Conformal Field Theory Problems Chapter 5

C. P. Herzog
LACES

December 2021
Problem 5.1. Continuing the small $|x|$ expansion of $C_{\Delta}(x, \partial)$, we find at next order

$$
C_{\Delta}(x, \partial) \phi(0)=\frac{c}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}}\left(1+\alpha x^{\mu} \partial_{\mu}+\ldots\right) \phi(0) .
$$

By acting with K^{μ} on boths sides, show that $\alpha=\frac{\Delta_{1}-\Delta_{2}+\Delta}{2 \Delta}$.
We act first with K_{μ} on the right hand side, finding

$$
\begin{aligned}
{\left[K_{\mu}, \phi_{1}(x) \phi_{2}(0)\right] } & =\left[K_{\mu}, \phi_{1}(x)\right] \phi_{2}(0)+\phi_{1}(x)\left[K_{\mu}, \phi_{2}(0)\right] \\
& =\left[-2 i x_{\mu} \Delta_{1}-i\left(2 x_{\mu} x^{\nu} \partial_{\nu}-x^{2} \partial_{\mu}\right)\right] \phi_{1}(x) \phi_{2}(0)
\end{aligned}
$$

Note that $\left[K_{\mu}, \phi_{2}(0)\right]=0$. Next we insert the ansatz for $C_{\Delta}(x, \partial)$, looking at the contribution of the $\phi(x)$ primary to the OPE of $\phi_{1}(x)$ and $\phi_{2}(0)$:

$$
\left.\left[K_{\mu}, \phi_{1}(x) \phi_{2}(0)\right]\right|_{\phi}=\left[-2 i x_{\mu} \Delta_{1}-i\left(2 x_{\mu} x^{\nu} \partial_{\nu}-x^{2} \partial_{\mu}\right)\right] \frac{c}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}}\left(1+\alpha x^{\mu} \partial_{\mu}+\ldots\right) \phi(0)
$$

Acting with the derivatives, this expression simplifies to

$$
\left.\left[K_{\mu}, \phi_{1}(x) \phi_{2}(0)\right]\right|_{\phi}=\frac{-i c}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}}\left(\left(\Delta_{1}-\Delta_{2}+\Delta\right) x_{\mu}+\ldots\right) \phi(0) .
$$

Now we are ready to look at the right hand side. It would be a bit simpler to put the vacuum to the right of $\phi(0)$ and thereby consider the direct action of the generators on states. For its pedagogical value, let us look instead at the commutator action. While K_{μ} annihilates $\phi(0)$, it does not annihilate $\alpha x^{\mu} \partial_{\mu} \phi(0)=i \alpha x^{\mu}\left[P_{\mu}, \phi(0)\right]$. We have to use the commutator of K_{μ} with P_{ν}. By the Jacobi identity, we have

$$
\begin{equation*}
\left[K_{\mu},\left[P_{\nu}, \phi(0)\right]\right]=-\left[P_{\nu},\left[\phi(0), K_{\mu}\right]\right]-\left[\phi(0),\left[K_{\mu}, P_{\nu}\right]\right] . \tag{5.1}
\end{equation*}
$$

As $\left[K_{\mu}, \phi(0)\right]=0$, only the second term survives. Moreover, we have that $\left[M_{\mu \nu}, \phi(0)\right]=0$, for scalars, leaving us with

$$
\begin{equation*}
\left[K_{\mu},\left[P_{\nu}, \phi(0)\right]\right]=\left[\left[K_{\mu}, P_{\nu}\right], \phi(0)\right]=2 i \eta_{\mu \nu}[D, \phi(0)]=-2 \eta_{\mu \nu} \Delta . \tag{5.2}
\end{equation*}
$$

The right hand side of the OPE therefore gives us

$$
\left.\left[K_{\mu}, \phi_{1}(x) \phi_{2}(0)\right]\right|_{\phi}=\frac{-2 i c \alpha}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}} \Delta x_{\mu} \phi(0)
$$

Comparing the rhs and lhs, we learn that $\alpha=\frac{\Delta_{1}-\Delta_{2}+\Delta}{2 \Delta}$.

Problem 5.2. Using the procedure detailed in class notes comparing the three point and two point functions, compute the first three terms in $C_{\Delta}(x, \partial)$.

