
Title: Anyonic Defects: A New Paradigm for Non-Abelian Statistics

Plan for lectures:

Majorana fermions in condensed matter physics1.
Fractionalized Majoranas and parafermionic algebra on FQH edges2.
Generalized discussion of defects. FQH bilayers. Ising defects 3.

Background
In the preceding lectures, you saw how to describe topologically ordered states of matter. 
These are T=0 phases of interacting particles (in most of these lectures we have focused 
on two spatial dimensions, although higher dimensional examples are also possible), 
which are gapped in their bulk. Nevertheless, there is a non-local (topological) order in 
the ground state wavefunction; the system cannot be adiabatically connected to a 
different, non-topoligically ordered phase without crossing a phase transition. 

Defining properties of topological order:
Gap in the bulk, not adiabatically continuable to a "trivial" (site-factorizable) phase-

Topological degeneracy on high-genus surfaces: the g.s. wavefunction "feels" the 
topology of the manifold. This degeneracy is topological, in the sense that it cannot be 
lifted by any local term: the degenerate states are distinct by a "non-local" (string) 
operator. Only way to lift the degeneracy is through a phase transition, in which the bulk 
gap closes. 

-

The phase supports fractionalized "particle-like" excitations which carry fractional 
statistics. These are often associated also with fractionalized quantum numbers (as the 
e/3 charges in the Laughlin FQ state).  The statistics of the excitations can be non-Abelian 
(more on this later). The presence of these excitations is directly related to the 
degeneracy of the g.s. on high-genus surfaces.

-

In some (but not all) cases: the topological order may manifest itself in the presence of 
gapless edge states in a system with open boundary conditions. These gapless edge states 
may be described by a CFT. E.g. quantum Hall phases discussed in other lecture. NOT in 
phases such as Kitaev's toric code (the Z2 gauge theory).

-

Non-Abelian statistics arises if the topological degeneracy of the ground state increases 
exponentially when excitations are introduced. In this situation, exchanging two 
excitations ("anyons") corresponds not to a phase factor, but a matrix acting on the 
ground state Hilbert space. 

There is clearly a connection between the topological degeneracy that appears on a non-
zero genus surface and the one that appears when non-Abelian excitations are 
introduced. In these lectures, I will explore this connection. I will show that introducing 
defects into these systems mimics the effect of a high-genus surface. As a result, in the 
presence of these defects, the ground state degeneracy increases. Moreover, one can 
define a "braiding" operation on defects; they give rise to a new kind of non-Abelian 
statistics, distinct from that of anyons. Defects in Abelian systems behave as non-Abelian 
objects; introducing defects in a non-Abelian system enriches its properties, providing 
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objects; introducing defects in a non-Abelian system enriches its properties, providing 
additional "quantum gates" that can be implemented in a topologically protected 
manner. 

Majorana zero modes in condesed matter physics

Majorana zero modes are at the heart of the simplest kind of non-Abelian 
statistics - that of Ising anyons - and also the simplest example of a non-Ablian 
defect. They are also the kind which is probably closest to experimental 
realization. I will spend most of this lecture describing them. 

Majorana zero modes are closely tied with superconductivity. They can appear at 
cores of vortices in p-wave superconductors, and at edges of superconducting 
wires. They also appear as quasi-particles of the Moore-Read      state; this 
state turns out to be just a paired (superconducting) state of composite 
fermions. Let me start by briefly remind you some basic facts about the 
spectrum of a superconductor.
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If we solved the model on the lattice, the number of solutions has to be even, since 
the dimension of the Hamiltonian is even. Therefore, there cannot be an isolated 
zero mode. 

1.

The edge modes are chiral, i.e., they move in one direction (similar to quantum Hall 
edges).

2.

The E = 0 state (the zero mode) is special: the corresponding f operator is 
Hermitian, i.e. it is equal to its own conjugate:

3.

Notes: 
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Note
The weak pairing phase of the p+ip SC is topologically distinct from the 
trivial phase. This can be seen from the fact that it has chiral edge states, or 
alternatively, from the fact that it has a zero mode at a vortex core 
("defect"). Such an isolated mode at E=0 cannot disappear without a phase 
transition in which the bulk gap closes. 
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More on the properties of Majoranas (e.g. braiding) soon. We will now change gears, 
and discuss Majoranas in one dimensional systems.
Here, we are mostly following Kitaev (2003). 
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The result of the braiding protocol is topological; it does not depend on 
deviations from the path in Hamiltonian space,        , as long as   

remains decoupled in step 1, etc.

-

The resulting braiding matrices    form a projective representation 

of the braid group. By "projective" here we mean that the group 
relations are obeyed up to a phase.  

-

Notes:

As mentioned earlier in this school, the Majorana (Ising anyon) braiding 
rules are non-universal for quantum computation purposes. This can be 
seen, e.g., from taking a single "q-bit" made out of four zero modes, and 
consider all the possible braiding operations. 

-
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Can we go beyond Majorana zero modes in one spatial dimension?

Suppose we allow for arbitrary interactions (beyond mean field theory). Could we get a phase 
with zero modes that extend the behavior of Majorana zero modes, and obtain the missing 
gates for universal TQC?

The answer to this question is believed to be no. To shed light on it, it is useful to understand 
the topological phase in the wire and the nature of Majoranas in one dimension in a more 
general way.
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This is the well-known XYZ model, which can have three gapped phases: 
disordered, ordered with       , and ordered with       .
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There are general arguments (Turner, Pollmann, EB (2010); Fidkowski, 
Kitaev (2010); Schuch et al. (2011); Chen, Gu, Wen (2011)) that this is 
the end of the story in 1D; in an arbitrary interacting system of 
fermions, there could be only two stable gapped phases, the 
topological phase with Majoranas at the end and a trivial phase. If extra 
symmetries are present, more phases - symmetry protected topological 
(SPT) phases - are possible. However, as long as our system is made out 
of fermions, this won't give any new non-Abelian properties beyond 
those of Majoranas. To find something richer, our basic degrees of 
freedom need to be anyons, as we will see next.
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