ExAmple Holographic two-polnt function see e.f. Kisitsis "String theory in a nutshell" ch. 14.8 or Ammon, Erdmenger "Gangel Gravity duality" ch.s.4-5.5

$$
\left\langle\Theta\left(x_{1}\right) \vartheta\left(x_{2}\right)\right\rangle_{\text {Vacuum }}
$$

of $\Omega \mathrm{w} / \Delta$
massive bulk scaler Φ $\omega / m^{2} R^{2}=\Delta(\Delta-d)$
$E A d S_{d+1}: d s^{2}=\frac{R^{2}}{z^{2}}\left(d z^{2}+d x^{2}\right) ; \quad d x^{2}=\delta_{\mu} d x \rho d x^{\nu}$ + for simplicity $R=1$.
To compute the 2ptfat (2 functional derivatives wort the source), we cen neglect interactions and only keep terms that are quadratic in the Euclidean action:

$$
S_{E}=\frac{1}{2} \int d^{d} x d z \sqrt{g}\left(g^{m N} \partial_{m} \Phi \partial_{N} \Phi+m^{2} \Phi^{2}\right)
$$

$\Rightarrow \operatorname{EOM}$ ($K G$ in GAdS) : for the Fourie trensfacm $\Phi(z, k)$

$$
z^{2} \partial_{z}^{2} \Phi-(d-1) z \partial_{t} \Phi-z^{2} k^{2} \Phi-m^{2} \Phi=0
$$

This wan be solvedexectly -
N.B. This is not always possible - The general method uses a perturbative andysis close to the boundary, expanding Φ in powers of $z \rightarrow 0$ and solving the eq. iteratively order by order-

In this case the solutions are (MODIFIED) BESSEL FATs:

$$
\begin{aligned}
& \Phi_{c}(t, k)=C_{1}(k) z^{d / 2} K_{\nu}(|k| z)+C_{2}(k) z^{d / 2} I_{\nu}(|k| z) \\
& w / \quad|k|=\sqrt{\delta_{\mu \nu} k \mu k^{v}}
\end{aligned}
$$

- $z \rightarrow \infty$ (AdS interior) since in Euclidean $|K| \geqslant 0$

$$
\Phi_{c}(z, k) \sim C_{1}(k) z^{\frac{d-1}{2}} e^{-z}+C_{2}(k) z^{\frac{d-1}{2}} \underbrace{e^{z}}_{\text {diverges! }}
$$

Requiring regularity in the interior (the saddle gt carnot be singular, otherwiscit would not contribute to the path integer)

$$
\Longrightarrow C_{2}(k)=0 \quad \forall k
$$

OBS In lorentzian, the two solutions oscillate in the interior and we can consider a linear combination of the two -

- $z \rightarrow 0 \quad$ (AdS boundary)

$$
\begin{aligned}
& \Phi_{c}(z, k) \sim C_{1}(k) z^{\frac{d}{2}-v}=C_{1}(k) z^{d-\Delta} \\
& \Longrightarrow C_{1}(k)=\phi(k) \quad \text { body value and } \\
& \text { Source for } \theta
\end{aligned}
$$

In word. space:

$$
\Phi_{c}(z, x) \sim \phi(x) z^{d-\Delta} \quad w / \quad m^{2}=\Delta(\Delta-d)
$$

Let's rewrite the entire sol. explicitly in terns of $\phi(x)$ (arbitrary fat on \mathbb{R}^{d})
To do it, def: BuLk To Boundary Propagator $\phi(x)$ which propagates the field in the bulk from its asymptotic value-

Is is def as:

$$
\left\{\begin{array}{l}
\left(\square-m^{2}\right) K\left(\frac{z, x ;}{} x^{\prime}\right)=0 \\
\lim _{z \rightarrow 0} z^{\Delta-d} K\left(z, x ; x^{\prime}\right)=\delta^{d}\left(x-x^{\prime}\right)
\end{array}\right.
$$

\Rightarrow allows to write:

$$
\begin{aligned}
& \quad \Phi_{c}(z, x)=\int_{\partial A d S} d^{d} x^{\prime} K\left(z, x ; x^{\prime}\right) \phi\left(x^{\prime}\right) \\
& \Longrightarrow K\left(z, x ; x^{\prime}\right)=C_{\Delta}\left(\frac{z}{z^{2}+\left|x-x^{\prime}\right|^{2}}\right)^{\Delta}(C H E \psi!) \\
& \\
& \omega / C_{\Delta} \equiv \frac{\Gamma(\Delta)}{\pi^{d / 2} \Gamma\left(\Delta-\frac{d}{2}\right)}-
\end{aligned}
$$

