
Black hole temperature in Euclidean formalism

Consider a static solution with metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ g2(r)dΣ2 , (1)

where Σ is some D − 2 space and f(r) vanishes at r = r0 at least linearly, f(r) = f0(r − r0) +
O(r − r0)

2. We assume that g(r) is such that the surface is regular.
• Show that r = r0 is a null surface. To do this, change r → r∗ so that

ds2 = −f(r)(dt2 − dr2∗) + g2(r)dΣ2 . (2)

The (t, r∗) part of the metric is now conformal to 2D Minkowski space. What is then r = r0
mapped into? Is this a null surface?

It follows that r = r0 is a Killing horizon. Now analytically continue t = −iτ .

•Obtain the horizon temperature TH = β−1 from the condition that the periodicity τ ∼ τ+β
makes the τ, r part of metric regular (i.e., free of conical singularities). To this effect, impose
the condition that the ratio of the proper circumferential length of the orbits of the vector ∂τ ,
given by C(r) =

∫
dτ ∥∂τ∥ = β

√
f(r), to their proper radius R(r) =

∫
dr/
√

f(r), in the limit
r → r0, equals 2π, i.e.,

lim
r→r0

C(r)

R(r)
= lim

r→r0

dC(r)

dR(r)
= 2π . (3)

Show that this implies

β =
4π

|f ′(r0)|
. (4)

Observe that we could rescale t → λt and TH would rescale too. Fixing this ambiguity is
typically done by choosing a particular asymptotic static frame, which fixes the normalization
of the asymptotic timelike Killing vector.

By performing a simple change of coordinates, find the form of the temperature for a metric
of the form

ds2 = −F (r̄)dt2 +
dr̄2

G(r̄)
+ r̄2dΩ2 , (5)

with a horizon r̄ = r̄H where F (r̄H) = 0. Is this more or less general than the previous form?

Optional: Show that the Euclidean prescription for the temperature of a general stationary
horizon is the same as obtained from TH = κ/(2π) where κ is the surface gravity for a Killing
horizon generated by a vector k

kµ∇µkν = κkν (6)

(i.e., the non-affinity of the Killing generator of the horizon). Hint: show first that the surface
gravity can be equivalently written as

κ =
√

∇µ|k|∇µ|k| (7)

in the limit where |k| → 0, where |k| is the norm of k.
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Black Hole thermodynamics from Euclidean Quantum Gravity

In the semiclassical approximation to the Euclidean Quantum Gravity Path Integral, the
thermodynamical partition function and free energy are given by

Z[β] = e−βF ≈ e−IE [g(cl)] (1)

where IE[g
(cl)] is the Euclidean action of a classical solution g(cl) with periodic boundary con-

ditions in imaginary time. For geometries that are asymptotically flat or asymptotically Anti-
deSitter this action is actually infinite and needs renormalization. A conventional way to do
it is by subtracting the action IE[g

0] of a reference background spacetime g0 with the same
asymptotics. We shall use this method to compute the free energy of the Schwarzschild black
hole and of a black brane in Anti-deSitter space in five dimensions (of interest in the AdS/CFT
correspondence).

a. Schwarzschild black hole thermodynamics

For the Euclidean Schwarzschild solution

ds2 =

(
1− 2GM

r

)
dτ 2 +

dr2

1− 2GM/r
+ r2dΩ2 (2)

the natural background to compare it to is the (Euclidean) Minkowski solution, which can be
regarded as the ground state for asymptotically flat spacetimes.

The Euclidean action is

IE = − 1

16πG

∫
M

d4x
√
gR− 1

8πG

∫
∂M

d3x
√
hK . (3)

For vacuum solutions, Rµν = 0, so R = 0 and the Einstein-Hilbert term in the gravitational
action vanishes. The Gibbons-Hawking-York boundary term can contribute, so

IE[g
(cl)]− IE[g

0] = − 1

8πG

∫
∂M

√
h(K −K0) , (4)

where the integral is taken at the boundary of spacetime ∂M. One must make sure that the
geometries induced on ∂M by the black hole spacetime and by the Minkowski background are
the same. However, the extrinsic curvatures of these boundary geometries are different (since
they are embedded in different spaces), and this is what gives rise to a non-zero value of the
renormalized action.1

