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Problem 6.1. Show that a special conformal transformation with b* = (1, 6) turns the plane

P % into a sphere centered at the origin of radius one. Furthermore, show that reflection

about the plane 1 = % becomes inversion after the special conformal transformation.
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Regarding inversion, we consider z{ = (3 + dz, X*) and its reflection 2 = R(z/}) =

(3 — 0z, X*). We find
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for the image of the original and reflected points. The important algebraic identity here is

that
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If we plug in
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This identity allows us to establish that I(2”) =

|

Problem 6.2. By studying (¢|K*P?|¢) for scalar primary ¢, demonstrate that the conformal
dimension must satisfy the quadratic constraint A(2(A+1) —d) > 0.

The identity follows by moving the K, generators to the right, using the commutation
relations, so that they can annihilate when acting on |¢).

Problem 6.3. Use the explicit representation of M, from problem 2.2 for spinors and
vectors to show that A is bounded below by % and d — 1 respectively.

For the vector, we have the representation (]V[W)’\p = iéﬂpél’,\ — iéﬁéyp. Note we have re-
placed the Minkowski tensor with the Kronecker delta because we are working in a Euclidean
setting. We therefore want the quantity (5W5;‘A — 0,000+ 5ﬁ6up to be a positive matrix. One
way to analyze this complicated looking object is to contract some indices. Let us contract
A with v which tells us that §,, (A — d + 1) needs to be positive.

The analysis for the spinor is similar. We have instead (M,,)." = —2(77% — %) -
Now we require A, — %(%% — %7Y,) to be positive. We multiply this expression by v#
and sum over the p index. Note that v,7,v* = —v,Y*v, + 27,08 by the anti-commutation
relations. The latter expression in turn simplifies to (—d + 2)7,. Thus we find that Ay, —

H((=d + 2)7y, — dv,) must be a positive expression. In other words A > 41,
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Problem 6.4. Show that reflection positivity for (¢ ¢) and (0.¢ 0.¢) constrain x to lie in
the range —1 < y < 1.



