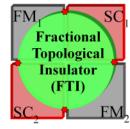
Beyond Majorana fermions

Consider the effectively 1D boundaries of 2D a topological phase which supports (abelian) anyons.

"Fractional topological insulator":

Laughlin Quantum Hall state with:

v=1/m for spin up v=-1/m for spin down (m odd)

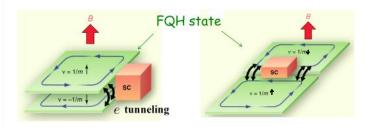


Stable phase: Levin and Stern (2010)

Majorana fermions at SC/FM interfaces: Fu and Kane (2009)

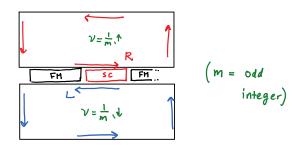
Beyond Majorana fermions

Fractional quantum Hall "realizations" of a Fractional Topological Insulator



Lindner, EB, Stern, Refael (2013); Clarke, Alicea, Shtengel (2013); Cheng (2013)

this system, write down effective low To analyze effective model for the edge States:



Free action:

$$S = \frac{m}{4\pi} \sum_{P} \int d\tau \ dx \left[iP \ \partial_{\tau} \, \varphi_{P} \ \partial_{x} \, \varphi_{P} \ + \ U \left(\partial_{x} \, \varphi_{P} \right)^{2} \right]$$

$$\left(P = \pm 1 \quad \text{for} \quad R, L \quad \text{movers}, \quad \text{respectively} \right)$$

Free Hamiltonian:

$$H_{\sigma} = \frac{Um}{4\pi} \int dx \left[\left(\partial_{x} \phi_{R} \right)^{2} + \left(\partial_{x} \phi_{L} \right)^{2} \right]$$

Commutation relations:

$$\left[\phi_{p}(x),\phi_{p}(x')\right]=\frac{i\pi}{m}^{p}\operatorname{sgn}(x'-x)$$

$$\left[\phi_R(x) , \phi_L(x') \right] = \frac{i\pi}{m}$$

The density of right/left movers is:

$$S_P = \frac{1}{2\pi r} \partial_x \phi_P$$

The electron operator at the edge is

Q.P. operator:

Note about notations

I am using a different convention here relative

to previous lectures:

مري

Schoutens,

here Regnau

OPE of vertex operators:

$$e^{i \alpha \varphi_R(z)} e^{-i \alpha \varphi_R(w)} \sim \frac{1}{(z-w)^{\alpha^2/m}}$$

$$\left(\left\langle \varphi_{R}(z) \; \varphi_{R}(w) \right\rangle \sim -\frac{1}{m} \ln \left(z-w\right)\right)$$

$$\int_{0}^{\infty} d^{2} \left(\Phi_{R}(z) - \Phi_{R}(w) \right) = \int_{0}^{\infty} d^{2} \left[\left\langle \Phi_{R}^{2}(0) \right\rangle - \left\langle \Phi_{R}(z) \Phi_{R}(w) \right\rangle \right]$$

$$(e) \sim e^{-\frac{\alpha^{2}}{m} \ln(z-m)}$$

$$= \frac{1}{(z-m)^{\alpha^{2}/m}}$$

Extra terms that arise in SC/FM regions:

S.C. pair tunneling term

$$-g_{s}(x) \Psi_{R}^{\dagger} \Psi_{L}^{\dagger} + h.c. \sim -g_{s}(x) e^{-mi(\phi_{R} - \phi_{L})} + h.c.$$

$$= -2g_{s} \cos m(\phi_{R} - \phi_{L})$$
Assume g_{s} real

F.M. Single electron tunneling $-g_F(x) \ \Psi_R^{\dagger} \ \Psi_L + h.c. \sim -2g_F \cos m(\phi_R + \phi_L)$

Spin and charge densities:

$$\beta(x) = \frac{1}{2\pi} (\partial_x \phi_R + \partial_x \phi_L) = \frac{1}{\pi} \partial_x \theta$$

$$S^2(x) = \frac{1}{2\pi} (\partial_x \phi_R - \partial_x \phi_L) = \frac{1}{\pi} \partial_x \phi = J \quad (Current density)$$