• To regularize the calculation, take the boundary hypersurface ∂M to be at a large but
finite constant radius r = Rb, and henceforth expand all quantities in powers of 1/Rb up to
next-to-leading-order. The boundary metrics are

ds2(∂M) = hµνdx
µdxν =

(
1− 2GM

Rb

)
dτ 2 +R2

bdΩ2 ,

ds20(∂M) = h0
µνdx

µdxν = dτ 20 +R2
bdΩ2 . (5)

1Indeed, a related difference in extrinsic curvatures is the geometric meaning of the mass of an asymptotically
flat spacetime.
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Since the angular parts of the metrics are already equal, it only remains to make the length of
the circles of Euclidean time the same for both geometries,∫ β

0

dτ
√

hττ =

∫ β0

0

dτ0
√
h0
ττ . (6)

This fixes the value of the τ -periodicity β0 of the background, for a given value of β for the
black hole.

• Next, compute the integrands in (4), using
√
hK = nµ∂µ

√
h, where n is the outward

radial unit normal to the boundary. After performing the integrals in (4), the limit Rb →
∞ should yield a finite result. The free energy, relative to the Minkowski ground state, is
IE[g

(cl)]− IE[g
0] = βF .

• Expressing F as a function of the temperature, use conventional thermodynamics

E =
∂(βF )

∂β
, S =

(
β

∂

∂β
− 1

)
(βF ) , (7)

to obtain the energy and entropy. Check that these agree with the expected results.

b. AdS black brane thermodynamics

Consider the five-dimensional Euclidean geometry

ds2 =
r2

ℓ2

(
f(r)dτ 2 +

3∑
i=1

(dxi)2

)
+

ℓ2

r2
dr2

f(r)
, f(r) = 1− r4H

r4
, (8)

which is a solution to the Einstein-Anti-deSitter equations

Rµν = − 4

ℓ2
gµν (9)

derived from the Euclidean action

IE = − 1

16πG

∫
M

d5x
√
g

(
R +

12

ℓ2

)
− 1

8πG

∫
∂M

d4x
√
hK . (10)

Here rH is a constant that normally we would expect to correspond to the mass. The negative
cosmological constant is denoted through the ‘AdS radius’ ℓ. The Lorentzian version of this
geometry (with real time t = −iτ) is a black hole geometry with an event horizon at the largest
positive real root of f(r), r = rH . The radial direction extends from r = rH to ∞.

The horizon extends along the three planar directions xi, and therefore this solution is
known as a planar black hole, or black 3-brane. In order to regularize the volume along these
directions, we identify them periodically xi ∼ xi + V 1/3, in such a way that

∫
dx1dx2dx3 = V .

Given the translational invariance along the xi directions, quantities like the total mass (or
energy) M = E, entropy S, free energy F etc, will be extensive, i.e., proportional to V .
Therefore we can just as well talk about energy density ρ = E/V , entropy density s = S/V ,
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and free energy density f = F/V . We want to compute these using the Euclidean formalism
explained above.

• First, obtain the temperature of the black brane. You can do this using the results of the
previous exercise.

• The free energy is obtained from the Euclidean action (10) for the solution as in (1). Even
for finite V , this action is infinite due to the radial integration extending to r → ∞. In order to
obtain a finite ‘renormalized’ result, we will first use the method of “background subtraction”,
i.e., appropriately subtracting the free energy of a reference background, which we take to be
empty AdS space: this is the solution obtained setting rH = 0 (i.e., f = 1) in (8). Again, this
requires that you introduce a large-radius regulator Rb, and match the two geometries on the
surface r = Rb; in particular, you must match the length of the Euclidean time circles as in (6).

You must be careful with the bulk terms in (10): the scalar curvature is not zero. Hint: In
order to obtain it, you only need to know that these are solutions of the Einstein-AdS equations.

• If you have done the calculation of bulk and boundary terms correctly, you must have
obtained that

f = −π3ℓ3

16G
T 4 , (11)

where T is the temperature of the black brane. Using this result, you can compute the energy
density and entropy density. Check that the latter is equal to 1/(4G) times the ‘area density’
of the horizon.

