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Phase transitions and Critical phenomena in many physical systems

There are two broad classes of phase transitions:

first order → discontinuity in thermodynamic quantities, such as the
energy density, magnetization, etc...

continuous → nonanalytic behavior due to a diverging length scale
characterizing the physical correlations

Examples of first-order and continuous transitions are found in the phase diagrams of
magnets, liquids, etc...
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• first general framework was proposed by Landau (1937) → mean-field approx
• satisfactory understanding by the renormalization-group theory (Wilson 1971)



First-order transitions

• discontinuous energy density (latent heat) and/or magnetization

• No diverging length scale is developed approaching Tc after the

thermodynamic limit, i.e.

limT→T±c limL→∞ ξ ≡ ξ± <∞

• However limL→∞ limT→Tc may develop a diverging length scale
related to the mixed phase (persistence length scale) −→ nontrivial FSS

Continuous transitions develop a diverging length scale

limT→T±c limL→∞ ξ =∞

giving generally rise to power-law behaviors

ξ ∼ |T − Tc|−ν , χ ∼ ξ2−η, CH ∼ a+ c|T − Tc|−α



Simple interactions may give rise to complex phenomena with long-distance

correlations, after an appropriate tuning of the thermodynamic parameters.

Critical phenomena observed in many different materials have several features
in common: Universality.

• Ferromagnetism, Curie transition: • magnetization from the spin of electrons
in the imcomplete atomic shells of metal atoms: each electron carries one Bohr
magneton • interactions among spins due to exchange effects

Hspin = −J
∑
〈ij〉

~si · ~sj −
∑
i

~h · ~si,

Z =
∑
{~si}

e−H/T , F = − T
V

lnZ

Ising model with si = ±1 describes uniaxial magnets

• Liquid-vapor transition (density instead of magnetization, µ instead of h):
Hlattice gas = −J∑

〈ij〉 ρiρj − µ
∑
i ρi, with ρi = (1 + si)/2 = 0, 1.

Ex.: critical opalescence in liquid systems, at their liquid-gas continuous transition,
light diffusion when the correlation length increases from 10−9 m to 10−6 m



Bose-Einstein condensation in gases of bosons

BEC transition in a perfect Bose gas when

λDB =

(
2π}2

mT

)1/2

≈ average distance of atoms = (N/V )−1/3

Below Tc ≈ }2(N/V )2/3/m, a macroscopic
number of atoms condenses to the lowest state,
in a free gas N0/N = 1− (T/Tc)

3/2.

Interactions, even weak, give rise to a power-law critical behavior characterized
by the U(1) symmetry related to the phase of the condensate wave function.

BEC recently observed in weakly interacting
boson gases, made of alkali atoms, rubidium,
sodium, lithium

velocity distribution of rubidium atoms

BEC-like phenomena in the normal-to-superfluid transition of 4He, which is a
liquid rather than a gas, thus strongly interacting (only 9% atoms condense for
T → 0, providing the superfluid component)



Some phase transitions characterize the earlier universe evolution



Continuous phase transitions are characterized by power-law behaviors

Phases related by a spontaneous SB, such as O(N) =⇒ O(N − 1)

• Disordered (symmetric) phase (t ≡ T/Tc − 1 > 0, H = 0):

ξ ∼ t−ν , CH ∼ t−α, χ ∼ t−γ ∼ ξ2−η, G̃(q) ≈ 1

q2 +m2

• Ordered (broken) phase (t < 0, H = 0+):

M ∼ |t|β , CH ∼ |t|−α, G̃T (q) ≈ M2

MH + ρsq2
, G̃L(q) ∼ qd−4

massless Goldstone (spin wave) modes appear, singular G̃T for H → 0

• Critical isotherm (t = 0, h > 0): ξ ∼ |h|−ν/βδ, G̃(q) ∼ q−2+η

• Scaling equation of state: h = tβδF (z), z = Mt−β in magnets,
=⇒ in fluids h→ ρ− ρc and M → µ− µc,
=⇒ at the chiral transition of QCD, condensate 〈ψ̄ψ〉 and quark masses

• There are also notable critical behaviors with exponential approaches:
• 2D Kosterlitz-Thouless transitions where ξ ∼ exp[c/

√
T − Tc]

and also • LATTICE QCD where ξ ∼ exp(cβ) • 2D σ models



Main ideas to describe the critical behavior at a continuous transition

• Order parameter which effectively describes the critical modes

• Scaling hypothesis: singularities arise from the long-range correlations
of the order parameter, diverging length scale

• Universality: the critical behavior is essentially determined by a few
global properties: the space dimensionality, the nature and the symmetry
of the order parameter, the symmetry breaking, microscopic interaction range

RENORMALIZATION-GROUP THEORY

• RG flow in a Hamiltonian space

• the critical behavior is associated with a fixed point of the RG flow

• only a few perturbations are relevant, the corresponding positive
eigenvalues are related to the critical exponents ν, η, etc...



