Lecture 1: Majorana fermions in condensed matter

Sunday, February 8, 2015 2:55 PM

Title: Anyonic Defects: A New Paradigm for Non-Abelian Statistics

Plan for lectures:

1.
2.
3.

Braid

group: S \ i
1 2 3 1 2 3 p

Majorana fermions in condensed matter physics
Fractionalized Majoranas and parafermionic algebra on FQH edges
Generalized discussion of defects. FQH bilayers. Ising defects

Background

In the preceding lectures, you saw how to describe topologically ordered states of matter.
These are T=0 phases of interacting particles (in most of these lectures we have focused
on two spatial dimensions, although higher dimensional examples are also possible),
which are gapped in their bulk. Nevertheless, there is a non-local (topological) order in
the ground state wavefunction; the system cannot be adiabatically connected to a
different, non-topoligically ordered phase without crossing a phase transition.

Defining properties of topological order:

Gap in the bulk, not adiabatically continuable to a "trivial" (site-factorizable) phase
Topological degeneracy on high-genus surfaces: the g.s. wavefunction "feels" the
topology of the manifold. This degeneracy is topological, in the sense that it cannot be
lifted by any local term: the degenerate states are distinct by a "non-local" (string)
operator. Only way to lift the degeneracy is through a phase transition, in which the bulk
gap closes.

The phase supports fractionalized "particle-like" excitations which carry fractional
statistics. These are often associated also with fractionalized quantum numbers (as the
e/3 charges in the Laughlin FQ state). The statistics of the excitations can be non-Abelian
(more on this later). The presence of these excitations is directly related to the
degeneracy of the g.s. on high-genus surfaces.

In some (but not all) cases: the topological order may manifest itself in the presence of
gapless edge states in a system with open boundary conditions. These gapless edge states
may be described by a CFT. E.g. quantum Hall phases discussed in other lecture. NOT in
phases such as Kitaev's toric code (the Z2 gauge theory).

Non-Abelian statistics arises if the topological degeneracy of the ground state increases
exponentially when excitations are introduced. In this situation, exchanging two
excitations ("anyons") corresponds not to a phase factor, but a matrix acting on the
ground state Hilbert space.

Non-Abelian Statistics:
Braiding
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2D vortices: Ivanov, Read & Green,..
1D wire network: Alicea et.al (2010)

There is clearly a connection between the topological degeneracy that appears on a non-
zero genus surface and the one that appears when non-Abelian excitations are
introduced. In these lectures, | will explore this connection. | will show that introducing
defects into these systems mimics the effect of a high-genus surface. As a result, in the
presence of these defects, the ground state degeneracy increases. Moreover, one can
define a "braiding" operation on defects; they give rise to a new kind of non-Abelian
statistics, distinct from that of anyons. Defects in Abelian systems behave as non-Abelian

Florence School 2015 Page 1



objects; introducing defects in a non-Abelian system enriches its properties, providing
additional "quantum gates" that can be implemented in a topologically protected
manner.

Majorana zero modes in condesed matter physics

Majorana zero modes are at the heart of the simplest kind of non-Abelian
statistics - that of Ising anyons - and also the simplest example of a non-Ablian
defect. They are also the kind which is probably closest to experimental
realization. | will spend most of this lecture describing them.

Majorana zero modes are closely tied with superconductivity. They can appear at
cores of vortices in p-wave superconductors, and at edges of superconducting
wires. They also appear as quasi-particles of the Moore-Read v = 5/2 state; this
state turns out to be just a paired (superconducting) state of composite
fermions. Let me start by briefly remind you some basic facts about the
spectrum of a superconductor.
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Notes:

1. If we solved the model on the lattice, the number of solutions has to be even, since
the dimension of the Hamiltonian is even. Therefore, there cannot be an isolated
zero mode.

2. The edge modes are chiral, i.e., they move in one direction (similar to quantum Hall
edges).

3. The E = 0 state (the zero mode) is special: the corresponding f operator is
Hermitian, i.e. it is equal to its own conjugate:
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Lecture 2: Majorana zero modes (cont.)

Monday, February 9, 2015 10:27 PM

More on the properties of Majoranas (e.g. braiding) soon. We will now change gears,
and discuss Majoranas in one dimensional systems.
Here, we are mostly following Kitaev (2003).
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Heunce

Notes:

- The result of the braiding protocol is topological; it does not depend on
deviations from the path in Hamiltonian space, aJ;;(4), as long as y,
remains decoupled in step 1, etc.

- The resulting braiding matrices U;; form a projective representation

of the braid group. By "projective" here we mean that the group
relations are obeyed up to a phase.

