Conformal Field Theory Problems
 Chapter 1

C. P. Herzog
LACES

December 2021

Problem 1.1. Using only the quantities \hbar, G_{N}, and c, construct quantities that have the units of length, mass, and time. Compute the corresponding Planck length, Planck mass, and Planck time, using SI units.

In SI units

$$
\begin{aligned}
G_{N} & =6.67 \times 10^{-11} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2} \\
\hbar & =1.05 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
c & =3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

The quantities requested are then

$$
\begin{aligned}
& \ell_{P}=\sqrt{\frac{G_{N} \hbar}{c^{3}}}=1.61 \times 10^{-35} \mathrm{~m} \\
& m_{P}=\sqrt{\frac{\hbar c}{G_{N}}}=2.17 \times 10^{-8} \mathrm{~kg} \\
& t_{P}=\sqrt{\frac{G_{N} \hbar}{c^{5}}}=5.37 \times 10^{-44} \mathrm{~s}
\end{aligned}
$$

Problem 1.2. Another proposed source of extra physics is extra dimensions. Assume that we live not in a four dimensional world but a $(4+p)$-dimensional one where the extra dimensions are all extremely small circles of length ℓ.
a) Noting that the dimensionality of G_{N} is different in $(4+p)$ dimensions, what is the new expression for the Planck energy E_{P} in terms of \hbar, c, and G_{N} ?
b) Find a relationship between G_{N} and the observed $4 d$ value $G_{N}^{4 d}$. Given the observed 4d value for $G_{N}^{4 d}$, how small must ℓ be in order to have $E_{P}=1$ TeV? Are there some values of p that you can rule out?
a) Coulomb's law is modifed in $p+4$ dimensions. The potential energy stored by two point masses is $\frac{G_{N} m_{1} m_{2}}{r^{1+p}}$ which means that Newton's constant has units $\left[G_{N}\right]=\mathrm{kg}^{-1}$ $\mathrm{m}^{3+p} \mathrm{~s}^{-2}$, and the Planck energy should be instead

$$
E_{P}=\left(\frac{\hbar^{p+1} c^{p+5}}{G_{N}}\right)^{\frac{1}{p+2}}
$$

b) The 4 d Newton's constant should be $G_{N}^{4 d} \sim G_{N} / \ell^{p}$. In order for $G_{N}^{4 d}$ to take its usual value, we find that

$$
\ell \sim \frac{\hbar^{1+\frac{1}{p}} c^{1+\frac{5}{p}}}{E_{P}^{1+\frac{2}{p}}}\left(G_{N}^{4 d}\right)^{-\frac{1}{p}}
$$

For numbers of extra dimensions one through six,

$$
\ell \sim 3 \times 10^{13} \mathrm{~m}, 2 \mathrm{~mm}, 1 \times 10^{-8} \mathrm{~m}, 2.2 \times 10^{-11} \mathrm{~m}, 5.3 \times 10^{-13} \mathrm{~m}, 4.5 \times 10^{-14} \mathrm{~m}
$$

It looks like we can rule out $p=1$ and 2 from this back of the envelope calculation. Note superstring theory predicts $p=6$.

Problem 1.3. Consider an interacting scalar field

$$
\begin{equation*}
S=-\int \mathrm{d}^{d} x\left(\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+g \phi^{n}\right) \tag{1.1}
\end{equation*}
$$

where n is a positive integer. For what pairs (n, d) can the coupling g be dimensionless?
The model $d=3$ and ϕ^{6} is claimed to be in the same universality class as the tricritical Ising model. The model $d=4$ and ϕ^{4} is in the same universality class as the Ising model. It is sometimes called the Wilson-Fisher theory or Landau-Ginzburg theory. Then there is $d=6$ and ϕ^{3}.

Problem 1.4. Consider the Lagrangian for a Dirac spinor in d dimensions

$$
\begin{equation*}
S=-\int \mathrm{d}^{d} x\left(\frac{i}{2} \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+g(\bar{\psi} \psi)^{n}\right) \tag{1.2}
\end{equation*}
$$

What is the scaling dimension of ψ ? (You may assume the conjugate spinor $\bar{\psi}$ has the same scaling dimension as ψ. Moreover, the gamma matrices are dimensionless.) For what (n, d) can g be made dimensionless, assuming n is a positive integer? Considering now also the scalar field of the previous problem. In what dimensions do $\phi \bar{\psi} \psi$ and $\phi^{2} \bar{\psi} \psi$ lead to classically marginal couplings?

The scaling dimension of the free fermion is $\Delta_{\psi}=\frac{d-1}{2}$. We can make $(\bar{\psi} \psi)^{n}$ dimensionless only in $d=2$. These types of model are often referred to as Gross-Neveu or Thirring models. (The difference depends on how gamma matrices are sprinkled through the interaction.) The $\phi \bar{\psi} \psi$ and $\phi^{2} \bar{\psi} \psi$ terms are sometimes called Yukawa couplings, and the associated theory a Yukawa theory. $\phi \bar{\psi} \psi$ is classically marginal in $d=4$ while $\phi^{2} \bar{\psi} \psi$ is classically marginal in $d=3$.

Problem 1.5. Start with the assumption that the supersymmetry transformation Q squares to the momentum operator $Q^{2} \sim P$ and moreover converts fermions into bosons and bosons into fermions. Try to guess how Q acts on ϕ and ψ, purely based on dimensional analysis.

From $Q^{2} \sim P$, we have that $\Delta_{Q}=\frac{1}{2}$. Since $\Delta_{\phi}=\Delta_{\psi}+\frac{1}{2}$, we have $Q \phi \sim \psi$. We also need a way to turn fermions back into bosons: $Q \psi \sim \partial_{\mu} \phi$.

Problem 1.6. Consider $Q E D$ in d dimensions

$$
\begin{equation*}
S=-\int \mathrm{d}^{d} x\left(\frac{1}{4} F^{\mu \nu} F_{\mu \nu}+\frac{i}{2} \bar{\psi} \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi\right) \tag{1.3}
\end{equation*}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. What is the scaling dimension of g ? What is special about $d=4$?
We have that $\Delta_{A_{\mu}}=\frac{d-2}{2}$, like for a free scalar. Furthermore $\Delta_{g}=d-2 \Delta_{\psi}-\Delta_{A_{\mu}}=2-\frac{d}{2}$. In other words, the coupling is classically marginal in $d=4$ dimensions. (Quantum effects will typically lead to it running with energy scale.) In $d>4$, the coupling is irrelevant, while in $d<4$ it is relevant.

