDF 
the result is identical 
to the 2nd order 
derivative matrix

• Implemented in 
Minuit as MINOS 
function

1
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Measure a particle’s lifetime
• The probability distribution for a single measurement is:

𝑝 𝑡; 𝜏 =
1
𝜏 𝑒

%'/)

• And the likelihood function is

𝐿 𝑡", … , 𝑡,; 𝜏 =
1
𝜏, @

*+"

,
𝑒%'!/)

• Minimization gives:

𝜏̂ =
1
𝑛C*+"

,
𝑡*

• Which is clearly unbiased
• The distribution of 𝜏̂ is a gamma distribution scale parameter 𝜏 and 

shape parameter 1:

𝑝 𝜏̂ = 𝜏̂!,𝑒%
-)
)/(𝜏!, 2𝑛 − 1 !)

• With uncertainty given by the square root of the variance equal to: 
𝜎-) = 𝜏/ 𝑛

• This is also equal to the Cramer-Rao bound
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ML uncertainty estimate
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−2lnL

θ
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2D intervals

x

y

1σ

2σ

1σ2σ

Width P1D P2D

1σ 0.6827 0.3934

2σ 0.9545 0.8647

3σ 0.9973 0.9889

1.515σ 0.6827

2.486σ 0.9545

3.439σ 0.9973

• In more dimensions one can determine 1σ and 2σ contours 
• Note: different probability content in 2D compared to one dimension
• 68% and 95% contours are usually preferable
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In more dimensions
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Extended likelihood function
• Given a sample of N measurements of the variables (x1, …, xn), 

the likelihood function expresses the probability density of the 
sample, as a function of the unknown parameters:

• If the size N of the sample is also a random variable, the 
extended likelihood function is usually also used:

• Where P(N; θ1, ... ,θm) is in practice always a Poisson distribution 
whose expected rate is a function of the unknown parameters

• In many cases it is convenient to use –ln L or –2ln L: 
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Extended likelihood function
• For Poissonian signal and background processes:

• We can fit simultaneously s, b and θ minimizing:

• Sometimes s is replaced by μ s0, where s0 is the 
theory estimate and μ is called signal strength 

constant!
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Example of ML fit
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• Ps(m): Gaussian peak
• Pb(m): exponential shape

Exponential decay parameter λ, 
Guassian mean μ and standard 
deviation σ can be fit together 
with sig. and bkg. yields s and b.

The additional 
parameters, beyond the 
parameters of interest
(s in this case), used to 
model background, 
resolution, etc. are 
examples of nuisance 
parameters

Data

In the plot, data are 
accumulated into bins of 
a given width

Error bars usually 
represent uncertainty on 
each bin count (in this 
case: Poissonian)
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Neyman’s confidence intervals

• Scan the allowed range of an 
unknown parameter θ

• Given a value of θ compute 
the interval [x1, x2] that contain 
x with a probability 1 − α equal 
to 68% (or 90%, 95%) 

• Choice of interval needed!
• Invert the confidence belt: for 

an observed value of x, find 
the interval [θ1, θ2]

• A fraction of the experiments 
equal to 1 − α will measure x
such that the corresponding 
[θ1, θ2] contains (“covers”) the 
true value of θ (“coverage”)

• Note: the random variables 
are [θ1, θ2], not θ !

Plot from PDG statistics review
Procedure to determine 
frequentist confidence intervals

α = significance level
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Simplest example: Gaussian case

x

μ
• Assume a Gaussian 

distribution with 
unknown average μ
and known σ = 1

• The belt inversion is 
trivial and gives the 
expected result:
Central value 𝜇̂ = x ,
[μ1, μ2] = [x − σ, x + σ]

• So we can quote:
1 − α = 68%

𝜇 = x ± σ
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Binomial intervals
• The Neyman’s belt construction may only guarantee approximate 

coverage in case of discrete variables
• For a Binomial distribution: find the interval {nmin, …, nmax} such that:  

• Clopper and Pearson (1934) solved the belt 
inversion problem for central intervals

• For an observed n = k, find lowest plo and 
highest pup such that:

• P(n ≤ k | N, plo)  = α/2,  P(n ≥ k | N, pup)  = α/2
• E.g.: n = N = 10, P(N|N) = pN = α/2, hence:

plo = #% 𝛼/2 = 0.83 (68% CL), 0.74 (90% CL)
• A frequently used approximation, which  

fails for n = 0, N is:
n

p
N = 10

1 − α = 68%

p = 0.83

p = 0.17
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Clopper-Pearson coverage (I)
• CP intervals are often defined as “exact” in literature
• Exact coverage is often impossible to achieve for 

discrete variables

p

P 
(c

ov
er

ag
e)

1 − α = 68%

N = 10
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Clopper-Pearson coverage (II)
• For larger N the “ripple” gets closer to 

the nominal 68% coverage

p

P 
(c

ov
er

ag
e)

1 − α = 68%

N = 100
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Coverage for discrete variables
• Note: if the true value is 𝑝 = 0 (similarly for 𝑝 = 1), 

the observed value is always 𝑛 = 0, therefore the 
confidence interval is [0, 𝑝𝑢𝑝[

• The true value is therefore contained in the 
confidence interval with 100% probability instead of 
68% (or 90%, or whatever)

• This is against the definition of frequentist coverage, 
but it is unavoidable for discrete variable

• This feature is typical of cases with low number of 
counts, for instance, for Poissonian counting 
experiments
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Example of 2D contour
• From previous fit example:

– Ps(m): Gaussian peak
– Pb(m): exponential shape

Exponential decay parameter, 
Gaussian mean and standard 
deviation are fit together with s
and b yields.

The contour shows for this 
case a mild correlation between 
s and b

1σ contour
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Error propagation
• Assume we estimate from a fit the parameter set:

θ = (θ1, …, θn) and we know their covariance matrix Θij

• We want to determine a new set of parameters that are functions of θ: 
η = (η1, …, ηm).