We expand the three point function for small x :

$$
\begin{aligned}
\frac{1}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}|z|^{\Delta_{2}+\Delta-\Delta_{1}}|x-z|^{\Delta_{1}+\Delta-\Delta_{2}}}= & \frac{1}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}|z|^{2 \Delta}}\left[1+\frac{\Delta_{1}+\Delta-\Delta_{2}}{2}\left(\frac{2 x \cdot z}{z^{2}}-\frac{x^{2}}{z^{2}}\right)+\right. \\
& \left.+\frac{\Delta_{1}+\Delta-\Delta_{2}}{4}\left(\frac{\Delta_{1}+\Delta-\Delta_{2}}{2}+1\right)\left(\frac{2 x \cdot z}{z^{2}}\right)^{2}+O\left(x^{3}\right)\right]
\end{aligned}
$$

We have used here a couple of intermediate results:

$$
\begin{align*}
\frac{1}{|x-z|^{2 \alpha}} & =\frac{1}{\left(x^{2}-2 x \cdot z+z^{2}\right)^{\alpha}} \\
\frac{1}{(1-\epsilon)^{\alpha}} & =1+\alpha \epsilon+\frac{\alpha(\alpha+1)}{2} \epsilon^{2}+\ldots \tag{5.3}
\end{align*}
$$

We expect to be able to compare this expression with something of the form

$$
C_{\Delta}\left(x, \partial_{y}\right) \frac{1}{|z-y|^{2 \Delta}}=\frac{1}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}}\left(1+\alpha x \cdot \partial_{y}+\beta x^{2}\left(\partial_{y}\right)^{2}+\gamma\left(x \cdot \partial_{y}\right)^{2}+\ldots\right) \frac{1}{|z-y|^{2 \Delta}}
$$

evaluated at $y=0$, where we need to compute the constants α, β, and γ. Let's compute the ∂_{y} derivatives acting on $|y-z|^{-2 \Delta}$ and then evaluated at $y=0$:

$$
\begin{aligned}
\frac{\partial}{\partial y^{\mu}} \frac{1}{|y-z|^{2 \Delta}} & =-\frac{2 \Delta\left(y_{\mu}-z_{\mu}\right)}{|y-z|^{2 \Delta+2}} \xrightarrow{y \rightarrow 0} \frac{2 \Delta z_{\mu}}{|z|^{2 \Delta+2}} \\
\frac{\partial}{\partial y^{\nu}} \frac{\partial}{\partial y^{\mu}} \frac{1}{|y-z|^{2 \Delta}} & =-\frac{2 \Delta}{|y-z|^{2 \Delta+2}}\left(\eta_{\mu \nu}-(2 \Delta+2) \frac{\left(y_{\mu}-z_{\mu}\right)\left(y_{\nu}-z_{\nu}\right)}{|y-z|^{2}}\right) \xrightarrow{y \rightarrow 0} \\
& -\frac{2 \Delta}{|z|^{2 \Delta+2}}\left(\eta_{\mu \nu}-(2 \Delta+2) \frac{z_{\mu} z_{\nu}}{z^{2}}\right)
\end{aligned}
$$

We find then that

$$
\begin{align*}
\left.C_{\Delta}\left(x, \partial_{y}\right) \frac{1}{|x-y|^{2 \Delta}}\right|_{y=0}= & \frac{1}{|x|^{\Delta_{1}+\Delta_{2}-\Delta}|z|^{2 \Delta}}\left(1+\frac{2 \alpha x \cdot z}{z^{2}}-2 \beta \Delta(d-2 \Delta-2) \frac{x^{2}}{z^{2}}+\right. \\
& \left.-2 \gamma \Delta\left(\frac{x^{2}}{z^{2}}-(2 \Delta+2) \frac{(x \cdot z)^{2}}{z^{4}}\right)+\ldots\right) \tag{5.4}
\end{align*}
$$

Comparing terms, we find

$$
\begin{aligned}
2 \Delta \alpha & =\Delta_{1}+\Delta-\Delta_{2} \\
2 \gamma \Delta(2 \Delta+2) & =\left(\Delta_{1}+\Delta-\Delta_{2}\right)\left(\frac{\Delta_{1}+\Delta-\Delta_{2}}{2}+1\right) \\
-2 \beta \Delta(d-2 \Delta-2)-2 \gamma \Delta & =-\frac{\Delta_{1}+\Delta-\Delta_{2}}{2}
\end{aligned}
$$

