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Problem 4.1. In the case of the free scalar field, the simple (0¢)* action is not Weyl
symmetric. However, if one adds the R¢? term
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where & = 4(d 0 , the action is Weyl symmetric. Verify this fact, assuming ¢ — 0 gb and

G — Vg under Weyl rescaling.

Let Q =1+ w where w is assumcd to be small. At linear order, the shift in the metric
is then dg,, = —wg,, and 6¢ = 2we. We also need dg"” = wgh” and /=g = —fw\/i
Figuring out how the Ricci deldl“ shifts is a bit of a pain. One nice computer package for
doing so is called xAct. The result is that
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We find then that
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Integrating the first term by parts, we see that the first and second terms cancel against the
last term, given the special value of ¢ stated in the problem. The third and fourth terms
cancel trivially.

Problem 4.2. Compute the stress tensor in the flat space limit g,, = n,, for the scalar

field of pmblem with the conformal coupling & = (d 2 . Check that T is conserved and
traceless on-shell in the flat space limit.

Varying the Ricci scalar with respect to the metric is a bit of a pain. Using xAct, we find
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The remainder of the calculation is straightforward:

T 2Tgg = (00)0°0) — 539" (0,0)0) + €Re?)
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In flat space, this result reduces to

TH = (00)(@0) — 51" (0,0)(6) — £(0"0" — D) (42)

The last term is invisible from the standard derivation, using Noether’s theorem and transla-
tion invariance. It is however a total derivative and corresponds to a standard “improvement”
term.

The trace of the stress tensor is then

T = (1 — g) (09)* — £(1 — d)Op* . (4.3)

The (0¢)? terms cancel for the special value of £ and the ¢[J¢ terms vanish by the equations
of motion.
Similarly, for conservation, dropping immediately all terms proportional to ¢, we find

0T = (0"9)(9,0°¢) — 1" (89,9)(0%9) — (00" — D) = 0. (44)