• For small uncertainties, a linear approximation maybe sufficient
• A Taylor expansion around the central values of θ gives, using the error 

matrix Θij:

• Few examples in case of no correlation: 

θ

η

ση

σθ

Luca Lista GGI Lectures 2023



Binned likelihood
• Sometimes data are available as binned histogram

– Most often each bin obeys Poissonian statistics (event counting)

• The likelihood function is the product of Poisson PDFs corresponding to 
each bin having entries ni

• The expected number of entries ni depends on some unknown 
parameters: μi = μi(θ1, …, θm)

• The function to minimize is the following −2 ln L:

• The expected number of entries μi is often approximated by a 
continuous function μ(x) evaluated at the center xi of the bin

• Alternatively, μi can be a combination of other histograms (“templates”)
– E.g.: sum of different simulated processes with floating yields as fit parameters
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Binned fits: minimum 𝜒2
• Bin entries can be approximated by Gaussian variables for 

sufficiently large number of entries with standard deviation equal 
to ni (Neyman’s χ2)

• Maximizing L is equivalent to minimize:

• Sometimes, the denominator ni is replaced (Pearson’s χ2) by:

μi = μ (xi; θ1, …, θm) 

in order to avoid cases with zero or small ni
• Analytic solution exists for linear and other simple problems

– E.g.: linear fit model
• Most of the cases are treated numerically, as for unbinned ML 

fits
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Binned fit example
• Binned fits are convenient w.r.t. 

unbinned fits because the 
number of input variables 
decreases from the number of 
entries to the number of bins

– Usually simpler and faster 
numerically

– Unbinned fits become unpractical 
for very large number of entries

• A fraction of the information is 
lost, hence a possible loss of 
precision may occur for small 
number of entries

• Treat correctly bins with smalll
number of entries! 

Bins with small number of entries!

Gaussian fit (determine yield, μ and σ)

Luca Lista GGI Lectures 2023



Fit quality (𝜒2 test)
• The maximum value of the likelihood function obtained 

from the fit doesn’t usually give information about the 
goodness of the fit

• The 𝜒2 of a fit with a Gaussian underlying model is 
distributed according to a known PDF

– The cumulative distribution of P(χ2; n) follows a uniform distribution 
between 0 and 1 (p-value)

– If the model deviates from the assumed distribution, the distribution 
of the p-value will be more peaked around zero

• Note! p-values are not the “probability of the fit hypothesis”
– This would be a Bayesian probability, with a different meaning, and 

should be computed in a different way

n is the number of
degrees of freedom
(n. of bins − n. of params.)
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Binned likelihood ratio
• A better alternative to the (Gaussian-inspired, Neyman and 

Pearson’s) 𝜒2 has been proposed by Baker and Cousins using 
the following likelihood ratio:

• Same minimum value as from Poisson likelihood function, since 
a constant term has been added to the log-likelihood function

• In addition, it provides goodness-of-fit information, and 
asymptotically obeys chi-squared distribution with n − m
degrees of freedom
(Wilks’ theorem, see following slides)

S. Baker, R. Cousins NIM 221 (1984) 437
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Combining measurements
• Assume two measurements with different 

uncorrelated (Gaussian) errors:

• Build the 𝜒2:

• Minimize the 𝜒2:

• Estimate m as:

• Error estimate:

Weighted 
average,
wi = σi−2
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Combining correlated measurements
• Correlation coefficient 𝜌 ≠ 0:

• Build 𝜒2 including correlation terms:

• The 𝜒2 minimization gives:

a.k.a “BLUE”:
Best Linear Unbiased Estimator
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Correlated errors
• The “common error” σC is defined as:
• Using error propagation, this also implies that:

• The previous formulas can be written as a weighted average:

Note: 
weights may 
be negative!
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Top-quark mass combination
• World average of top-quark mass measurements combined with BLUE
• Outdated by more recent measurements: determining and agreeing on 

all uncertainty contributions and correlation is a complex procedure and 
takes time…
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Generalization of 𝜒2 to n dimensions
• We have n measurements, (m1, …, mn) with a n ⨉ n

covariance matrix (Cij)
• Expected values for m1, …, mn, M1, …, Mn may 

depend on some theory parameter(s) θ
• The following χ2 can be minimized to have an 

estimate of the parameter(s) θ:
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Global electroweak fit
• A Global 𝜒2 fit to electroweak measurements predicts the W 

mass allowing a comparison with direct measurements

Details on:
http://gfitter.desy.de/Standard_Model/
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More on electroweak fit
• W mass vs top-quark mass from global electroweak fit
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Lecture 3
• Hypothesis testing
• The ROC curve
• The Neyman-Pearson lemma
• Multivariate discrimination
• Projective likelihood ratio
• Fisher discriminant
• Introduction to machine learning
• Artificial Neural Networks
• Boosted decision trees
• The bias-variance tradeoff
• Issues with machine learning: underfitting, overfitting



Hypothesis testing

Theory 
Model 1

Data

Theory 
Model 2

Which hypothesis is the most 
consistent with the experimental 
data?
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Bayesian approach
• Bayesian probability gives meaning to the probability 

that an hypothesis is true:

𝑃 𝐻K 𝑥 =
𝑃(𝑥|𝐻K)𝜋(𝐻K)

𝑃(𝑥)
• The evaluation of 𝑃(𝑥) requires the decomposition 

over all possible hypotheses:
𝑃 𝑥 = 𝑃 𝑥 𝐻L 𝜋 𝐻L + 𝑃 𝑥 𝐻K 𝜋 𝐻K +⋯

• The ratio of probabilities for two hypothesis does not 
depend on 𝑃 𝑥 , and can be computed without 
considering all possible hypotheses:

𝑃(𝐻K|𝑥)
𝑃(𝐻L|𝑥)

=
𝑃(𝑥|𝐻K)𝜋(𝐻K)
𝑃(𝑥|𝐻L)𝜋(𝐻L)

Luca Lista GGI Lectures 2023



Bayes factors
• It is possible to introduce Bayes factor:

𝑃(𝐻"|𝑥)
𝑃(𝐻.|𝑥)

= 𝐵"/.(𝑥)
𝜋(𝐻")
𝜋(𝐻.)