The free-energy density obeys a scaling law at continuous transitions

Fsing(u1, u2, . . . , uk, . . .) = b−dFsing(by1u1, b
y2u2, . . . , b

ykuk, . . .)

ui are nonlinear scaling fields (analytic functions of the model parameters)

Two relevant fields ui with yi > 0: ut ∼ t, uh ∼ H, for t, h→ 0

• Setting byt |ut| = 1 → Fsing = |ut|d/ytFsing(uh|ut|−yh/yt , vi|ut|−yi/yt)

• Since vi|ut|−yi/y1 → 0 for t→ 0,

Fsing ≈ |t|d/ytf(|h||t|−yh/yt) + |t|d/yt+∆if(1,i)(|h||t|−yh/yt) + ...

yt = 1/ν, yh = (β + γ)/ν, ∆i = −yi/yt > 0.

FSS: scaling allowing for finite size L of the system, scaling as L→ L/b

Fs(ui, L) = b−dFs(b
yiui, L/b) =⇒ Fs(ut, uh) = L−dFs(L

ytut, L
yhuh)



Scaling phenomena emerge also at first-order transitions in finite systems

They are essentially related to the coexistence of different phases

Finite-size scaling at first-order transitions like continuous transitions.

• related to the diverging persistence length of the coexisting phases

• Simple effective exponents to be consistent with the discontinuities in
the thermodynamic limit: F (T+

c ) = F (T−c ), ∂F/∂T |T+
c
6= ∂F/∂T |T−

c

−→ Assuming ξ ∼ |T − Tc|−ν and Fsing = A±ξ
−d, consistency requires

ν = 1/d (this generally holds for systems with box-like shape)

Note that ν > 1/d at continuous transitions.

• also derived by phenomenological analyses using double-Gaussian distributions

• RG description in terms of a discontinuous fixed point



Heuristic derivation of QFTs to describe critical phenomena

Ex.: d-dim lattice Ising model H = −J∑〈ij〉 σiσj ,
σi = ±1, Z =

∑
{σi} exp(−H/T )

• The critical behavior is due to the long-range modes, with l� a.

• Blocking over b� l → coarse-grained variable ϕ(x) =
∑
i∈bx σi ∈ <,

with Hϕ4 = bd−2
∑
x,µ(ϕx+bµ − ϕx)2 + ubd

∑
x(ϕ2

x − v2)2 with Z2 sym

• The limit a→ 0 of Hϕ4 should not change the long-distance behavior,

then H(ϕ) =
∫
ddx

[
(∂µϕ)2 + rϕ2 + uϕ4

]
, where r − rc ∝ T − Tc

• Effectively Z =
∫

[dϕ] exp[−H(ϕ)] → QFT with H(ϕ)→ L(ϕ)

• RG flow by a set of RG equations for the correlation functions

=⇒ The way back provides a nonperturbative formulation of an
Euclidean QFT, from the critical behavior of a statistical model.

QCD defined from the critical regime
of 4D statistical systems

from quarks to baryons 0.5
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Effective Landau-Ginzburg-Wilson Φ4 theories of the critical modes

Many critical phenomena are described by LGW Φ4 theories

=⇒ They are constructed by introducing an order-parameter field Φi

capturing the main features of the critical modes, and imposing a few
global properties of the system, keeping terms up to 4th order:

L =

N∑
i=1

[(∂µΦi)
2 + riΦ

2
i ] +

N∑
ijkl=1

uijkl ΦiΦjΦkΦl

associated with different UNIVERSALITY CLASSES sharing the same
• spatial dimension • nature of critical modes and their order parameter
• symmetry and symmetry-breaking pattern • range of the interactions

Ex: Bose-Einstein condensation of an 3D atomic gas: D=3, quantum amplitude of the
condensate as order parameter, U(1) symmetry =⇒ 3D XY UNIVERSALITY CLASS:

L = |∂µϕ|2 + r |ϕ|2 + u |ϕ|4 with a complex field ϕ

The RG flow of the LGW Φ4 theory controls the universal features
of the critical behavior, such as the critical exponents



LGW Φ4 theories

L =
1

2

N∑
i=1

(∂µϕi)
2 + riϕ

2
i ] +

1

4!

N∑
ijkl=1

uijkl ϕiϕjϕkϕl

ri and uijkl depend on the symmetry

• If criticality is driven by one T -like parameter, and all ϕi become critical,∑
i ϕ

2
i must be the only invariant quadratic term. Thus ri = r,

∑
i uiikl ∝ δkl,

etc...

• The simplest case is the O(N) model, L = (∂µ~ϕ)2 + r~ϕ 2 + u (~ϕ 2)2

• In the absence of a large symmetry, several quartic couplings must be
considered.

• Several physically interesting systems require multi-parameter Φ4 theories,
disorder and frustrated systems, spin-wave density models, finite-T transition in
hadronic matter, competing orderings, etc...

• all Φ4 theories are trivial for D = 4, as O(N) models



RG flow can be studied by perturbative approaches in QFTs

We are interested in the critical behavior of the “bare” correlation
functions Γn(p; r, u,Λ) of the theory L = (∂µ~ϕ)2 + r~ϕ 2 + u (~ϕ 2)2

Note that in high-energy physics the physical correlations are the renormalized ones

• Massive (disordered phase) zero-momentum renormalization scheme

Γ2(p) = Z−1ϕ [m2 + p2 +O(p4)], Γ4(0) = Z−2ϕ m4−dg, Γ2,1(0) = Z−1t

which relate the renormalized parameters m, g to the bare r, u.