Given $\Phi_{c}(z, x)$ as a fact of PCs $\phi(x)$, we evaluate the on-shell action:

$$
\begin{aligned}
& S_{E}\left[\Phi_{c}\right]=\frac{1}{2} \int d^{d} x d z \sqrt{\delta}\left(\delta^{\mu N} \partial_{M} \Phi_{c} \partial_{N} \Phi_{c}+m^{2} \Phi_{c}^{2}\right) \\
& =\frac{1}{2} \int d^{d} x d z\{-\sqrt{\delta} \Phi_{c}^{\Phi_{c}}(\underbrace{\left(\square-m^{2}\right) \Phi_{c}}_{0 \text { on -shell }}+\partial_{M}\left(\sqrt{\delta} \delta^{M N} \Phi_{c} \partial_{N} \Phi_{c}\right)\} \\
& =\frac{1}{2} \int d^{d} x \underbrace{\left.\sqrt{g} \delta^{t z} \Phi_{c} \partial_{z} \Phi_{c}\right) \underbrace{}_{z=0}}_{\text {regularity in }} \begin{array}{l}
\text { the interior }
\end{array} \\
& =-\frac{1}{2} \int_{z=0} d^{d} x \underbrace{1-d} \Phi_{c} \partial_{z} \Phi_{c}
\end{aligned}
$$

Since $\Phi_{c}^{t=0} \sim z^{d-\Delta}$ at the boundary: the argument of the integral goes like $z^{-\frac{1}{d}+i} z^{d-\Delta} z^{d-\Delta-1}=z^{d-2 \Delta}$ \Longrightarrow diverges for $\Delta>\frac{d}{2}$!
\Rightarrow Introduce a regulator $z=\epsilon$:

$$
\begin{align*}
& \left.S_{E}^{r y}\left[\Phi_{c}\right]\right|_{t=e}=-\frac{1}{2} \int_{z=\epsilon} d^{d} x z^{1-d} \Phi_{c} \partial_{z} \Phi_{c}= \\
& =-\frac{1}{2} \int d^{d} x_{1} d^{d} x_{2} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \int_{z=\epsilon} d^{d} x z^{1-d} \times \\
& \times K\left(z_{1} x_{;} x_{1}\right) \partial_{z} K\left(z_{1} x ; x_{2}\right) \tag{4}
\end{align*}
$$

Use:

$$
K\left(z, x ; x^{\prime}\right) \underset{z \rightarrow 0}{\longrightarrow} z^{d-\Delta} \delta^{d}\left(x-x^{\prime}\right)+z^{\Delta} \frac{C_{\Delta}}{\left|x-x^{\prime}\right|^{2 \Delta}}+\cdots
$$

and observe:

$$
\begin{aligned}
& \int_{z=\epsilon} d^{d} x z^{1-d} K\left(x_{1} z ; x_{1}\right) \partial z K\left(x_{1} ; x_{2}\right)= \\
& =\epsilon^{1-d} \epsilon^{d-\Delta}(d-\Delta) \epsilon^{d-\Delta-1} \delta^{d}\left(x_{1}-x_{2}\right)+ \\
& \sim \epsilon^{d-2 \Delta} \operatorname{diverges} \text { for } \Delta>\frac{d}{2} \\
& +\epsilon^{\text {1-d }} \epsilon^{d-1}(\Delta+d-\Delta) \frac{c_{\Delta}}{\left|x_{1}-x_{2}\right|^{2 \Delta}}+\text { subtending in } \epsilon \\
& \sim \text { finite }
\end{aligned}
$$

oBS IR divergences in the bulk perspective I uv/IR correspondence
UV divergences of QFT correlators associated to contact terns.
\Longrightarrow Add a COUNTERTERM to remove the divergence and def:

Here $S_{\text {ct }}$ needs to contain:

$$
S_{C T}\left[\Phi_{c}\right] \supset \frac{d-2}{2} \epsilon^{d-2 \Delta} \int d^{d} x \quad \phi(x)^{2} \sim
$$

$\xrightarrow[\sim]{\text { Covariantly }} \frac{d-\Delta}{2} \int_{z=\epsilon} d^{d} x \sqrt{L} \quad \Phi_{c}(z, x)^{2}$
$w / h_{\text {au }}=\frac{\delta_{j v}}{\epsilon^{2}}$ induced metric at $z=\epsilon$ OBS We are working on a slice at $t=\epsilon$, thus to preserve covariance, counterterms need to be built w/ fields at $z=\epsilon$ (Scalars, induced metric, Ricai, etc.).
They also have to be local, as in QFT (there cannot be for instance radid derivatives) -
$\mathbb{N} . B . W_{e}$ would also add other FINITE CTs, it would correspond to a different renormalization
scheme in the QFT.