• Compute the specific heat of the black brane. Is it positive or negative?
•Now compute the renormalization of the action using the method of counterterm subtrac-

tion.
For this, we add to the action (10) the counterterms

Ic =
1

8πG

∫
∂M

d4x
√
h

(
3

ℓ
+

ℓ

4
R
)

, (12)

where R is the scalar curvature of the boundary metric. Since for the AdS black brane the
boundary metric is flat, this term will vanish, but we include it since it is needed for general
curved boundaries. The other term is non-zero and divergent, and is chosen to cancel the
leading divergences of the EH-GHY action. Applying it to the black brane, you should recover
exactly the same result for the action as before.

There are several things to observe about this result (just read, you are not asked to do
anything else):

(i) In conventional thermodynamics, the free energy density of a thermal gas gives its
pressure as P = −f . Therefore we can assign a pressure to this black brane, which satisfies the
conventional thermodynamic relation

E + PV = TS . (13)

(ii) Observe that ρ ∝ T 4, s ∝ T 3. These are the same relations satisfied by a gas of photons,
and in fact, by any scale-invariant thermal system in 3 + 1 dimensions. The prefactor of T 4
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in ρ is a measure of the number of local degrees of freedom (e.g., photon polarizations) of the
system, which is proportional to the ‘Stefan-Boltzmann constant’.

For such a gas,

P =
ρ

3
, (14)

which may be familiar to you as the equation of state for a ‘radiation perfect fluid’ used in
cosmology.

The fact that the thermodynamics of a five-dimensional black brane in AdS takes the same
form as the thermodynamics of a conformally-invariant four-dimensional theory (without grav-
ity) is one of the most basic features of the AdS/CFT correspondence. The Stefan-Boltzmann
constant computed gravitationally as above is a measure of the microscopic number of local
degrees of freedom of the black brane.

You may want to extend this analysis to an arbitrary dimension ≥ 3.

c. AdS black hole thermodynamics

The same theory (10) has black hole solutions with spherical horizons, with metric

ds2 =

(
1− µ

r2
+

r2

ℓ2

)
dτ 2 +

dr2

1− µ
r2

+ r2

ℓ2

+ r2dΩ2
3 . (15)

Here µ is a parameter for the mass of the black hole (in this exercise you will find how the
mass M is related to µ). When µ = 0 the geometry is that of empty AdS5 in so-called global
coordinates (whereas, in the previous exercise, when rH = 0 we obtain empty AdS5 in Poincaré
coordinates). When µ ̸= 0, in the limit ℓ → ∞ we recover the Schwarzschild-Tangherlini
solution in five dimensions.2

When µ > 0 this metric has a black hole horizon at the radius r = r+ where gττ = 0. This
is a quartic equation that one can solve explicitly, but it will often be more convenient to solve
for µ as

µ =
r2+(r

2
+ + ℓ2)

ℓ2
(16)

and then use r+ as a parameter in the solution instead of µ.
Begin by first determining the temperature of the black hole in terms of r+. You must find

T =
2r2+ + ℓ2

2πℓ2r+
. (17)

Following the steps of the previous exercises, and performing counterterm subtraction, com-
pute the Euclidean action and then the free energy of the solution. You must find that3

F = − π

8G

r2+
ℓ2
(
r2+ − ℓ2

)
+ E0 , (18)

2You may also want to verify that if you rescale r → λr, t → t/λ, µ → λ4µ, and take λ → ∞, then you
recover (8) after replacing the large sphere λ2dΩ3 (by taking stereographic coordinates) with the flat R3 metric∑3

i=1(dx
i)2. How do you interpret this limit?

3The area of the unit S3 is 2π2.
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where

E0 =
3π

32G
ℓ2 (19)

is a vacuum, β-independent contribution. This is interpreted in dual terms as the Casimir
energy of the CFT on a spatial S3.

