Conformal Field Theory Problems

Chapter 6

C. P. Herzog LACES December 2021

Problem 6.1. Show that a special conformal transformation with $b^{\mu} = (1, \vec{0})$ turns the plane $x^1 = \frac{1}{2}$ into a sphere centered at the origin of radius one. Furthermore, show that reflection about the plane $x_1 = \frac{1}{2}$ becomes inversion after the special conformal transformation.

The special conformal transformation has the form $x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^2}{1 - 2b \cdot x + b^2x^2}$. If we plug in $x = (\frac{1}{2}, X^i)$ and $b = (1, \vec{0})$, we find $1 - 2b \cdot x + b^2x^2 = \frac{1}{4} + X^2$ and

$$x^{\prime \mu} = \frac{1}{\frac{1}{4} + X^2} \left(\frac{1}{4} - X^2, X^i \right)$$

Regarding inversion, we consider $x^{\mu}_{+} = (\frac{1}{2} + \delta x, X^{i})$ and its reflection $x^{\mu}_{-} = R(x^{\mu}_{+}) = (\frac{1}{2} - \delta x, X^{i})$. We find

$$x_{\pm}^{\prime \mu} = \frac{1}{\left(\frac{1}{2} \pm \delta x\right)^2 + X^2} \left(\left(\frac{1}{4} - \delta x^2\right) - X^2, X^i \right)$$

for the image of the original and reflected points. The important algebraic identity here is that

$$\left(\frac{1}{4} - \delta x^2 - X^2\right)^2 + X^2 = \left(\left(\frac{1}{2} + \delta x\right)^2 + X^2\right) \left(\left(\frac{1}{2} - \delta x\right)^2 + X^2\right)$$

This identity allows us to establish that $I(x'^{\mu}_{+}) = \frac{x'^{\mu}_{+}}{|x'_{+}|^2} = x'^{\mu}_{-}$.

Problem 6.2. By studying $\langle \phi | K^2 P^2 | \phi \rangle$ for scalar primary ϕ , demonstrate that the conformal dimension must satisfy the quadratic constraint $\Delta(2(\Delta + 1) - d) \ge 0$.

The identity follows by moving the K_{μ} generators to the right, using the commutation relations, so that they can annihilate when acting on $|\phi\rangle$.

Problem 6.3. Use the explicit representation of $M_{\mu\nu}$ from problem 2.2 for spinors and vectors to show that Δ is bounded below by $\frac{d-1}{2}$ and d-1 respectively.

For the vector, we have the representation $(M_{\mu\nu})^{\lambda}{}_{\rho} = i\delta_{\mu\rho}\delta^{\lambda}_{\nu} - i\delta^{\lambda}_{\mu}\delta_{\nu\rho}$. Note we have replaced the Minkowski tensor with the Kronecker delta because we are working in a Euclidean setting. We therefore want the quantity $\delta_{\mu\nu}\delta^{\lambda}_{\rho}\Delta - \delta_{\mu\rho}\delta^{\lambda}_{\nu} + \delta^{\lambda}_{\mu}\delta_{\nu\rho}$ to be a positive matrix. One way to analyze this complicated looking object is to contract some indices. Let us contract λ with ν which tells us that $\delta_{\mu\nu}(\Delta - d + 1)$ needs to be positive.

The analysis for the spinor is similar. We have instead $(M_{\mu\nu})_{\alpha}^{\ \beta} = -\frac{i}{4}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})_{\alpha}^{\ \beta}$. Now we require $\Delta\delta_{\mu\nu} - \frac{1}{4}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu})$ to be positive. We multiply this expression by γ^{μ} and sum over the μ index. Note that $\gamma_{\mu}\gamma_{\nu}\gamma^{\mu} = -\gamma_{\mu}\gamma^{\mu}\gamma_{\nu} + 2\gamma_{\mu}\delta^{\mu}_{\nu}$ by the anti-commutation relations. The latter expression in turn simplifies to $(-d+2)\gamma_{\nu}$. Thus we find that $\Delta\gamma_{\nu} - \frac{1}{4}((-d+2)\gamma_{\nu} - d\gamma_{\nu})$ must be a positive expression. In other words $\Delta > \frac{d-1}{2}$. **Problem 6.4.** Show that reflection positivity for $\langle \phi \phi \rangle$ and $\langle \partial_r \phi \partial_r \phi \rangle$ constrain χ to lie in the range $-1 \leq \chi \leq 1$.