Renormalizable for d = 4, super-renormalizable for d < 4
(the 3D Φ4 theory is finite when written in terms of u/m4−d, neverthless the

renormalized quartic coupling g turns out to be useful even in 3D)

• The critical limit m→ 0 can be studied by the Callan-Symanzik RG

equations for Γ
(r)
n (p;m, g) = Z

n/2
ϕ Γn(p; r, u,Λ), i.e.[

m
∂

∂m
+ β(g)

∂

∂g
− 1

2
nηϕ(g)

]
Γ(r)
n (p) = [2− ηϕ(g)]m2Γ

(r)
n,1(p; 0)



• The RG functions β(g) = m∂g/∂m and ηϕ,t(g) = ∂lnZϕ,t/∂lnm can
be perturbatively computed as power series of g
(computed up to six, seven loops by Nickel etal for O(N) models, requiring the

calculation of O(103) Feynman diagrams; then extended to more complicated Φ4

theories with multiparameter quartic potentials)

• when m→ 0 the coupling g is driven toward an infrared-stable fixed
point, i.e., a zero g∗ of the β-function β(g) ≈ −ω(g∗ − g)

• Using the RG eqs, one identifies: η = ηϕ(g∗), 1/ν = 2− ηϕ(g∗) + ηt(g
∗),

and compute the critical exponents perturbatively

• The perturbative FT expansions are asymptotic: they must be
resummed before evaluating at g∗, exploiting Borel summability and
knowledge of the large-order behavior (appropriate instanton solutions)

• Other perturbative schemes have been exploited, such as the MS
renormalization scheme defined at the critical point T = Tc (massless
theory), ε ≡ 4− d expansion, etc... (computed up to five loops for O(N)

models; then extended to more complicated Φ4 models)



Φ4 theory for the 3D Ising model

ex. : Ising model His = −J
∑
〈ij〉

sisj , si = ±1, Z =
∑
s

e−His/T

−→ Z2 symmetry (which may arise dynamically, e.g. liquid-vapor transitions)

Universal critical properties encoded by the most general Φ4 theory with the

same symmetry, up to fourth order in the fields

−→ LLGW = (∂µϕ)2 + rϕ2 + uϕ4, Z =

∫
Dϕe−

∫
d3xLLGW

only renormalizable terms are RG relevant, higher-order terms are irrelevant

critical behavior controlled by the stable fixed point of the RG flow
ν α η β

PQFT: 6,7-l MZM 0.6304(13) 0.109(4) 0.034(3) 0.326(1)
PQFT: O(ε5) exp 0.6290(25) 0.113(7) 0.036(5) 0.326(3)
Experiments: liquid-vapour 0.6297(4) 0.111(1) 0.042(6) 0.324(2)
Experiments: fluid mixtures 0.6297(7) 0.111(2) 0.038(3) 0.327(3)
Experiments: uniaxial magnets 0.6300(17) 0.110(5) 0.325(2)
Lattice: high-T expansion 0.63012(16) 0.1096(5) 0.0364(2) 0.3265(1)
Lattice: Monte Carlo 0.63020(12) 0.1094(4) 0.0368(2) 0.3267(1)
Lattice: Monte Carlo 0.63002(10)
CFT: conformal bootstrap 0.629(1) 0.0341(5)
CFT: conformal bootstrap 0.629977(24) 0.11007(7) 0.036302(12) 0.326423(16)



Bose-Einstein condensation in atomic gases and liquid 4He

BEC in gases when

λde Broglie =
(

2π}2
mT

)1/2
≈ datoms = (N/V )−1/3

recently observed in weakly interacting gases, made
of alkali atoms, rubidium, sodium, lithium

velocity distribution of rubidium atoms −→
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evidence of a critical behavior
←− the correlation length of critical modes
at BEC of a trapped atomic gas
(Donner etal, Science 2007)

BEC at the normal-to-superfluid transition of 4He

strongly interacting (9% atoms condense for T → 0)

specific heat of liquid 4He up to a few nK from Tc −→
α = −0.0127(3) from Cv ≈ a+ b|t|α
(space-shuttle experiment in micoigravity conditions, Lipa

etal, PRL 1996 + 2000 + PRB 2003 )



Example of BEC transitions: The Bose-Hubbard model on a cubic lattice

Bosonic gas defined from the lattice annihilation-creation operators bx, b
†
x and

HBH = −J
2

∑
〈xy〉

(b†xby + h.c.) + U
∑
x

nx(nx − 1)− µ
∑
x

nx

[bx, b
†
y] = δxy, nx ≡ b†xbx, U(1) sym : bx → eiθbx

BH models describe bosonic atoms loaded in optical lat-
tices (arrays of microscopic potentials induced by ac Stark

effects of interfering laser beams) (D. Jaksch etal, PRL 1998)

The capability of varying the confining potential allows to vary
the spatial geometry, achieving also quasi-1D geometries

finite-T normal-to-superfluid transitions arising from BEC

〈b†xby〉 →M2 at large distance

phase diagram of the 3D BH model in
the hard-core U →∞ limit vacuum Mott n = 1

µ/J

T/J

normal fluid

3-3

superfluid



Landau-Ginzburg-Wilson Φ4 QFT approach to BEC transitions

Universal behaviors from LGW Φ4 QFT sharing global properties:
dimensionality (3D at finite T ), order-parameter nature, symmetry breaking

BEC gives rise to the symmetry breaking U(1) → Z2

bx −→ ϕ(x) complex order-parameter field of the LGW theory

Z =
∫

[dϕ(x)] exp[−
∫
ddxLLGW], LLGW = |∂µϕ|2 + r |ϕ|2 + u |ϕ|4

BEC of atomic gases, superfluid transition in 4He, superconductors, liquid crystals,

easy-plane magnets, etc...