• In other words, this defines the posterior odds as a function of prior 
odds:

𝑂"/.(𝑥) = 𝐵"/.(𝑥) 𝑜"/.
• In word:

posterior odds = Bayes factor times prior odds
• Bayes factor can be used to measure how favoured is one hypothesis 

against another, and, in the simplest cases, it is equal to the likelihood 
ratio

• Typical range values are:
– 1-3: very weak evidence
– 3-20: positive evidence
– 20-150: strong evidence
– >150: very strong evidence
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In presence of other parameters
𝑃(𝐻", 𝜃"|𝑥) =

𝑃(𝑥|𝐻", 𝜃")𝜋(𝐻", 𝜃")
𝑃(𝑥)

𝑃 𝐻" 𝑥 =
∫𝑃 𝑥 𝐻", 𝜃" 𝜋 𝐻", 𝜃" d𝜃"

𝑃 𝑥 =
𝜋(𝐻") ∫𝑃 𝑥 𝐻", 𝜃" 𝜋 𝜃"|𝐻" d𝜃"

𝑃 𝑥
• Because one has:

𝜋 𝐻., 𝜃. = 𝜋 𝜃.|𝐻. 𝜋(𝐻.)
𝜋 𝐻", 𝜃" = 𝜋 𝜃"|𝐻" 𝜋(𝐻")

• The Bayes factor should defined as:

𝐵"/. 𝑥 =
𝑃(𝑥|𝐻")
𝑃(𝑥|𝐻.)

• I.e.: it is the ratio of marginal likelihood for 𝑥:

𝐵"/. 𝑥 =
𝑃(𝑥|𝐻")
𝑃(𝑥|𝐻.)

=
∫𝑃(𝑥|𝐻", 𝜃")𝜋(𝜃"|𝐻")d𝜃"
∫𝑃(𝑥|𝐻., 𝜃.)𝜋(𝜃.|𝐻.)d𝜃.
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Simplest case: cut analysis
• Selection (“cut”) on one (or more) variable(s):

– If x ≤ xcut ⇒ signal
– Else, if   x > xcut ⇒ background

xcut x

Efficiency (1 − α)

Mis-id probability (β)
α = area under

the red tail

Test statistic

Luca Lista GGI Lectures 2023



Efficiency vs mis-id
• Varying the applied cut on the test statistic both the 

efficiency and mis-id probability change

Mis-id prob. (β)

Ef
fic

ie
nc

y
(1

 −
 α

)

0 1

1

0

x cut

Sometimes also referred to as ROC curve (Receiver Operating Characteristic)
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Performance comparison
• One test is preferable to another if, for the same level 

of efficiency (1 − α), it has lower mis-id probability (β)

0 1

1

0

x cut
1−α

β βʹ< Mis-id prob. (β)

Ef
fic

ie
nc

y
(1

 −
 α

)

Note: 
sometimes 
ROC curves 
may also 
cross!
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Multidimensional case
• In case of multiple discriminating variables (multivariate), the 

choice of the optimal selection is not always straightforward

x

y

x

y

x

y

Ps(x, y) = Gauss(x; 0, σx) × Gauss(y; 0, σy) , Pb(x, y) = α e−αx × β e−βy

• In many cases it’s convenient to find a single variable (test 
statistic) that ‘summarizes’ all the sample information

Luca Lista GGI Lectures 2023



Terminology
• Statisticians’ terminology is sometimes not very natural for physics applications, 

but it has become popular among physicists as well:

• H0 = null hypothesis
– Ex. 1: “a sample contains only background”
– Ex. 2: “a particle is a pion”

• H1 = alternative hypothesis
– Ex. 1: “a sample contains background + signal”
– Ex. 2: “a particle is a muon”

• Test statistic: a variable computed from our sample that discriminates between the two 
hypotheses H0 and H1. Usually a ‘summary’ of the information available in the sample

• α = significance level: probability to reject H1 if H0is assumed to be true (error 
of first kind, false positive)

– α = 1 – misidentification probability
• β = misidentification probability, i.e.: probability to reject H0 if H1 is assumed 

to be true (error of second kind, false negative)
– 1 – β = power of the test = selection efficiency

• p-value: probability, assuming H0, of observing a result at least as extreme as 
the observed test statistic
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The Neyman-Pearson lemma
• For a fixed significance level (α) or signal efficiency (1 − α), a 

selection based on the likelihood ratio gives the lowest possible 
mis-id probability (β):

• The likelihood function can’t always be determined exactly
• If we can’t determine the exact likelihood function, we can 

choose other discriminators as test statistics that approximates
the exact likelihood

• Neural Networks, Boosted Decision Trees and other machine-
learning algorithms are example of discriminators that may 
closely approximate the performances of the exact likelihood 
ratio approaching the Neyman-Pearson limit
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Multivariate discrimination
• In general, when we consider algorithms that provide a test 

statistic for samples with multiple variables we talk about 
multivariate discriminators
– Simple mathematical algorithms exist, as well as complex 

implementation based on extensive CPU computations
• In general, the algorithms are ‘trained’ using input samples 

whose nature is known (training samples)
– I.e.: where H0 or H1 is know to be true
– Example: use data samples simulated with computer algorithms 

(Monte Carlo)
• Some of the most common problems:

– The size of samples is finite, hence the true distributions for the 
considered hypotheses can’t be determined exactly

– The distribution of the input samples does not reproduce exactly 
the true distribution of real data (e.g.: systematic uncertainties)
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Projective likelihood ratio
• The likelihood function is approximated by the product of 

projective PDF in each variable

• Exact only in case of independent variables
• The approximation may be improved if the variables are first 

rotated in order to eliminate correlation (principal component 
analysis)
– Find eigenvectors of the covariance matrix
– Note: uncorrelated variables are not necessarily independent

x1, …, xn approximately 
considered independent 

variables
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Fisher discriminant
• Linear combination of input variables that 

maximizes the distance of the means of the 
two classes while minimizing the variance
projected along a direction w:

Sir Ronald Aylmer Fisher 
(1890-1962) 

• The selection is achieved by requiring J(w) > Jcut, 
which determines an hyperplane perpendicular to w
that separates the two samples

• The maximization problem can be solved 
analytically using linear algebra 

Luca Lista GGI Lectures 2023



Fisher discriminant

Projections along different 
directions achieve different 
overlap level

Maximum separation 
achieved by maximizing 
Fisher discriminant
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Artificial Neural Networks
• Artificial simplified model of how neuron cells work: 

multilayer perceptron
Input layer

Output layer
Hidden layers

x1

x2

x3

xp

…

y

w11(1)

w12(1)

w1p(1) w1p(2)
w2p(3)

w11(2)

w12(2) w11(3)

w12(3)

φ(ν)

ν

φ(ν) = Activation function
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Network training
• Find the optimal set of network parameters wij

(n) that minimize the “loss 
function” defined on a set of N training events:

𝐿 𝑤 =C
*+"

#

(𝑦*'/01 − 𝑦(𝑥⃗*))!