The solution is

$$
\begin{aligned}
\alpha & =\frac{\Delta+\Delta_{1}-\Delta_{2}}{2 \Delta} \\
\beta & =-\frac{\left(\Delta+\Delta_{1}-\Delta_{2}\right)\left(\Delta-\Delta_{1}+\Delta_{2}\right)}{8 \Delta(1+\Delta)\left(\Delta-\frac{d-2}{2}\right)} \\
\gamma & =\frac{\left(\Delta+\Delta_{1}-\Delta_{2}\right)\left(2+\Delta+\Delta_{1}-\Delta_{2}\right)}{8 \Delta(1+\Delta)}
\end{aligned}
$$

The answer looks a bit nicer for $\Delta_{1}=\Delta_{2}$.
Problem 5.3. By explicitly computing the first few terms in a small z expansion, verify the form of the conformal block for $\ell=0$ and $d=4$ by comparing it against your previous small x expansion of $C_{\Delta}(x, \partial)$.

This is a good problem for Mathematica. We have to be a little careful the order in which we expand things, as the coordinate choice is adapted for x_{2} small. Let us use the relation between two and three point functions to take care of the $C_{\Delta}\left(x_{34}, \partial_{4}\right)$ factor because x_{3} and x_{4} will not be small:

$$
C_{\Delta}\left(x_{34}, \partial_{4}\right) \frac{1}{\left|x_{24}\right|^{2 \Delta}}=\frac{1}{\left|x_{34}\right|^{2 \eta-\Delta}\left|x_{24}\right|^{\Delta}\left|x_{23}\right|^{\Delta}}
$$

Now we act with the series expansion form of $C_{\Delta}\left(x_{12}, \partial_{2}\right)$:

$$
\begin{aligned}
& \frac{1}{\left|x_{12}\right|^{2 \eta-\Delta}}\left(1+\frac{1}{2} x_{12} \cdot \partial_{2}+\ldots\right) \frac{1}{\left|x_{34}\right|^{2 \eta-\Delta}\left|x_{24}\right|^{\Delta}\left|x_{23}\right|^{\Delta}}= \\
& \quad \frac{1}{\left|x_{12}\right|^{2 \eta-\Delta}}\left(1-\frac{\Delta}{2}\left(\frac{x_{12} \cdot x_{24}}{\left|x_{24}\right|^{2}}+\frac{x_{12} \cdot x_{23}}{\left|x_{23}\right|^{2}}\right)+\ldots\right) \frac{1}{\left|x_{34}\right|^{2 \eta-\Delta}\left|x_{24}\right|^{\Delta}\left|x_{23}\right|^{\Delta}}
\end{aligned}
$$

We should then identify the conformal block with $\left|x_{12}\right|^{2 \eta}\left|x_{34}\right|^{2 \eta}$ times this series expansion

$$
G_{\Delta}(u, v)=\left(1-\frac{\Delta}{2}\left(\frac{x_{12} \cdot x_{24}}{\left|x_{24}\right|^{2}}+\frac{x_{12} \cdot x_{23}}{\left|x_{23}\right|^{2}}\right)+\ldots\right) \frac{\left|x_{12}\right|^{\Delta}\left|x_{34}\right|^{\Delta}}{\left|x_{24}\right|^{\Delta}\left|x_{23}\right|^{\Delta}}
$$

We want to compare this expression against the small z and \bar{z} expansion of the explicit representation of $G_{\Delta}(u, v)$:

$$
\begin{equation*}
G_{\Delta}(u, v)=(z \bar{z})^{\frac{\Delta}{2}}\left(1+\frac{\Delta}{4}(z+\bar{z})+\frac{\left(z^{2}+\bar{z}^{2}\right) \Delta\left(3 \Delta^{2}-4\right)+\Delta^{4}(z+\bar{z})^{2}}{32\left(\Delta^{2}-1\right)}+\ldots\right) \tag{5.5}
\end{equation*}
$$

We see by inspection that the $O(0)$ and $O(z, \bar{z})$ terms match. That's enough for me for now.