Some of the best results for the U(1)-symmetric 3D XY universality class.
∗ marks results obtained using the hyperscaling relation 2− 3ν = α

ν η α

Experiment 4He Lipa etal, 1996, 2000, 2003 0.6709(1)∗ −0.0127(3)

Φ4 QFT 6,7-loops MZM Nickel, Zinn-Justin,...,1976, 1998 0.6703(15) 0.035(3) −0.011(4)

5-loop O(ε5) exp Guida, Zinn-Justin, 1998 0.6680(35) 0.038(5) −0.004(11)

Lattice MC+HT CHPV 2006 0.6717(1) 0.0381(2) −0.0151(3)

MC Burovski etal, 2006 0.6717(3) −0.0151(9)

−→ note however a significant discrepancy between experiments and lattice results



Quantum transitions at zero temperature

driven by quantum fluctuations −→ singular low-energy properties

=⇒ Nonanaliticity of the ground-state energy with respect to one of
model parameters, where the gap ∆ vanishes in the large-volume limit

Consider a quantum many-body theory described by
the Hamiltonian H = H0 + gH1. Two scenarios:

• Level crossing if [H0, H1] = 0.

• More interestingly: avoided level crossing be-
tween the ground state and the first excited state,
which closes approaching the infinite volume limit

=⇒ leading to a nonanaliticity at g = gc

(b)

E

E

g

g

(a)

Quantum critical behavior describes the interplay between quantum and
thermal fluctuations at low T around the T = 0 quantum critical point

Continuous QPT −→ diverging length scale ξ, and scaling properties,
described by the RG scaling theory



Example: the quantum Ising chain in a transverse field

Z = Tr e−H/T , H = −J
∑
i

σxi σ
x
i+1 − g

∑
i

σzi − h
∑
i

σxi ,

For h = 0:

• g → +∞ −→ GS=
∏
i | ↑i〉 ( | ↑i〉 and ↓i〉 are eigenstate of σzi )

• g = 0 −→ two degenerate ground states
∏
i | →i〉 and

∏
i | ←i〉

Such phases extended to finite g, giving rise to two different quantum
ordered and disordered phases.

• Continuous QPT at g = gc = J and h = 0 between the quantum
paramagnetic (g > gc) phase and the ordered (g < gc) phase breaking Z2

2D Ising universality class: ∆ ∼ ξ−1 ∼ |g − gc|

• First-order transition driven by h at the coexistence curve g < gc,
with a discontinuity of the magnetization 〈σxi 〉 of the ground state.



Universality and RG theory extend to continuous QPT

Consider a CQPT characterized by a relevant parameter g to be tuned to
approach the quantum transition point, with yg ≡ 1/ν

ḡ = g − gc =⇒ ξ ∼ |ḡ|−ν , ∆ ∼ |ḡ|zν ∼ ξ−z

The temperature represents a relevant parameter: ξ ∼ T−1/z at gc.

Scaling law of the free energy F (µ, T ) = b−(d+z)F (ḡb1/ν , T bz)

Typical 3D phase diagram −→
• classical description at the finite-T
transition line, when }ωcrit < kBT

• Quantum scaling laws describe the
critical behavior around the QCP,
arising from the interplay between
thermal and quantum fluctuations

Like classical transitions, global features determine the critical behavior,
such as spatial dimensions, symmetry breaking pattern, etc



RG scaling and finite-size scaling at a continuous quantum transition

• Assuming the quantum critical point at T = 0, µc = 0, h = 0,

F (L, T, µ, h) = Freg(L, T, µ, h) + Fsing(ul, ut, uµ, uh, {vi})

uµ = µ+O(µ2), uh = h+ bhµh+ ..., ut ∼ T , ul = L−1 + bL−2 + ...
are nonlinear scaling fields.

• Homogenous scaling law of the free-energy density

Fsing(ul, ut, uµ, uh, {vi}) = b−(d+z)Fsing(b ul, b
zut, b

yµuµ, b
yhuh, {byivi})

usually yµ = 1/ν and yh = (d+ z + 2− η)/2

• Taking b = 1/ul ≈ L −→ Fsing ≈ L−(d+z)F [TLz, uµL
yµ , uhL

yh , {viLyi}]

• The singular part of the free-energy density can be expanded as

Fsing ≈ L−(d+z)F0(TLz, uµL
yµ , uhL

yh) +

+ v1L
−(d+z+ω)Fω(TLz, uµL

yµ , uhL
yh) + ...