Derive from here that the energy (mass) of the black hole is

M =
3π

8G
µ+ E0 , (20)

and verify that the entropy reproduces correctly the Bekenstein-Hawking area law.
With these results you can now explore the thermodynamics of this system. You can first

observe that for any given temperature above Tmin =
√
2/πℓ there exist two different black

holes, one larger than the other, while below Tmin there is no black hole phase and only a
thermal gas of radiation is possible. The specific heat of the black hole solutions changes
between the two black hole phases, from being negative for r+/ℓ < 1/

√
2 (small µ) to being

positive for r+/ℓ > 1/
√
2 (large µ). Large black holes inside the ‘AdS box’ have positive specific

heat and therefore are thermodynamically stable (locally).
Going further, you can plot F as a function of β (hint: do a parametric plot, with F and β

given in terms of the parameter r+). Bearing in mind that the free energy of empty AdS5 is E0,
which is β-independent, you will then see that F takes the ‘swallow tail’ shape characteristic
of first order phase transitions. Recall that in the canonical ensemble, a system will tend to
minimize its free energy. A first order phase transition happens when the phase of lowest F
changes from one configuration to another (the free energy is continuous across the transition,
but the entropy is not: latent heat is released or absorbed, which you may compute). In the
present system, if we start at low temperature T (large β), the preferred phase is initially empty
(thermal) AdS space (with F = E0), but as the temperature is raised (β decreases) there arrives
a moment when the preferred phase is the Schwarzschild-AdS solution (with F < E0).

This phase transition, which occurs when r+ = ℓ and T = THP = 3/(2πℓ), is known as
the Hawking-Page transition. It is a very important phenomenon in AdS/CFT, where it is
interpreted as a confinement/deconfinement transition in the dual quantum field theory.

Observe that THP > Tmin, so there are some ‘large’ black holes (with 1/
√
2 < r+/ℓ < 1)

that are locally thermodynamically stable (i.e., have positive specific heat) but are not globally
thermodynamically stable since there is another phase (thermal AdS) with lower free energy.
Small black holes are never thermodynamically preferred.
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Normalizability in AdS

Consider a spacetime that is asymptotic to AdSd+1 (with unit radius) in the form

ds2 →
dz2 − dt2 + dx2

d−1

z2
+ . . . (1)

= −r2dt2 +
dr2

r2
+ r2dx2

d−1 + . . . , (2)

the two forms of the geometry being related by z = 1/r; we can equivalently work with one or
the other, with asymptotic infinity being at z → 0 or r → ∞. We have taken the boundary to
be flat, but it will become clear that the analysis remains valid if it is spatially spherical.

Take a massive scalar field that satisfies the Klein-Gordon equation

□Φ−m2Φ = 0 . (3)

The Klein-Gordon product for two such fields is

(Ψ,Φ) =

∫
Σ

ddx
√
hnµ (Ψ∗∂µΦ− Φ∗∂µΨ) , (4)

where Σ is a spacelike section of the spacetime, nµ its normal, and
√
h is the volume element

in it. This product remains constant in time for solutions of the Klein-Gordon equation—if
you have not seen this before, you can easily verify it (the product is the space integral of the
Wronskian)—and it defines a conserved norm for these fields.

In (1), take Σ to be a surface at constant t, so that, asymptotically,

nt =
1

r
,

√
h = rd−2 (5)

and for simplicity consider fields of the form

Φ ∼ e−iωtϕ(r) (6)

(we suppress the spatial dependence on x just to keep notation lighter).
• Find that

(Φ,Φ) ∼
∫

dr rd−3 ϕ2(r) . (7)

Then, if asymptotically we have

ϕ(r) ∼ 1

r∆
(8)

show that normalizability requires

∆ ≥ d

2
− 1 . (9)

This is the same as the unitarity bound for scalar operators of a CFTd.
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The asymptotic solution for a massive field in AdS has two independent modes, with leading
terms of the form

ϕ ∼ ϕ(0)

rd−∆
+ · · ·+ ϕ(d)

r∆
+ . . . (10)

where

∆ =
d

2
+

√
d2

4
+m2 (11)

(if you have never obtained this result before, you should do it now).
Conclude that

� The mode ϕ(d) is always normalizable

� The mode ϕ(0) is normalizable only if the mass lies in the range

m2
BF ≤ m2 ≤ 1 +m2

BF (12)

where m2
BF = −d2/4 is the mass of the Breitenlohner-Freedman bound.
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