Hamiltonian:
$$H = H_0 - \int dx \left[g_s(x) \cos(2m\phi) + g_F(x) \cos(2m\phi) \right]$$

$$H_0 = \frac{m\sigma}{2\pi} \int dx K (\partial_x \theta)^2 + \frac{1}{\kappa} (\partial_x \phi)^2$$

$$K - Luttinger parameter$$

Suppose that both the FM and SC regions are in their gapped phase (9.9.9 large enough)

$$\phi_j$$
 "pinned" in SC regions to cosine minima: $\phi_j = \frac{n_j \pi}{m}$

$$\theta_{L} = \frac{n_{\ell}\pi}{m}$$

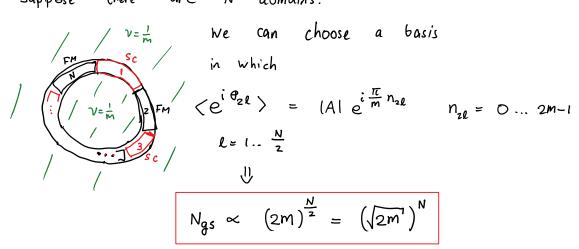
$$e^{i\phi_i} e^{i\theta_i} = e^{[i\phi_i, i\theta_i]} e^{i\theta_i} e^{i\phi_i}$$

$$= e^{-\frac{i\pi}{m}\Theta_{i,i}} e^{i\theta_i} e^{i\phi_i}$$

$$\Theta_{a,j} = \begin{cases} 1 & l > j \\ 0 & l \leq j \end{cases}$$

Therefore, θ_{ℓ} , ϕ_{i} ($\ell > i$) cannot be pinned together. We can choose a basis where $\langle e^{i\theta_{\ell}} \rangle \neq 0$ ant then $\langle e^{i\theta_{\ell}} \rangle = 0$, or vice versa.

Suppose there are N domains:

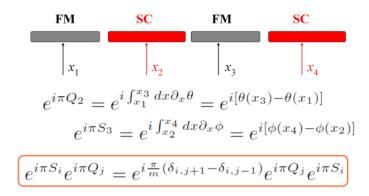


$$m=1$$
: $d=\sqrt{2}$ (Majorana zero mode!)

Physical interpretation: Charge and Spin operators

Q and S operators

In terms of the $\phi,~\theta$ fields, one can define the Q, S operators:



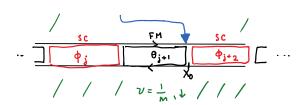
Zero modes at interfaces

Just as in the Majorana case, there is a "zero mode" at the interface between the SC and FM regions. To see this, notice that in the m=1 case, the operators

$$\Psi_{R,L} \sim e^{i(\theta \pm \phi)}$$

are essentially the Majorana zero modes at the interfaces.

To understand this, imagine acting with Ψ_R or Ψ_L near one of the interfaces:



To understand what this does, imagine "splitting" the operator $e^{i \phi(x_0)} e^{\pm i \theta(x_0)} = e^{i \phi(x_0 + \epsilon)} e^{\pm i \theta(x_0 - \epsilon)}$

where ϵ is of the order of the correlation length ξ .

In the FM region: $e^{\pm i\,\theta(x_0-\epsilon)}\approx \langle e^{i\,\theta_{j+1}}\rangle = |A|\,e^{i\frac{\pi}{m}\,n_j}$ In the SC region: $e^{i\,\varphi(x_0+\epsilon)}$ Shifts $e^{i\,\theta\epsilon} \rightarrow e^{i\,\theta\epsilon+i\frac{\pi}{m}}$ for $\ell>i+1$

(you can check that this changes the charge of the j+z s.c.: $\langle e^{i\pi Q_{j+2}} \rangle \rightarrow \langle e^{i\pi (Q_{j+z} - \frac{1}{m})} \rangle$

These arguments carry over for any m. For $m \ge 3$, the zero mode operator $e^{i(\phi \pm \theta)}$ is a Laughlin q.p.; i.e., at the interface fractional Laughlin q.p.'s can be absorbed with zero energy cost.

Explicit representation of zero mode operators

on low-energy subspace

Now, we can construct explicitly a representation of the zero of the zero modes. Choose a basis such that $\theta_{2j+1}=\frac{\pi}{m}\;n_{2j+1},\;n_{2j+1}=0...\;2m-1.$

A state is represented as

The zero mode operator $\chi_{j\uparrow,\downarrow} \sim e^{i\phi_j} e^{\pm i\theta_{j\uparrow}}$ acts as follows:

$$\chi_{j\uparrow,\downarrow} = e^{\pm i \frac{\pi}{m} n_{j+1}} / ... n_{j+1}, n_{j+3} + 1, n_{j+5} + 1, ... >$$

These zero mode operators satisfy the following relations:

$$(\chi_{j,\sigma=\uparrow,\iota})^{2m}$$

$$\chi_{j,\uparrow} \quad \chi_{k,\sigma} = e^{-\frac{i\pi}{m}} \chi_{k,\sigma} \chi_{j,\uparrow}$$

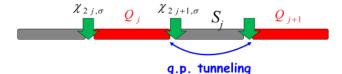
$$\chi_{j,\downarrow} \quad \chi_{k,\sigma} = e^{i\frac{\pi}{m}} \chi_{k\sigma} \chi_{j\downarrow} \qquad (j < k)$$

