Conformal Field Theory Problems Chapter 4

C. P. Herzog
LACES

December 2021
Problem 4.1. In the case of the free scalar field, the simple $(\partial \phi)^{2}$ action is not Weyl symmetric. However, if one adds the $R \phi^{2}$ term

$$
\begin{equation*}
S=-\frac{1}{2} \int \mathrm{~d}^{d} x \sqrt{-g}\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+\xi R \phi^{2}\right] \tag{4.1}
\end{equation*}
$$

where $\xi=\frac{(d-2)}{4(d-1)}$, the action is Weyl symmetric. Verify this fact, assuming $\phi \rightarrow \Omega^{\frac{d-2}{4}} \phi$ and $g_{\mu \nu} \rightarrow \Omega^{-1} g_{\mu \nu}$ under Weyl rescaling.

Let $\Omega=1+\omega$ where ω is assumed to be small. At linear order, the shift in the metric is then $\delta g_{\mu \nu}=-\omega g_{\mu \nu}$ and $\delta \phi=\frac{d-2}{4} \omega \phi$. We also need $\delta g^{\mu \nu}=\omega g^{\mu \nu}$ and $\delta \sqrt{-g}=-\frac{d}{2} \omega \sqrt{-g}$. Figuring out how the Ricci scalar shifts is a bit of a pain. One nice computer package for doing so is called xAct. The result is that

$$
\delta(\sqrt{-g} R)=\sqrt{-g} \omega\left(-\frac{d-2}{2} R+(d-1) \square\right) .
$$

We find then that

$$
\begin{aligned}
& \delta S=-\frac{1}{2} \int \mathrm{~d}^{d} x\left(2\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \delta \phi\right) \sqrt{-g}+\left(\partial_{\mu} \phi\right)\left(\partial_{\nu} \phi\right) \delta\left(\sqrt{-g} g^{\mu \nu}\right)+\right. \\
&\left.+2 \xi R \phi \delta \phi \sqrt{-g}+\xi \phi^{2} \delta(\sqrt{-g} R)\right) \\
&=-\int \mathrm{d}^{d} x \sqrt{-g} {\left[\frac{d-2}{4}\left(\partial^{\mu} \phi\right) \partial_{\mu}(\omega \phi)-\frac{d-2}{4} \omega\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)+\right.} \\
&\left.+\frac{d-2}{4} \xi R \omega \phi^{2}-\frac{d-2}{4} \xi R \omega \phi^{2}+\frac{d-1}{2} \xi \omega \square \phi^{2}\right] .
\end{aligned}
$$

Integrating the first term by parts, we see that the first and second terms cancel against the last term, given the special value of ξ stated in the problem. The third and fourth terms cancel trivially.

Problem 4.2. Compute the stress tensor in the flat space limit $g_{\mu \nu}=\eta_{\mu \nu}$ for the scalar field of problem 4.1 with the conformal coupling $\xi=\frac{(d-2)}{4(d-1)}$. Check that $T^{\mu \nu}$ is conserved and traceless on-shell in the flat space limit.

Varying the Ricci scalar with respect to the metric is a bit of a pain. Using xAct, we find

$$
\delta(\sqrt{-g} R)=\sqrt{-g} \delta g_{\mu \nu}\left[-\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)+\left(\nabla^{\mu} \nabla^{\nu}-g^{\mu \nu} \square\right)\right]
$$

The remainder of the calculation is straightforward:

$$
\begin{aligned}
T^{\mu \nu}=2 \sqrt{-g} \frac{\delta S}{\delta g_{\mu \nu}}= & \left(\partial^{\mu} \phi\right)\left(\partial^{\nu} \phi\right)-\frac{1}{2} g^{\mu \nu}\left(\left(\partial_{\rho} \phi\right)\left(\partial^{\rho} \phi\right)+\xi R \phi^{2}\right) \\
& +\xi\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right) \phi^{2}-\xi\left(\nabla^{\mu} \nabla^{\nu}-\eta^{\mu \nu} \square\right) \phi^{2}
\end{aligned}
$$

In flat space, this result reduces to

$$
\begin{equation*}
T^{\mu \nu}=\left(\partial^{\mu} \phi\right)\left(\partial^{\nu} \phi\right)-\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\rho} \phi\right)\left(\partial^{\rho} \phi\right)-\xi\left(\partial^{\mu} \partial^{\nu}-\eta^{\mu \nu} \square\right) \phi^{2} . \tag{4.2}
\end{equation*}
$$

The last term is invisible from the standard derivation, using Noether's theorem and translation invariance. It is however a total derivative and corresponds to a standard "improvement" term.

The trace of the stress tensor is then

$$
\begin{equation*}
T_{\mu}^{\mu}=\left(1-\frac{d}{2}\right)(\partial \phi)^{2}-\xi(1-d) \square \phi^{2} . \tag{4.3}
\end{equation*}
$$

The $(\partial \phi)^{2}$ terms cancel for the special value of ξ and the $\phi \square \phi$ terms vanish by the equations of motion.

Similarly, for conservation, dropping immediately all terms proportional to $\square \phi$, we find

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}=\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \partial^{\nu} \phi\right)-\eta^{\mu \nu}\left(\partial^{\nu} \partial_{\rho} \phi\right)\left(\partial^{\rho} \phi\right)-\xi\left(\square \partial^{\nu}-\partial^{\nu} \square\right) \phi^{2}=0 . \tag{4.4}
\end{equation*}
$$