• Variation of loss function are also used, like cross-entropy, adopted 
more for binomial models with parameter 𝑝* = 𝑦*'/01:

𝐿 𝑤 = − log @
*+"

#

𝑦(𝑥⃗*)2!
&'()

(1 − 𝑦 𝑥⃗* )"%2!
&'()

=

= −C
*+"

#

𝑦*'/01log 𝑦 𝑥⃗* − 1 − 𝑦*'/01 log(1 − 𝑦 𝑥⃗* )

• Where yitrue = 1 for signal (H1), 0 for background (H0)
• Usually achieved with stochastic gradient descent:

weights are modified for each training event (back propagation):

𝑤*3 → 𝑤*3 − 𝜂
𝜕𝐿(𝑤)
𝜕𝑤*3
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ANN and function modeling
• Artificial neural network with a single hidden layer may 

approximate any analytical function within a given approximation 
if the number of neurons is sufficiently high

• Demonstration in: 
– H. N. Mhaskar, Neural Computation, Vol. 8, No. 1, Pages 164-177 

(1996), Neural Networks for Optimal Approximation of Smooth and 
Analytic Functions:

“We prove that neural networks with a single hidden layer are capable of 
providing an optimal order of approximation for functions assumed to 
possess a given number of derivatives, if the activation function evaluated 
by each principal element satisfies certain technical conditions”

• Anyway, the finite number of layer may lead to reaching this 
goal only approximately

• Deep learning: networks with several hidden layers
– Can manage complex variables combinations, e.g.: exploiting 

invariant mass distributions using four-vectors as input!
– Almost untreatable in the past, a lot of progress has been done 

recently, with better training algorithms and more easily available 
CPU power
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Fit seen as machine learning
• Let us take a polynomial fit of a points whose 

true model is not known
• The degree of the polynomial, i.e.: the 

number of parameter, can be chosen 
arbitrarily and determines the complexity of 
the model, and how it can flexibly adapt to the 
data

• By varying the number of parameter, one 
may improve the agreement of the fit curve to 
data at the cost of introducing a larger 
variance 
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Fit seen as machine learning
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Bias variance decomposition
• Mean squared error:

𝜀^ =
1
𝑁
)
_`a

b

𝑦_∗ − ,𝑓(𝑥_)
^

• By increasing the number of parameters, the 
mean squared error decreases for the fit 
sample, but may increase for independently 
extracted samples

• The fit follows the fluctuations in data more 
closely than the original distribution, that is 
not known (overfitting)
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Bias variance decomposition
• Expected mean squared error:

𝜀0 = 𝔼
1
𝑁
d
'*%

#

𝑦'∗ − @𝑓(𝑥')
0

• It is possible to demonstrate that the following decomposition 
holds, if we use the notation @𝜃 = @𝑓(𝑥'), 𝜃∗ = 𝑦'∗:

𝜀0 = 𝕍ar @𝜃 + 𝔹ias @𝜃
0
+ 𝕍ar 𝜃∗

• While the intrinsic noise of the data 𝕍ar 𝜃∗ can’t be improved 
with the fit, 𝕍ar @𝜃 and 𝔹ias @𝜃 depend on the fit model, i.e.: on 
the number of parameters

• One cannot achieve at the same time optimum variance and 
optimum bias, and a trade off must be chosen
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Overtraining
• Algorithms may learn too much from the training sample, 

exploiting features that are only due to random fluctuations
• Check for overtraining comparing the discriminator’s 

distributions for the training sample and for an independent test 
sample (consistent distributions = no overtraining)

x

y signal

background

x

y signal

background

Luca Lista GGI Lectures 2023



Decision Trees
• Cuts are applied sequentially
• Each cut splits the sample into 

nodes
– Nodes where signal or background is 

largely dominant are classified as leafs
• Alternatively: stop splitting if too few events per 

note, total number of nodes too high, …
– One branch = one sequence of cuts

• Cuts can be optimized to achieve 
the best split level: maximize for 
each node the gain of Gini index:

G = P(1 − P)

• Alternative metrics exist
Leaf

Leaf

Leaf

Leaf

Branch

Branch

Branch

Decision tree

P = node purity

G = 0 for nodes 
with all S or all 
B events

Gain = 
NparentGparent−Nleft ch.Gleft ch.−Nleft ch.Gleft ch.

E.g.: cross entropy = −(P lnP + (1−P) ln(1−P)), …
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From trees to forests
• A single tree tends to adapt very closely to data, and 

performances are usually not very satisfactory
• It may easily provide overtraining if the tree is too 

deep
• It means: it has large variance, but in general low 

bias
• Combining many independent trees may reduce the 

variance
• Random forests are algorithms that combine many 

different trees and provide as output the combination 
of individual results
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Boosted Decision Trees
• Combine a large number of decision trees (forest) using 

different weights. Usually: 𝓞(1000) trees used
• More performant and stable than a single optimized tree
• Boosting achieved by iteratively reweighting training sample 

according to classifier output in previous iteration

1. Reweight events using previous iteration’s classifier result
2. Build and optimize a new tree with reweighted events 
3. Give a score to each tree
4. The final BDT classifier result is the weighted average over all 

trees, using the given scores as weights:
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Adaptive boosting
• Misclassified events are reweight according to the 

fraction of classification errors of the previous tree:

• Also use (log of) misclassification fraction as score 
for each tree:

• Next iteration will better perform on events poorly 
classified in the previous iteration