"Parafermionic exchange relations" (Fendley 2D12)

Coupling of interfaces

$$\chi_{2j,\sigma}$$
 Q_j $\chi_{2j+1,\sigma}$ S_j Q_{j+1}

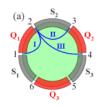
$$H_Q = -t\chi_{2j,\sigma}\chi_{2j+1,\sigma}^{\dagger} + h.c. = -2t\cos\left(\pi Q_j\right)$$



$$H_S = -t\chi_{2j+1,\sigma}\chi_{2j+2,\sigma}^{\dagger} + h.c. = -2t\cos\left(\pi S_j\right)$$

Braiding

Braiding domain walls 3 and 4:



$$U_{34} = \exp\left(i\frac{\pi m}{2}\hat{Q}_2^2\right) = \exp\left(i\frac{\pi}{2m}q_2^2\right)$$

 $Q_2 = \frac{1}{m}q_2, \quad q_2 = 0, \dots, 2m - 1$

Example: m=3 $q_2 = 2p + 3q$ (p = 0, 1, 2, q = 0, 1)

$$U_{34} = \exp\left(i\frac{\pi}{6}q_2^2\right) = \exp\left(-i\frac{\pi}{2}q^2\right)\exp\left(i\frac{2\pi}{3}p^2\right)$$

(Majorana) ⊗ (Something new!)

Alternative form of the Graiding matrix

$$\hat{U}_{34}^{(k)} = \exp\left[\frac{i\pi m}{2}\left(\hat{Q}_2 + \frac{k}{m}\right)^2\right]. \tag{24}$$

Alternatively, using the identity [48] $e^{i(\pi/2m)q^2} = \sqrt{\frac{1}{2m}} \sum_{p=0}^{2m-1} e^{i(\pi/m)[pq-(p^2/2)]+i(\pi/4)}$, one can write

$$\hat{U}_{34}^{(k)} = \sqrt{\frac{1}{2m}} \sum_{p=0}^{2m-1} e^{-(i\pi/2m)(p-k)^2 + i(\pi/4)} (e^{i\pi\hat{Q}_2})^p.$$
 (25)

The braiding matrices satisfy the Young Baxter equation:

 $\bigcup_{1\,2}^{(\kappa_1)} \quad \bigcup_{2\,3}^{(\kappa_1)} \quad \bigcup_{12}^{(\kappa_1)} = \quad \bigcup_{2\,3}^{(\kappa_1)} \quad \bigcup_{11}^{(\kappa_1)} \quad \bigcup_{2\,3}^{(\kappa_2)} .$

In the $v = \frac{1}{m}$ FQH State, the "topological spin"

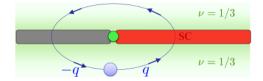
of the q.p. is $\Theta = \frac{\pi}{m}$ (the statistical phase

obtained when the particle is exchanged with itself)

=) The exchange phase of two defects = $\frac{1}{2}$ (top. spin of total "fusion change").

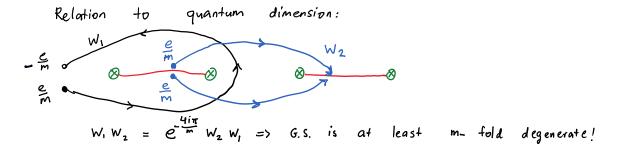
Fractionalized zero modes at "twist defects" in topological phases

Ends of line defects that interchange anyon types ("topological symmetry")



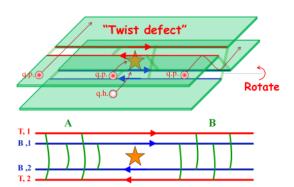
The "defect line" can permute anyon types.

Barkeshli, Jian, Qi (2013); Fidkowski, Lindner, Kitaev (unpublished)



Fractionalized zero modes at "twist defects" in topological phases

v=1/3 bilayer



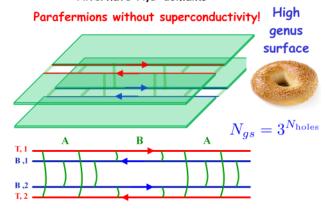
Fractionalized zero modes at "twist defects" in topological phases

Alternate A,B domains:



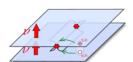
Fractionalized zero modes at "twist defects" in topological phases

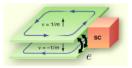
Alternate A,B domains:



Conclusion

New paradigm for realizing non-abelian anyons: defects on edges of two-dimensional topological phases.





Future directions:

Classification of 1D gapped edge states of 2D topological theories?

Experimental signatures?

Thank you.