Conformal Field Theory Problems Chapter 6

C. P. Herzog
LACES
December 2021

Problem 6.1. Show that a special conformal transformation with $b^{\mu}=(1, \overrightarrow{0})$ turns the plane $x^{1}=\frac{1}{2}$ into a sphere centered at the origin of radius one. Furthermore, show that reflection about the plane $x_{1}=\frac{1}{2}$ becomes inversion after the special conformal transformation.

The special conformal transformation has the form $x^{\mu}=\frac{x^{\mu}-b^{\mu} x^{2}}{1-2 b \cdot x+b^{2} x^{2}}$. If we plug in $x=\left(\frac{1}{2}, X^{i}\right)$ and $b=(1, \overrightarrow{0})$, we find $1-2 b \cdot x+b^{2} x^{2}=\frac{1}{4}+X^{2}$ and

$$
x^{\prime \mu}=\frac{1}{\frac{1}{4}+X^{2}}\left(\frac{1}{4}-X^{2}, X^{i}\right)
$$

Regarding inversion, we consider $x_{+}^{\mu}=\left(\frac{1}{2}+\delta x, X^{i}\right)$ and its reflection $x_{-}^{\mu}=R\left(x_{+}^{\mu}\right)=$ $\left(\frac{1}{2}-\delta x, X^{i}\right)$. We find

$$
x_{ \pm}^{\prime \mu}=\frac{1}{\left(\frac{1}{2} \pm \delta x\right)^{2}+X^{2}}\left(\left(\frac{1}{4}-\delta x^{2}\right)-X^{2}, X^{i}\right)
$$

for the image of the original and reflected points. The important algebraic identity here is that

$$
\left(\frac{1}{4}-\delta x^{2}-X^{2}\right)^{2}+X^{2}=\left(\left(\frac{1}{2}+\delta x\right)^{2}+X^{2}\right)\left(\left(\frac{1}{2}-\delta x\right)^{2}+X^{2}\right)
$$

This identity allows us to establish that $I\left(x_{+}^{\prime \mu}\right)=\frac{x_{+}^{\prime \mu}}{\left|x_{+}^{\prime}\right|^{2}}=x_{-}^{\prime \mu}$.
Problem 6.2. By studying $\langle\phi| K^{2} P^{2}|\phi\rangle$ for scalar primary ϕ, demonstrate that the conformal dimension must satisfy the quadratic constraint $\Delta(2(\Delta+1)-d) \geq 0$.

The identity follows by moving the K_{μ} generators to the right, using the commutation relations, so that they can annihilate when acting on $|\phi\rangle$.
Problem 6.3. Use the explicit representation of $M_{\mu \nu}$ from problem 2.2 for spinors and vectors to show that Δ is bounded below by $\frac{d-1}{2}$ and $d-1$ respectively.

For the vector, we have the representation $\left(M_{\mu \nu}\right)^{\lambda}{ }_{\rho}=i \delta_{\mu \rho} \delta_{\nu}^{\lambda}-i \delta_{\mu}^{\lambda} \delta_{\nu \rho}$. Note we have replaced the Minkowski tensor with the Kronecker delta because we are working in a Euclidean setting. We therefore want the quantity $\delta_{\mu \nu} \delta_{\rho}^{\lambda} \Delta-\delta_{\mu \rho} \delta_{\nu}^{\lambda}+\delta_{\mu}^{\lambda} \delta_{\nu \rho}$ to be a positive matrix. One way to analyze this complicated looking object is to contract some indices. Let us contract λ with ν which tells us that $\delta_{\mu \nu}(\Delta-d+1)$ needs to be positive.

The analysis for the spinor is similar. We have instead $\left(M_{\mu \nu}\right)_{\alpha}{ }^{\beta}=-\frac{i}{4}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right)_{\alpha}{ }^{\beta}$. Now we require $\Delta \delta_{\mu \nu}-\frac{1}{4}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right)$ to be positive. We multiply this expression by γ^{μ} and sum over the μ index. Note that $\gamma_{\mu} \gamma_{\nu} \gamma^{\mu}=-\gamma_{\mu} \gamma^{\mu} \gamma_{\nu}+2 \gamma_{\mu} \delta_{\nu}^{\mu}$ by the anti-commutation relations. The latter expression in turn simplifies to $(-d+2) \gamma_{\nu}$. Thus we find that $\Delta \gamma_{\nu}-$ $\frac{1}{4}\left((-d+2) \gamma_{\nu}-d \gamma_{\nu}\right)$ must be a positive expression. In other words $\Delta>\frac{d-1}{2}$.

Problem 6.4. Show that reflection positivity for $\langle\phi \phi\rangle$ and $\left\langle\partial_{r} \phi \partial_{r} \phi\right\rangle$ constrain χ to lie in the range $-1 \leq \chi \leq 1$.