• Further variations and more algorithms available
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Extreme Gradient Boost
• Introducing a loss function for decision trees allows to use 

stochastic gradient descent algorithms
• Moreover, it also allows to use decision trees for regression, not 

only for classification 
• The output of a tree can be taken as the index corresponding to 

one of the possible leaves, for a classification problem: 𝑖 = 𝑞(𝑥⃗)
• For regression problems, we can assume that the output of a 

tree is a function of the index: 𝑔 = 𝑤6(9⃗) so that for many trees 
the output is the combination of their outputs:

O𝑦 𝑥⃗ = d
;*%

<

𝑔 ; ( 𝑥⃗) =d
;*%

<

𝑤6(9⃗)
(;)

• The loss function may be the sum of 
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Strongly nonlinear example

x

y
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Linear classifier
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NN, shallow
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NN, middle
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NN, deep
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Random forest
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XGBoost
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Linear classifier
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Chess shape

x

y
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Linear classifier
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NN, shallow
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NN, middle
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NN, deep
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Random forest
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XGBoost
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Intertwained spirals
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Intertwained spirals

x

y
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Linear classifier
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NN, shallow
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NN, middle
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NN, deep
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Random forest
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XGBoost
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Linear classifier
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More machine learning algorithms
• Convolutional neural networks
• Unsupervised learning

– Clustering Anomaly detection
• Autoencoders
• Generative Networks
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Tensor flow playground
• https://playground.tensorflow.org/
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Lecture 4
• Discoveries and significance level
• Upper limits
• The flip-flopping issue and the Feldman-Cousins approach
• Bayesian upper limits for event-counting problems
• Modified frequentist approach: the CLs method
• Treatment of nuisance parameters and systematic uncertainties
• The profile likelihood method
• Applications of Wilks' theorem
• Different test statistics
• Asimptotic approximations and the Asimov dataset
• The look-elsewhere effect
• Understanding the "Brazilian" exclusion plots



Claiming a discovery
• We want to test our data sample against 

two hypotheses about the theoretical 
underlying model:

– H0: the data are described by a model 
that contains background only 

– H1: the data are described by a model 
that contains signal plus background

• Our discrimination is based on a test 
statistic λ whose distribution is known 
under the two hypotheses

– Let’s assume λ tends to have 
(conventionally) large values if H1 is true 
and small values if H0 is true

– This convention is consistent with λ
being the likelihood ratio L(x|H1)/L(x|H0)

• Under the frequentist approach, 
compute the p-value as the probability 
that λ is greater or equal to than the 
value λobs we observed

m
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Are data below more consistent 
with a background fluctuation 
or with a peaking excess?
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Significance
• The p-value is usually converted into an 

equivalent area of a Gaussian tail:

• In literature we find, by convention:
– If the significance is Z > 3 (“3σ”) one claims “evidence of”

• Probability that background fluctuation will produce a test statistic at least as 
extreme as the observed value : p < 1.349 ⨉ 10−3

– If the significance is Z > 5 (“5σ”) one claims “observation” (discovery!)
• p < 2.87 ⨉ 10−7

• Note: the probability that background produces a large test statistic is 
not equal to probability of the null hypothesis (background only), which 
has only a Bayesian sense

p-value

Z = 
significance 
level

Φ = cumulative of a 
normal distribution 
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Statement by
The p-value was never intended to be a substitute for scientific 
reasoning. Well-reasoned statistical arguments contain much more 
than the value of a single number and whether that number exceeds an 
arbitrary threshold. The ASA statement is intended to steer research 
into a ‘post p < 0.05 era’.
1. p-values can indicate how incompatible the data are with a specified statistical 

model. 
2. p-values do not measure the probability that the studied hypothesis is true, or the 

probability that the data were produced by random chance alone. 
3. Scientific conclusions and business or policy decisions should not be based only 

on whether a p-value passes a specific threshold. 
4. Proper inference requires full reporting and transparency. 
5. A p-value, or statistical significance, does not measure the size of an effect or the 

importance of a result. 
6. By itself, a p-value does not provide a good measure of evidence regarding a 

model or hypothesis. Ronald L. Wasserstein, Nicole A. Lazar
The ASA's statement on p-values: context, process, and purpose
DOI:10.1080/00031305.2016.1154108
http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

“
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Discovery and scientific method
• From Cowan et al., EPJC 71 (2011) 1554:

It should be emphasized that in an actual scientific context, 
rejecting the background-only hypothesis in a statistical 
sense is only part of discovering a new phenomenon. One’s 
degree of belief that a new process is present will depend 
in general on other factors as well, such as the plausibility 
of the new signal hypothesis and the degree to which it can 
describe the data. 
Here, however, we only consider the task of determining 
the p-value of the background-only hypothesis; if it is 
found below a specified threshold, we regard this as 
“discovery”.

“
”Complementary role of Frequentist and Bayesian approaches J
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Upper limits
• Measure the amount of excluded region resulting from our 

(negative) search for a new signal

,θ
 =

 s

xmin ≤ x ≤ ∞

0
≤ 

s≤
 su
p

• Building a fully asymmetric Neyman
confidence belt based on the 
considered test statistic x

• Invert the belt, find the allowed 
interval:

s ∈ [s1, s2] ⇒ s ∈ [0, sup]
• Upper limit = upper extreme of the 

asymmetric interval [0, sup]
• In case the observable x is discrete

(e.g.: the number of events n in a 
counting experiments), the 
coverage may not be exact
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The flip-flopping issue
• When to quote a central value or upper limit?
• A popular choice was:

– “Quote a 90% CL upper limit
of the measurement if the
significance is below 3σ; 
quote a central value otherwise”

– Upper limit ↔ central interval
decided according to observed
data

• This produces an incorrect
coverage!
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“Flip-flopping” with a Gaussian PDF

• Assume a Gaussian with a fixed width: σ = 1

x

μ

3

μ < x + 1.28155

x

90%
x

μ = x ± 1.64485

10% 5%

10%

90%

5%5%

Gary J. Feldman, Robert D. Cousins, Phys.Rev.D57:3873-3889,1998

Coverage is 85% for low μ!
Upper limit

Central interval

3σ threshold

Luca Lista GGI Lectures 2023



Likelihood ratio & Neyman belt
• Feldman and Cousins proposed a criterion to define 

the Neyman belt based in a likelihood ratio test:

• The value kα depends on the desired significance 
level α

x

L(
x|θ

0)
1-α

L(
x|θ

0)
/L

(x
| 𝜃

(x
))

Rμ = {x : L(x|θ0) / L(x| -𝜃) > kα}

• H0: θ = !𝜃, the best-fit value
• H1: θ = θ0, the specific value 

considered for the Neyman
belt construction
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Feldman-Cousins approach
• Application to the Gaussian case:

x

μ

O𝜇 = max(x, 0)

Asymmetric errors

Upper limits

Usual errors 

Confidence intervals must be 
computed numerically, even for this 
simple Gaussian case!