Quantum-to-classical mapping

• The temperature may be represented as a further Euclidean dimension
of size 1/T by techniques analogous to Path Integral

• Quantum-to-classical mapping from d-dim quantum many-body
systems to (d+ 1)-dim classical statistical systems

Z = Tr e−H/T −→ Z =

∫
Dφe−

∫
ddx dτ L(φ)

• Again global features, such as the summetry and symmetry breaking
pattern, determine the critical behavior

• When z = 1, the classical statistical model can be chosen isotropic, i.e.
such that ξ‖ = ξ with rotation O(d+ 1) (relativistic) invariance.

Ex.: d-dim quantum Ising/Heisenberg models lead to the (d+ 1)-dim QFT

LLGW =
∫
ddx dτ [(∂µ~ϕ)2 + r~ϕ 2 + u(~ϕ 2)2], thus sharing the same universal features

of the (d+ 1)-dim classical Ising/Heisenberg models, such as the critical exponents

• When the dynamic exponent z 6= 1, the corresponding (d+ 1)-dim
classical model is anisotropic, i.e. ξ‖ ∼ ξz (the Mott-to-superfluid quantum

transition of lattice gases has z = 2, it is described by a nonrelativistic Lagrangian)



First-order quantum transitions

• Simplest scenario: the lowest energy states show a level crossing and
observables such as the energy density and magnetization change
discontinuously (in the infinite volume limit)

Like classical FOT, no diverging correlation lengths characterize FOQTs
in the infinite volume limit (however limits do not commute)

• A level crossing generally occurs in the
infinite-volume limit.

• In a finite system, nonvanishing matrix el-
ements among lowest states lift the degener-
acy −→ avoided level crossing. (b)

E

E

g

g

(a)

• Finite-size scaling at FOQTs similar to that at continuous transitions,
as expected from the quantum-to-classical mapping of d-dimensional
quantum systems onto a classical anisotropic (sometime very anisotropic)

(d+ 1)-dimensional systems



Quantum transitions in several physical contexts

• Quantum magnetism and criticality

• Magnetic excitations of the insulator LiHoF4, quantum Ising transition

• Quantum Heisenberg antiferromagnets, the insulator La2CuO4

• High-T superconductors

• Quantum particle systems

• BCS to BEC transition in Fermi atomic systems

• new matter states, such as spin liquids, disorder down to very low T

• Localization transitions, topological phases

......



experiments with trapped cold atoms

Experiments with trapped cold atoms show an in-

creasing correlation length compatible with a con-

tinuous BEC transition (Donner, etal, Science 2007).
ν = 0.67(13) from ξ ∼ |T − Tc|−ν
(to be compared with ν = 0.6717(1))

Evidence of BKT transitions (Hung etal, Nature 2010)
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Quantum Mott insulator to superfluid transi-

tions and different Mott phases in many exper-

iments (e.g., Fölling etal 2006, Inguscio etal, PRL

2009)

A common feature is a confining harmonic potential, which can be varied to

achieve different spatial geometries, allowing also to effectively reduce the spatial dims

Trapping potentials give rise to inhomogeneous conditions which significantly
affect the critical behaviors, universal distortion described by trap-size scaling



Quantum Mott transitions of BH models when T → 0

HBH = −J
2

∑
〈xy〉

(b†xby + h.c.) + U
∑
x

nx(nx − 1)− µ
∑
x

nx

Mott insulators 〈nx〉 = 0, 1, 2, ... (incompressible

∂〈ni〉/∂µ = 0) and superfluid phases

quantum-to-classical mapping: to a d+ 1 QFT
at the transitions driven by µ, nonrelativistic QFT

Z =

∫
[Dφ] exp(−

∫ 1/T

0

dt ddxL)

L = φ∗∂tφ+
1

2m
|∇φ|2 + r|φ|2 + u|φ|4

(Fisher etal, PRB 1989)

MI n=2

2

1

µ

0

MI n=0

MI n=1

J

superfluid

• The upper critical dimension is dc = 2 • Mean field for d > 2.

• for d = 2 the QFT is free (apart from logs), thus z = 2, ν = 1/2.

• 1D equivalent to nonrelativistic spinless fermions, thus z = 2, ν = 1/2.

• The special transitions at fixed integer density (along the dashed line) belongs
to the d+ 1 XY universality class (relativistic QFT), thus z = 1, ν = νXY.

• Confirmed by several numerical studies in the literature



Critical phenomena requiring multiparameter LGW Φ4 theories

associated with more complex order parameters, even matrix-like,
with more complex symmetry-breaking patterns

They are constructed by introducing an order-parameter field Φi

capturing the main features of the critical modes, and imposing a few
global properties of the system, keeping terms up to 4th order:

L =

N∑
i=1

[(∂µΦi)
2 + riΦ

2
i ] +

N∑
ijkl=1

uijkl ΦiΦjΦkΦl

UNIVERSALITY CLASSES of critical behaviors determined by • spatial
dimension • nature of the critical modes and order parameter • symmetry
and symmetry-breaking pattern

For some interesting cases we may have several quadratic and quartic
parameters, corresponding to more complex symmetry breakings

The RG flow of the LGW Φ4 theory controls the universal features
of the critical behavior, such as the critical exponents



Several physically interesting examples

• MN model with a real M ×N matrix field φai

L =
∑
i,a

[
(∂µφai)