S

Uiz Ujq = Uy Uiy

Uin Uy Uip = Uz Uiy Uy Yamg - Baxter equaﬂ'on)

- As mentioned earlier in this school, the Majorana (Ising anyon) braiding
rules are non-universal for quantum computation purposes. This can be
seen, e.g., from taking a single "qg-bit" made out of four zero modes, and
consider all the possible braiding operations.

To see +his take €4 N=4 gero modes | U .., .

t e Oq
a 1 Lix tl\e total fermion Parﬁ-} . P = 9, 71 73 .

'130 0Ty Tl\& j'g. fs now +W0 "Old dtg (m&faft.
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This  result generalizes  to an arbu’tmr; number of  9bits,
Oone com show that it the Bm(ah'n? preserves the

a Pauli growp defired on an n- qbi+ Hilbert space

t‘\e;\ "t Is  not um'versozl.

—_—

Suppose we allow for arbitrary interactions (beyond mean field theory). Could we get a phase

with zero modes that extend the behavior of Majorana zero modes, and obtain the missing
gates for universal TQC?

The answer to this question is believed to be no. To shed light on it, it is useful to understand

the topological phase in the wire and the nature of Majoranas in one dimension in a more
general way.

Florence School 2015 Page 8



The HMojorana thain an be mapped  to  the Transverse field

Isfn} model:

Yy =(m9E)o}

ke

In derms of  +these  varibles

T
H= -t Z‘I’.+"'/j+| - A%‘I’J ‘{’Jﬂfl\.l,- - [")Z“'V:“PJ

: ]
)

|+ o
- + ] - - + Y 4 —_—
- eI o, S AZ o el ke —pkE S
b ] b4
- +
< -t Z . €'+I A Z G+ o-'-tl LC = r_Zo-z + COnSJ’,
;4 ;¢ 25
o*vig? olnich, o+ ig! g ig?
= -t Z : hoe. -~ 072 LI it R
by A 2 ) z
H Z H
- - ('
2 5
< A X oo g 5 X Yoy - I 2
= - §(6; T * 97 00) - 3 § G % GO T 2L
t-A M
- -Z(f_”} * g* 4 59 - z
= 3 2 O; O;Rﬂ + 2z 03 o-aﬂ 2 % 0-6

This is the well-known XYZ model, which can have three gapped phases:
disordered, ordered with {¢*) # 0, and ordered with (o¥) # 0.

Schematic Phast oln'A?run:

AN '{ e This can be reod  from +he sPed-ru,M;
<a*s 40 N N\ Ka¥S¢# 0
D iserdeced E = :tl(— 2t cosk = p)* +zA sin k)

NI
— :'L_—‘3 bxa Ioco.Hns the fa'}l'ons where

\ ‘
<gi>+0 \\\ \
N

Ni=

Oh¢ 0 the qop c[oses.

—_—

(For t=¢A this s the wwmal  trangverse field Tsing mode(. )

Note H\L s\&mme‘rr»a that protects the @*> 20 and <otS+o pﬁase;:
This s
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iw (=)

P H) =6 with P= Tred = me ™ NN
3 )

A fild in th x o 3 diection & & non- local

e —

ot  the Jermions.
Thic would still be true W the presence of

Ctrb\"‘“ro‘n} \'f\“‘kQCHOns (>€4W€€/\ 'Fefh;oﬂs .

There are general arguments (Turner, Pollmann, EB (2010); Fidkowski,
Kitaev (2010); Schuch et al. (2011); Chen, Gu, Wen (2011)) that this is
the end of the story in 1D; in an arbitrary interacting system of
fermions, there could be only two stable gapped phases, the
topological phase with Majoranas at the end and a trivial phase. If extra
symmetries are present, more phases - symmetry protected topological
(SPT) phases - are possible. However, as long as our system is made out
of fermions, this won't give any new non-Abelian properties beyond
those of Majoranas. To find something richer, our basic degrees of
freedom need to be anyons, as we will see next.

Gapped phases of fermions
A. Turner, F. Pollmann, EB (2010)

No symmetries: only one gapped phase in 1D
(N. Shuch et al., 2011)

e Conservation of fermion parity with () = (—1)"V ot

Q“\. /Qs
o000 O0O0OGCOOOS

“Fractionalization” of the parity Q — Q Q
operator (in low-energy subspace) A =8

Q ,,Qpeither fermionic or bosonic!

(21(23 _ E"j'“(b)B(J‘.l .

= two distinct phases with n = 0.7
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