𝜇̂ = x for x ≥ 0
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Upper limits for event counting
• The simplest search for a new signal consists of 

counting the number of events passing a specified 
selection

• The number of selected events n is distributed 
according to a Poissonian distribution

• Expected n for signal + background (H1): s + b
• Expected n for background only (H0): b

• We measure n events, we want to compare with the 
two hypotheses H1 and H0.

• Simplest case: b is known with negligible uncertainty
– If not, uncertainty on its estimate must be taken into account
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Counting, Bayesian approach
• Let’s assume the background b is known with no uncertainty:

• A uniform prior, π(s) = 1 simplifies, as usual, the computation:

• Inverting the equation gives the 
upper limit sup

• For n = 0 sup does not depend on b:

– s < 2.303 (90% CL) ← α = 0.1
– s < 2.996 (95% CL) ← α = 0.05
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Counting, Bayesian approach
• Upper limits decrease as b increases and increase as n

increases
• For n = 0, upper limits are not sensitive on b (given in prev. slide)

O. Helene. NIMA 212 (1983) 319

sup

n

sup

n

b b
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Frequentist: zero events selected
• Assume we have negligible background (b = 0) and we measure zero 

events (n = 0)
• The likelihood function simplifies as:

• The (fully asymmetric) Neyman belt inversion is pretty simple:

• The results are by chance identical to the Bayesian computation:
s < 2.303 (90% CL) ← α = 0.1
s < 2.996 (95% CL) ← α = 0.05

• In spite of the numerical coincidence, the interpretation of frequentist 
and Bayesian upper limits remain very different!

• Warning: this evaluation suffer from the “flip-flopping” problem, so the 
coverage is spoiled if you decide to switch from upper limit to a central 
value depending on the observed significance!
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Conting, Feldman-Cousins
• F&C intervals cure the flip-

flopping issue and ensure the 
correct coverage

– May overcover for discrete 
variables

• The “ripple” structure is due 
to the discrete nature of 
Poissonian counting

• Note that even for n = 0 the 
upper limit decrease as b
increases (apart from ripple 
effects)

• If two experiment are 
designed for an expected 
background of –say– 0.5 and 
0.01, the “worse” one has the 
best expected upper limit

G.Feldman, R.Cousins PRD57 (1998) 3873
C. Giunti, PRD59 (1999), 053001

sup

b

α = 0.1
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From PDG Review…
• “The intervals constructed according to the 

unified procedure [FC] for a Poisson variable n
consisting of signal and background have the 
property that for n = 0 observed events, the upper 
limit decreases for increasing expected 
background. This is counter-intuitive, since it is 
known that if n = 0 for the experiment in question, 
then no background was observed, and therefore 
one may argue that the expected background 
should not be relevant. The extent to which one 
should regard this feature as a drawback is a 
subject of some controversy”
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Modified frequentist approach
• A modified approach was proposed for the first time when combining 

the limits on the Higgs boson search from the four LEP experiments, 
ALEPH, DELPHI, L3 and OPAL

• Given a test statistic λ(x), determine its distribution for the two 
hypotheses H1(s + b) and H0(b), and compute:

𝑝nop = 𝑃 𝜆 𝑥 𝐻a ≤ 𝜆qrs

𝑝p = 𝑃(𝜆 𝑥 𝐻t ≥ 𝜆qrs)

• The upper limit is computed, instead of requiring 
ps+b ≤ α, on the modified statistic CLs ≤ α:

• Since 1−pb ≤ 1, CLs ≥ ps+b, hence
upper limits computed with the 
CLs method are always conservative 

ps+b

−2 ln λ

pb

Note: 𝜆 ≤ 𝜆&'( implies −2ln𝜆 ≥ 𝜆&'(
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CLs with toy experiments
• In practice, pb and ps+b are computed in from 

simulated pseudo-experiments (“toy Monte Carlo”)

−2 ln λ

Plot from LEP Higgs combination paper
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Main CLs features
• ps+b: probability to obtain a result which is less 

compatible with the signal than the observed 
result, assuming the signal hypothesis

• pb: probability to obtain a result less compatible
with the background-only hypothesis than the 
observed one

• If the two distributions are very well separated 
ad H1 is true, than pb will be very small ⇒
1-pb ~ 1 and CLs ~ ps+b, i.e: the ordinary p-value 
of the s+b hypothesis

• If the two distributions largely overlap, than if pb
will be large ⇒ 1 - pb small, preventing CLs to 
become very small

• CLs < 1 − α prevents rejecting 
cases where the experiment 
has little sensitivity 

−2ln λ

exp.
for b

exp.
for s+b

pb ~ 0 ps+b ~ CLs

−2ln λ

exp.
for b

exp.
for s+b

pb ~ 1 ps+b < CLs
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Event counting with CLs
• Let’s consider the previous event counting experiment, using 

n = nobs as test statistic
• In this case CLs can be written as:

• Explicitating the Poisson distribution, the computation gives the 
same result as for the Bayesian case with a uniform prior

• In many cases the CLs upper 
limits give results that are very
close, numerically, to Bayesian
computations done assuming a
uniform prior

• But the interpretation is very
different from Bayesian limits!
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Observations on the CLs method
• “A specific modification of a purely classical statistical 

analysis is used to avoid excluding or discovering signals 
which the search is in fact not sensitive to”

• “The use of  CLs is a conscious decision not to insist on 
the frequentist concept of full coverage (to guarantee that 
the confidence interval doesn’t include the true value of the 
parameter in a fixed fraction of experiments).”