2 + rφ2ai
]

+
∑
ij,ab

(u0 + v0δij)φ
2
aiφ

2
bj

• O(M)⊗O(N) model, with a real M ×N matrix field φai (M sets of
N -comp vectors φa)

L =
∑
a

[(∂µφa)2 + rφ2a] + u0(
∑
a

φ2a)2 + v0
∑
a,b

(φa · φb)2

• Spin-density wave model (Φa are complex N -comp vectors)

|∂µΦ1|2 + |∂µΦ2|2 + r(|Φ1|2 + |Φ2|2) + u1,0(|Φ1|4 + |Φ2|4)

+u2,0(|Φ2
1|2 + |Φ2

2|2) + w1,0|Φ1|2|Φ2|2 + w2,0|Φ1 · Φ2|2 + w3,0|Φ∗1 · Φ2|2



Several physically interesting examples

• U(N)⊗U(N) models (Φ is a complex N×N matrix)

LU = Tr∂µΦ†∂µΦ + rTrΦ†Φ + u0
(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2

• SU(N)⊗SU(N) models: LSU = LU + w0

(
detΦ† + detΦ

)
+

x0
(
TrΦ†Φ

) (
detΦ† + detΦ

)
+ y0

[
(detΦ†)2 + (detΦ)2

]
• The competition of different orderings described by more
complicated LGW Φ4 theories containing more quadratic invariants.
Ex.: O(n1)⊕O(n2) theory with two O(n1) and O(n2) vector fields

L = (∂µ~φ1)2 + (∂µ~φ2)2 + r1~φ
2
1 + r2~φ

2
2 + u1(~φ 2

1 )2 + u2(~φ 2
2 )2 + w~φ 2

1
~φ 2
2

The multicritical behavior is determined by the stable FP when both ri are tuned to

their critical values.



Perturbative calculations in multiparameters LGW Φ4 theories

RG flow, critical exponents, etc..., by perturbative QFT methods

L =
∑
i

[(∂µϕi)
2 + riϕ

2
i ] +

∑
ijkl

uijkl ϕiϕjϕkϕl

• Massive (disordered-phase) MZM scheme: expansion in powers of the MZM
quartic couplings gijkl

Γ
(2)
ij (p) = δijZ

−1
ϕ

[
m2 + p2 +O(p4)

]
, Γ

(4)
ijkl(0) = mZ−2

ϕ gijkl

• Massless (critical) MS scheme: Minimal subtraction within the dimensional
regularization, ε expansion, d = 3 MS exp

• High-order computations for several LGW Φ4 theories, to six loops (requiring

the calculation O(103) diagrams)

• Resummation exploiting Borel summability and calculation of the large-order
behavior, by instanton semiclassical calculation

• The comparison of MZM and MS expansions checks the results



RG flow of multiparameter LGW theories

• The RG flow is determined by the
FPs, i.e. common zeroes g∗ijkl of
βijkl(gabcd) ≡ m∂gijkl/∂m (MZM),
βijkl(gabcd) ≡ µ∂gijkl/∂µ (MS)

• A FP is stable if all eigenvalues of its stabil-
ity matrix Sij = ∂βi/∂gj |g=g∗ have positive
real part

A

G H

C

v

u

• The existence of a stable FP implies that • physical systems with the
given global properties can undergo a continuous transition, • the
asymptotic behavior in continuous transitions is controlled by the stable
FP (apart from cases requiring further tunings)

• The absence of a stable FP predicts 1st-order transitions between the
disordered and ordered phases in all systems

• Systems that are outside the attraction domain of the stable FP
undergo 1st-order transitions



BEC phenomena in mixtures of bosonic gases

in particular, two-component bosonic gases, such as the BH model

−t
∑
s

∑
〈xy〉

(b†sxbsy + h.c)− µ
∑
sx

nsx +
1

2
V
∑
sx

nsx(nsx − 1) + U
∑
x

n1xn2x

symmetric under the transformations bsx → eiαsbsx and b1 ↔ b2

Global symmetry: Z2,e ⊗ [U(1)⊕U(1)]

Complex phase diagram in the space of the model parameters

Tc

U/V

φ1 6= 0 = φ2φ1 = φ2 6= 0

φ1 = 0 = φ2
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We may observe the simultaneous condensation of both components or
the asymmetric condensation of only one component



Symmetry-breaking patterns at BEC transitions

At the finite-T BEC transition, two-component bosonic systems, such as

−t
∑
s

∑
〈xy〉

(b†sxbsy + h.c)− µ
∑
sx

nsx +
1

2
V
∑
sx

nsx(nsx − 1) + U
∑
x

n1xn2x

show different spontaneous symmetry breaking of Z2,e ⊗ [U(1)⊕U(1)]

Z2,e ⊗ [U(1)⊕U(1)]→ Z2,e ⊗ [Z2 ⊕ Z2]

when both components condense simultaneously, 〈b1x〉 = 〈b2x〉 6= 0

Z2,e ⊗ [U(1)⊕U(1)]→ U(1)⊕ Z2

when only one component condenses, e.g. 〈b1x〉 6= 0, 〈b2x〉 = 0

Different symmetry-breaking patterns generally imply distinct
universality classes of the critical behaviors