- CT removes the divergences and contains also finite terms:

$$
\begin{aligned}
& \left.\Phi_{c}(z, x)\right|_{t=\epsilon}=\int_{z=\epsilon} d^{d} x^{\prime} K\left(z, x ; x^{\prime}\right) \phi\left(x^{\prime}\right)= \\
& =\epsilon^{d-\Delta} \phi(x)+\int d^{d} x^{\prime} \epsilon^{\Delta} C_{\Delta} \frac{\phi\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|^{2 \Delta}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow S_{C T}\left[\Phi_{c}\right]\right|_{t=\epsilon}=\frac{d-\Delta}{2} \int d^{d} x \epsilon^{-d}\left\{\epsilon^{2(d-\Delta)} \phi(x)^{2}+\right. \\
& \left.+2 \epsilon^{d} \phi_{0}(x) \int d^{d} x^{\prime} C_{\Delta} \frac{\phi\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|^{2} \Delta}+\cdots\right\} \\
& \Rightarrow S_{E}^{\text {cen }}\left[\Phi_{c}\right]=-\frac{1}{2} \int d^{d} x_{1} d^{d} x_{2} \phi\left(x_{1}\right) \phi\left(x_{2}\right) \times \\
& \times C_{\Delta} \frac{d-2 d+2 \Delta}{\left|x_{1}-x_{2}\right|^{2 \Delta}}= \\
& =\frac{1}{2}(d-2 \Delta) C_{\Delta} \int d^{d} x_{1} d^{d} x_{2} \frac{\phi\left(x_{1}\right) \phi\left(x_{2}\right)}{\left|x_{1}-x_{2}\right|^{2 \Delta}} \\
& \left.\Longrightarrow \angle \Theta\left(x_{1}\right) S\left(x_{2}\right)\right\rangle=\frac{C}{\left|x_{1}-x_{2}\right|^{2 \Delta}} \text { in CFT }
\end{aligned}
$$

+ Expectation value in presence of a Source:

$$
\left\langle\theta\left(x_{1}\right)\right\rangle_{\phi}=(2 \Delta-d) \int d^{d} x_{2} \frac{c_{\Delta} \phi\left(x_{2}\right)}{\left|x_{1}-x_{2}\right|^{2 \Delta}}
$$

which reconsidering:

$$
\Phi_{c}(z, x)=\int_{\partial A d S} d^{d} x^{\prime} K\left(z, x ; x^{\prime}\right) \phi\left(x^{\prime}\right)
$$

and $K\left(z, x ; x^{\prime}\right) \rightarrow z^{d-\Delta} \delta^{d}\left(x-x^{\prime}\right)+z^{\Delta} \frac{C_{\Delta}}{\left|x-x^{\prime}\right|^{2 \Delta}}$
we see being precisely:
$\omega / V=\sqrt{\frac{d^{2}}{4}+m^{2} R^{2}}$

$$
<S(x)>_{\phi}=2 \nu B(x)
$$

$B(x)$: normalizable mode
as anticipated - The normalizable mode fixes the expectation value of the dual operator-

OBS 1 This is just the simplest example of o systematic procedure known as Holographic RENormalization, which allows to evaluate the renormalized on-shell action for any field (Scalar, metric, gauge fields) in AIdS solutions -
See K. Skender's et al: ex lecture notes
hep-th/0209667 -

OBS 2

$$
\langle\Theta\rangle
$$

con be computed es Feynman diagram in AdS
 ϕ source for op. O BOUNDARy TO BOUNDARY propagator w/ extremes on PAdS
Feynman's diagrams for tree- level correlators in AdS are known as WITEN DIAGRAMS.
$\langle\Theta \theta \theta\rangle:$

BULK TO BOUNDA RY PROPAGATOR bulk interactions governed by the interaction terms that apples in (super) gravity \mathcal{L} -
$\langle 9 \theta \rho\rangle$:

disconnected from $\lambda_{4} \Phi^{4}$ from $\lambda_{3} \Phi^{3}$
BULK-TO-BULK
PROPAGATOR

