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[Pµ, Pν ] = 0 ,

[Pµ,Mνλ] = iηµνPλ − iηµλPν , (2.3)

[Mµν ,Mλρ] = iηµλMνρ − iηνλMµρ − iηµρMνλ + iηνρMµλ .

Problem 2.1. Reproduce the result (2.1) using Pµ and Mνλ and in particular (2.2) and the
commutator algebra (2.3).
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Problem 2.2. For a vector representation, one takes

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ . (2.4)

(Notice that the indices µ and ν take a dual role, labeling both the Lorentz generator and its
matrix components.) For the spinor representation, one takes instead

(Mµν)α
β = − i

2
(γµν)α

β = − i
4

(γµγν − γνγµ)α
β , (2.5)

where (γµ)α
β are the Dirac γ-matrices, {γµ, γν} = 2ηµν. Verify that these two representations

of the Lorentz group obey the commutation relations (2.3).
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For the vector, let’s verify the first term in the commutation relations. The remaining
three should follow by symmetry.

(Mµν)
σ
τ (Mλρ)

τ
θ = (iηµτδ

σ
ν − iδσµηντ )(iηλθδτρ − iδτληρθ)

= −ηµρηλθδσν + . . .

Next consider

(Mλρ)
σ
τ (Mµν)

τ
θ = (iηλτδ

σ
ρ − iδσληρτ )(iηµθδτν − iδτµηνθ)

In particular I want to combine the second of each of the two terms in the product:

(Mλρ)
σ
τ (Mµν)

τ
θ = . . .− ηρµηνθδσλ

We find then that

[Mµν ,Mλρ]
σ
θ = iηµρ(iδ

σ
ν ηλθ − iδσληνθ) + . . .

= −iηµρ(Mνλ)
σ
θ + . . .

For the spinor, we need the relation

γµνγλρ = γµνλρ + ηµργνλ + ηνλγµρ − ηµλγνρ − ηνργµλ + ηµρηνλ − ηµληνρ .

The hard way to demonstrate this relation is to use {γµ, γν} = ηµν . The easy way is to test
the various special cases. From this relation, we deduce that

[γµν , γλρ] = 2ηνλγµρ − 2ηµλγνρ + 2ηµργνλ − 2ηνργµλ .

Multiplying through by (− i
2
)2 yields the desired relation.

∂µεν + ∂νεµ = f(x)ηµν . (2.6)

Problem 2.3. Verify that bµν = ληµν + ωµν and cµνρ = ηµρbν + ηµνbρ − ηνρbµ are the only
solutions for bµν and cµνρ consistent with (2.6).

Problem 2.4. Verify that the infinitesimal versions of the transformations in Figure 1
recover aµ, bµν and cµνρ.

Problem 2.5. Demonstrate that an inversion followed by a translation followed by a further
inversion is equivalent to a special coordinate transformation.

We look at

xµ → xµ

x2
→ xµ

x2
+ aµ →

xµ

x2
+ aµ(

xν

x2
+ aν

) (
xν
x2

+ aν
) =

xµ

x2
+ aµ

1
x2

+ 2a·x
x2

+ a2
=

xµ + aµx2

1 + 2a · x+ a2
.

So we just need to make the identification aµ = −bµ.
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• translations: x′µ = xµ + aµ

• Lorentz: x′µ = Λµ
νx

ν

• dilatations (scale transformations): x′µ = λxµ

• special conformal transformations: x′µ = xµ−bµx2
1−2b·x+b2x2

Figure 1: The finite versions of the generators of the conformal symmetry group.

Problem 2.6. Compute the commutator of P 2 with Kµ and D. What happens to a massive
particle state |p〉 (where P 2|p〉 = m2|p〉, m2 6= 0) under the infinitesimal special conformal
transformation Kµ?

Both [D,P 2] and [Kµ, P
2] are nonzero. Therefore P 2 is not a Casimir of the conformal

group. Using these nonzero commutation relations, it is straightforward to see that Kµ|p〉 is
not an eigenstate of P 2 and does not have a well defined mass.

Problem 2.7. If µ, ν = 0, . . . , d − 1, then define Jµν = Mµν along with Jµ,d = 1
2
(Pµ −

Kµ), Jµ,d+1 = 1
2
(Pµ + Kµ), and Jd,d+1 = D, along with the constraint that Jab = −Jba

is antisymmetric. Show that the commutators of these generators are the same as for a
(d+ 2)-dimensional orthogonal group, with metric signature (2, d), i.e. SO(2, d).

One needs to check that

[Jµν , Jρd] = i(ηνρJµd − ηµρJνd) ,
[Jµν , Jρ,d+1] = i(ηνρJµ,d+1 − ηµρJν,d+1) ,

[Jµd, Jν,d+1] = −iηµνJd,d+1 .

Problem 2.8. Write out the consistency relations (2.6) in d = 2 in the coordinate system
x± = x± t. What can you conclude about the allowed form of εµ?

We need to take a little time to do the coordinate transformations. Note that

∂x =
∂x+
∂x

∂

∂x+
+
∂x−
∂x

∂

∂x−
= ∂+ + ∂− .

Similarly ∂t = ∂+−∂−. The transformation rule for εµ is similar, εx = ε++ε− and εt = ε+−ε−.
Now let’s write out

0 = ∂tεx + ∂xεt = (∂+ − ∂−)(ε+ + ε−) + (∂+ + ∂−)(ε+ − ε−) = 2(∂+ε+ − ∂−ε−) ,

−f(x) = 2∂tεt = 2(∂+ − ∂−)(ε+ − ε−) ,

f(x) = 2∂xεx = 2(∂+ + ∂−)(ε+ + ε−) .
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Adding the second two equations, we find ∂+ε+ + ∂−ε− = 0. Combining this result with the
first equation, we find that ∂±ε± = 0. In other words, any ε± = f(x∓ t) will be a conformal
transformation. This set of transformations is much larger than in d > 2.

An alternate approach is to transform the Minkowski tensor:(
∂t
∂x+

∂x
∂x+

∂t
∂x−

∂x
∂x−

)(
−1 0
0 1

)( ∂t
∂x+

∂t
∂x−

∂x
∂x+

∂x
∂x−

)
=

(
0 1

2
1
2

0

)
where we need x = 1

2
(x+ + x−) and t = 1

2
(x+ − x−). In the new coordinate system, we see

directly that ∂±ε± = 0.

Problem 2.9. Compute Ω(x) for the (finite) special conformal transformations.

Ω(x) = (1− 2b · x+ b2x2)2

Problem 2.10. Verify that a special conformal transformation that does not preserve the
location of a defect will transform the defect into a spherical configuration.

See the answer to problem 6.1.
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