• “confidence intervals obtained in this manner do not have 
the same interpretation as traditional frequentist 
confidence intervals nor as Bayesian credible intervals”

A. L. Read, Modified frequentist analysis of search results 
(the CLls method), 1st Workshop on Confidence Limits, CERN, 2000
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Nuisance parameters
• Usually, signal extraction procedures (fits, upper limits setting) 

determine, together with parameters of interest, also nuisance 
parameters that model effects not strictly related to our final 
measurement
– Background yield and shape

parameters
– Detector resolution
– ...

• Nuisance parameters are also used
to model sources of systematic
uncertainties

• Often referred to nominal values
– Examples:
– b = β σb Lint with βnominal = 1
– b = eβ σb Lint with βnominal = 0

(negative yields not allowed!)
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Nuisance pars in Bayesian approach

• Notation below: μ = parameter(s) of interest, 
θ = nuisance parameter(s)

• No special treatment:

• P(μ|x) obtained as marginal PDF of μ obtained 
integrating on θ:
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Nuisance pars., frequentist
• Introduce a complementary dataset to constrain the nuisance 

parameters θ (e.g.: calibration data, background estimates from 
control sample…)

• Formulate the statistical problem in terms of both the main data 
sample (x) and the control sample (y)

• Not always the control sample data are available
– E.g.: calibration from test beam, stored in different formats, control 

samples analyzed with different software framework…
– In some cases may be complex and CPU intensive

• Simplest case; assume known PDF for “nominal” value of θnom
(e.g.: estimate with Gaussian uncertainty)
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Fitting control regions
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constrained from statistically independent control 
samples

– Consider possible signal contamination!
• Background yield can be measured in 

background-enriched regions and extrapolated to 
signal regions applying scale factors predicted by 
simulation

• Complete likelihood function = product of 
likelihood functions in each considered regions, 
sharing common nuisance parameters

– Typically: background rates
Measurement of single-top production at LHC

Signal region:
two jets, one b tagged

t ̅t enriched region:
one extra jet required

W+jets enriched region
no b-tagged jet
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Cousins-Highland hybrid approach
• Method proposed by Cousins and Highland

– Add posterior from another experiment into the likelihood definition
– Integrate the likelihood function over the nuisance parameters

• Also called “hybrid” approach, because a partial Bayesian 
approach is implicit in the integration

– Bayesian integration of PDF, then likelihood used in a frequentist way
• Not guaranteed to provide exact frequentist coverage!
• Numerical studies with pseudo experiments showed that 

the hybrid CLs upper limits gives very similar results to 
Bayesian limit assuming a uniform prior

NIM A320 (1992) 331-335
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Profile likelihood
• Define a test statistic based on a likelihood ratio:

• μ is usually the “signal strength” (i.e.: σ/σth) in case of a search 
for a new signal

• Different ‘flavors’ of test statistics
– E.g.: deal with unphysical μ < 0, …

• The distribution of qμ = −2 ln λ(μ) may be asymptotically 
approximated to the distribution of a χ2 with one degree of 
freedom (one parameter of interest = μ) due to the Wilks’ 
theorem
(à next slide)

Fix μ, fit θ

Fit both μ and θ
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Wilks’ theorem (1938)
• Consider a likelihood function from N measurements:

• Assume that H0 and H1 are two nested hypotheses, i.e.: they can be 
expressed as:

• Where Θ0 ⊆ Θ1. Then, the following quantity for N→∞ is distributed as a 
χ2 with n.d.o.f. equal to the difference of Θ0 and Θ1 dimensionality: 

• E.g.: searching for a signal with strength μ,  H0: μ = 0, H1: μ ≥ 0 we have 
the profile likelihood (supremum = best fit value):
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Systematic uncertainties
• Gaussian signal over an exponential 

background
• Fix all parameters from theory 

prediction, fit only the signal yield
• Assume a –say– 30% uncertainty on 

the background yield
• A log normal model may be assumed to 

avoid unphysical negative yields
– b0 = b eβ, where our estimate β is known 

with a Gaussian uncertainty σβ = 0.3
b0 = true 
(unknown) 
value
b = our 
estimate
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Systematic uncertainties
• The profile likelihood shape is broadened, with 

respect to to the usual likelihood function, due to the 
presence of nuisance parameter β (loss of 
information) that model systematic uncertainties

• Uncertainty on s increases
• Significance for 

discovery using s as
test statistic decreases No bkg uncertainty

With 30% bkg uncert.

This implementation is based
on RooStats, a package, released
as optional library with ROOT
http://root.cern.ch
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Significance evaluation
• Assume μ = 0, if q0= −2 ln λ(0) can be approximated by a χ2 with 

one d.o.f., then the significance is approximately equal to:
𝑍 ≅ 𝑞=

• The level of approximation can be verified with a computation 
done using pseudo experiments:

• Generate a large number of toy samples with zero background 
and determine the distribution of q0= −2 ln λ(0), then count the 
fraction of cases with values
greater than the measured
value (p-value), and convert
it to Z:

• Toy samples may be unpractical
for very large Z

No bkg uncertainty
With 30% bkg uncert.

𝑍 ≅ 2×6.66 = 3.66

𝑍 ≅ 2×3.93 = 2.81    
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Asymptotic approximations
• Asymptotic approximate formulae exist for most of adopted estimators
• If we want to test μ and we suppose data are distributed according to 

μʹ, we can write:

−2 ln 𝜆 𝜇 =
𝜇 − 𝜇̂ !

𝜎45
! + 𝒪 1/ 𝑁

• where 𝜇̂ is distributed according to a Gaussian with average μʹ and 
standard deviation σ (A. Wald, 1943)

• The covariance matrix can be asymptotically approximated by:

where μʹ is assumed as signal strength value
• Case by case, the estimate of σ (from the inversion of Vij

−1) can be 
determined

A. Wald, Trans. of AMS 54 n.3 (1943) 426-482

G. Cowan et al., EPJ C71 (2011) 1554
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Asymptotic approximations
• Under the true hypothesis 𝜇, 𝜇̂ is distributed around 𝜇

and the test statistic, neglecting the 𝒪 1/ 𝑁 term, is 
distributed according to a 𝜒= with one degree of 
freedom (Wilks’ theorem):

−2 ln 𝜆 𝜇 =
𝜇 − 𝜇̂ =

𝜎de
=

• If 𝜇̂ is distributed around 𝜇f ≠ 𝜇 the distribution of the 
test statistic is a non-central 𝜒=.
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Variations on test statistic
• Test statistic for discovery:

– In case of a negative estimate of μ, set the test statistic to zero: consider 
only positive μ as evidence against the background-only hypothesis. 
Approximately: 𝑍 ≅ 𝑞+.