LGW Φ4 QFT of two-comp bosonic gases with sym Z2,e ⊗ [U(1)⊕U(1)]

• a complex scalar field ϕs(x) with each bosonic component

• most general Φ4 theory consistent with symmetry Z2,e ⊗ [U(1)⊕U(1)]

LLGW =
∑
s,µ

|∂µϕs|2 + r
∑
s

|ϕs|2 + g
∑
s

|ϕs|4 + 2u |ϕ1|2|ϕ2|2

the minima of its potential lead to the symmetry breakings

Z2,e ⊗ [U(1)⊕U(1)]→ Z2,e ⊗ [Z2 ⊕ Z2] for g − u > 0

when 〈ϕ1〉 = 〈ϕ2〉 6= 0 for r < 0

Z2,e ⊗ [U(1)⊕U(1)]→ U(1)⊕ Z2 for g − u < 0

when 〈ϕ1〉 = 0 and 〈ϕ2〉 6= 0 (or viceversa) for r < 0

The two regions are separated by the line g = u, equivalent to the O(4)
vector model, thus O(4)→O(3)



Critical behaviors inferred from the RG flow of the LGW Φ4 QFT

LLGW =
∑
s,µ

|∂µϕs|2 + r
∑
s

|ϕs|2

+g
∑
s

|ϕs|4 + 2u |ϕ1|2|ϕ2|2

the stable FPs control the critical behaviors
→ universality classes of continuous transitions
sharing the same symmetry-breaking pattern

u

g
G

O(4)

Asy

dXY

• RG study by computing and resumming high-order (up to six loops)

perturbative expansion of the β functions associated with g and u

• both ϕs condense (hard-core regime V & U): decoupled XY FP
→ asymptotic decoupling of XY critical modes, ν = 0.6717, interactions give
rise to slowly-decaying scaling corrections O(ξ−0.022)

• one ϕs condenses (soft-core V . U): asymmetric coupled FP
→ univ. class of chiral transitions in frustrated spin models, with ν ≈ 0.6.

• the Gaussian and O(4) FPs are unstable

• Systems outside the attraction domains of stable FPs undergo FO transitions



Numerical checks for the two-component BH models

H2BH = −t
∑
s

∑
〈xy〉

(b†sxbsy + h.c)− µ
∑
sx

nsx +
1

2
V

∑
sx

nsx(nsx − 1) + U
∑
x

n1xn2x

In the hard-core V →∞ limit, BEC with condensation of the two components

RG predicts critical behaviors controlled by the decoupled 3D XY FP

• diverging length scale ξ ∼ |T − Tc|−0.6717 of critical correlations

• slowly-decaying corrections O(ξ−0.022), much slower than those at the

standard 3D XY FP for a single-component model, which are O(ξ−0.78)

QMC simulations support this scenario

the slowly-decaying corrections turn out to be
significant in the attractive U < 0 region, while
they are small in the repulsive region

Tc

U

Fixed U QMC
Fixed T QMC

0

0.5

1

1.5

2

-6 0 6 12 18 24



Multicritical behaviors in the case of nonidentical components

−
∑
s

ts
∑
〈xy〉

(b†sxbsy + h.c)−
∑
s

µs
∑
x

nsx +
∑
s

1

2
Vs

∑
x

nsx(nsx − 1) + U
∑
x

n1xn2x.

various phases with transition lines where only one component condenses

Multicritical behavior from the competition of the two distinct U(1)
orderings at the intersection of their transition lines

=⇒ Most general U(1)⊕U(1) symmetric Φ4 theory

LLGW =
∑
s,µ

|∂µϕs|2 +
∑
s

rs|ϕs|2 +
∑
s

gs|ϕs|4 + 2u |ϕ1|2|ϕ2|2

Multicritical behaviors
when r1 and r2 are
tuned to the intersec-
tion of the lines

T

S

XY XY

〈ϕ1〉 6= 0
〈ϕ2〉 = 0

〈ϕ1〉 = 0
〈ϕ2〉 6= 0

disordered phase

〈ϕ1〉 6= 0
〈ϕ2〉 6= 0

T

S

fl
o
p

li
n
e

XY XY

〈ϕ1〉 6= 0
〈ϕ2〉 = 0

〈ϕ1〉 = 0
〈ϕ2〉 6= 0

disordered phase

• in the presence of the mixed phase: the intersection point presents a
tetracritical behavior controlled by a decoupled XY FP

• in its absence, bicritical point controlled by another fixed point



Finite-T transition of QCD with Nf light quarks

LQCD = −1

4
F aµνF

a
µν +

Nf∑
f=1

ψ̄f (iγµDµ −mf )ψf

Z = Tr e−βH =

∫
DADψ̄Dψ exp(−S/g2), S =

∫ β

0

dt

∫
d3x LQCD

Chiral symmetry for mf → 0: ψL,R → U(Nf )L,RψL,R

U(Nf )L ⊗ U(Nf )R ' U(1)V ⊗ U(1)A ⊗ SU(Nf )L ⊗ SU(Nf )R

where U(1)V quark-number conservation, U(1)A broken by the anomaly

• Symm. breaking due to 〈ψ̄ψ〉 =⇒ SU(Nf )L ⊗ SU(Nf )R → SU(Nf )V

Phase transition at Tc ' 200 Mev restoring chiral symmetry

• Order parameter =⇒ Φij = ψ̄L,iψR,j , a Nf ×Nf complex matrix

The nature of the transition depends on Nf



RG study based on the LGW approach

The nature of the finite-T transition in QCD can be investigated using
renormalization-group methods based on universality

(A) Let us assume that the transition is continuous, when ξ � 1/Tc the
system is effectively 3D, then its critical behavior should belong to a 3D
universality class characterized by the same symmetry breaking pattern.