• Test statistic for upper limits:

– If the estimate is larger than the assumed μ, an upward fluctuation 
occurred. Don’t exclude μ in those cases, hence set the statistic to 
zero

• Higgs test statistic:

As for upper limits statistic

Protect for unphysical μ<0

G. Cowan et al., EPJ C71 (2011) 1554
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LEP, Tevatron, LHC Higgs limits
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Asimov datasets
• Convenient to compute approximate values:

“We define the Asimov data set such that when one uses it
to evaluate the estimators for all parameters, one obtains
the true parameter values”

• Imagine that our only parameter is 𝜇. We would like to
have a dataset where the fit value is the true value 𝜇6.
This can be obtained using as number of counts the
(non-integer) value 𝑛 = 𝜇6𝑠 + 𝑏

• In this case, we have:

−2 ln 𝜆 𝜇 ≅
𝜇 − 𝜇6 !

𝜎45
!

• Therefore we can estimate the variance of 𝜇̂ to be used in Wald’s 
approximation of the test statistic:

𝜎45! ≅ −
𝜇 − 𝜇6 !

2 ln 𝜆 𝜇

G. Cowan et al., EPJ C71 (2011) 1554
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Asimov datasets
• In practice: all observables are replaced with their expected value
• Yields expected values are possibly non integer:

• The variance of the test statistic, in Wald’s approximation, is estimated 
as:

𝜎45! ≅
𝜇 − 𝜇6 !

−2 ln 𝜆7
• Median significance for discovery or exclusion (and their ±1σ bands) 

can be obtained using the Asimov dataset 

G. Cowan et al., EPJ C71 (2011) 1554

For discovery using q0

For upper limit using qμ

Upper limits using qμ
~

In practice: all the 
interesting formulae are 
implemented in RooStats
package, released as 
optional library in ROOT
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The look-elsewhere effect
• Consider a search for a signal peak over a background 

distribution that is smoothly distributed over a wide range
• You could either:

– Know which mass to look at, e.g.: search for a rare decay with a 
known particle, like Bs→μμ

– Search for a peak at an unknown mass value, like for the Higgs 
boson

• In the former case it’s easy to compute the peak significance:
– Evaluate the test statistics for μ = 0 (background only) at your 

observed data sample 
– Evaluate the p-value according to the expected distribution of your test 

statistic q under the background-only hypothesis, convert it to the equivalent 
area of a Gaussian tail to obtain the significance level:
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The look-elsewhere effect
• In case you search for a peak at an unknown mass, the previous p-value has 

only a local meaning:
– Probability to find a background fluctuation as large as your signal or more at a fixed 

mass value m:

– We need the probability to find a background fluctuation at least as large as your signal 
at any mass value (global)

– local p-value would be an overestimate of the global p-value 
• The chance that an over-fluctuation occurs on at least one mass value increases 

with the searched range
• Magnitude of the effect: 

– Roughly proportional to the ratio of resolution over the search range, also depending 
on the significance of the peak

– Better resolution = less chance to have more events compatible with the same mass 
value

• Possible approach: let also m fluctuate in the test statistics fit:

Note: for μ=0
L doesn’t depend on m
Wilks’ theorem doesn’t apply
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• The effect can be evaluated with brute-force Toy Monte Carlo:

– Run N experiments with background-only
– Find the maximum ,𝑞 of the test statistic q in the entire search range
– Determine its distribution, hence compute the observed global p-value
– Requires very large toy Monte Carlo samples (5σ: p = 2.87 ⨉ 10−7)

• Approximate evaluation based on local p-value, times correction factors
(“trial factors”, Gross and Vitells, EPJC 70:525-530,2010)

Toy MC
Scaling

𝑁! is the average number of up-crossings of 
the test statistic, can be evaluated at some 
lower reference level (toy MC) and scaled by:

q(m) 4𝑞

q

f(q|μ=0)
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Practical application
• Higgs search at ATLAS
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Practical application
• Use the number of 𝜎s 𝑍 as test statistic: 𝑢 = 𝑍0 behaves as a 

chi-square
• Use the 0𝜎 level (𝑝 = 0.5) as level 𝑢=, then extrapolate to the 

minimum p value, where 𝑍 ≅ 5, i.e.: 𝑢 = 𝑍0 ≅ 50 = 25
• The number of upcrossing can be counted from the plot, and is 

equal to 𝑁= = 9, which allows us to estimate: 𝑁= = 9 ± 3
• Estimate the global p-value

as: 

• 𝑝>?@A ≅ 𝑁B + %
0
𝑃 𝜒0 > 𝑢 ≅ 𝑁B + 3×10"C

• 𝑁B ≅ 𝑁= 𝑒"(D
!"=!)/0

• 𝑁B ≅ (9 ± 3)𝑒"0D/0 ≅ (3 ± 1)×10"D

• 𝑝>?@A ≅ 3×10"D + 3×10"C ≅ 3×10"D ⟹ 𝑍 ≅ 4𝜎 instrad of 5𝜎
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Putting all together
• Search for Higgs boson in H→4l at LHC
• 1D, 2D, 3D: different test statistics using 4l invariant mass plus 

other discriminating variables based on the event kinematics
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Higgs exclusion
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“The modified frequentist construction CLs is adopted as the 
primary method for reporting limits. As a complementary 
method to the frequentist construction, a Bayesian approach 
yields consistent results.”

Agreed statistical procedure described in:
ATLAS and CMS Collaborations,
LHC Higgs Combination Group
ATL-PHYS-PUB 2011-11/CMS NOTE 
2011/005, 2011. 
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