• SU(Nf )L⊗SU(Nf )R → SU(Nf )V

• Complex Nf ×Nf matrix order parameter

• If U(1)A is effectively restored at Tc =⇒ U(Nf )L⊗U(Nf )R → U(Nf )V



(B) The most general 3D LGW Φ4 theory compatible with the given
symmetry breaking pattern provides an effective theory of the critical
modes at Tc.

• Neglecting U(1)A anomaly,

LU(N) = Tr(∂µΦ†)(∂µΦ) + rTrΦ†Φ + u0
(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2
• if Φij is a complex N ×N matrix, v0 > 0, U(N)L⊗U(N)R→U(N)V

• SU(Nf )L⊗SU(Nf )R →SU(Nf )V due to the anomaly can be realized
by adding further terms =⇒ LSU(N) = LU(N) + w0

(
detΦ† + detΦ

)
• Nonvanishing quark masses correspond to an external field Hij coupled
to Φij , by adding Tr (HΦ + h.c.)



(C) A necessary condition of consistency with the initial hypothesis (A)
of continuous transition is the existence of a stable FP in the
corresponding 3D Φ4 theory

• If no stable FP’s exist, the transition of QCD is predicted to be first
order

• If a stable 3D FP is found, the transition can be continuous, and its
universal critical behavior is determined by the FP. But, it may still be
first order if the system is outside the attraction domain of the stable FP.



QCDNf=2, no anomaly

Symmetry breaking: U(2)⊗U(2) =⇒ U(2)

The corresponding universality class exists if there is a stable FP in the
3D U(2)⊗U(2) theory with a complex 2×2 matrix field Φ

LU(N) = Tr(∂µΦ†)(∂µΦ) + rTrΦ†Φ + u0
(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2
RG flow shows that a stable FP exists

=⇒ 3D U(2)⊗U(2)/U(2) universality
class exists

It implies that the transition can
be continuous with ν ≈ 0.7, η ≈ 0.1

v

u

stable FP

Gaussian O(n)

unstable

βzeroes of 

zeroes of β

v

u



QCDNf=2 taking into account the U(1)A anomaly

Symmetry breaking =⇒ SU(2)⊗SU(2)/SU(2) ' O(4)/O(3)

This corresponds to the O(4) universality class. This means that, if the
transition is continuous, it must show the O(4) scaling behavior

~M ∝ ~H|H|(1−δ)/δE(y)

y ∝ t|H|−1/(β+δ)
〈ψ̄ψ〉 ∝ |M |, mf ∝ |H|
δ = 4.789(6), β = 0.3882(10)
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=⇒ The corresponding LGW Φ4 theory is more complicated



Taking into account the U(1)A anomaly

LSU(2) = LU(2) + w0

(
detΦ† + detΦ

)
+x0

(
TrΦ†Φ

) (
detΦ† + detΦ

)
+ y0

[
(detΦ†)2 + (detΦ)2

]
,

where w0,x0,y0∼ g =⇒ effective breaking of U(1)A

TWO mass terms: transition lines in the T -g plane meeting at a MCP
controlled by the U(2)L⊗U(2)R theory for g = 0

depending whether it
is continuous or first
order at g = 0

g g

T T

O(4) O(4)
U(2)xU(2)/U(2)

O(4)

1st order

O(4)

O(4) critical behavior if the transition is continuous and g 6= 0.
A mean-field behavior may occur for particular values of g in the right case.

If |g| is small (a suppression of anomaly effects around Tc is suggested by MC), we
may have crossover effects controlled by the U(2)⊗U(2) MCP
[Fsing ≈ t3νf(gt−φ), ν ≈ 0.7, φ ≈ 1.5]



• QCD with Nf > 2 light flavors

L = Tr(∂µΦ†)(∂µΦ) + rTrΦ†Φ +

u0
(
TrΦ†Φ

)2
+ v0Tr

(
Φ†Φ

)2
+ w0

(
detΦ† + detΦ

)
The high-order analysis does not show any stable FP for N ≥ 3, therefore
the transition in QCD with Nf ≥ 3 is predicted to be first order

Summary of predictions for the finite-T transition of QCD

QCD no anomaly, Nc →∞
SU(Nf )⊗ SU(Nf ) U(Nf )⊗U(Nf )

Nf = 1 crossover or first order O(2) or first order
Nf = 2 O(4) or first order U(2)L⊗U(2)R/U(2)V or first order
Nf ≥ 3 first order first order

• In th case of two light flavors: • MC simulations show a crossover at mf > 0
around their physical values; • the transition is still controversial in the chiral limit.
• First-order for Nf ≥ 2.


