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1. Propagator and the saddle-point approximation.

Consider a process in zero spatial dimensions, which is fully characterised by an integer
number n and by the probability P, () that this integer takes the value n at time ¢. Assuming
that n = 0 at time ¢ = 0 write down, within the Doi-Peliti formalism,

(a) the formal expression of P,(¢) as the expectation value of a suitable operator on
the vacuum |0), denoting by H the normally-ordered Hamiltonian of the system.
[Remember that (n'|n) = n!d, ,]

(b) the corresponding expression as a coherent-state path integral and cast it in the form
Py(t) = [ 20 P¢*eSn19"9] with suitable S,,,.

(c) the saddle-point equations for the action S, ;[¢*, ¢], which determine the saddle-point
fields ¢* and @. [Due to the presence of boundary terms, care is required when considering
the variations of S,,; with respect to the boundary fields ¢o, ¢;, ¢y, and ¢;.]

As an application, consider the Poisson process defined by transitions n — n+ 1 occurring
witharate W(n - n+1)=A1.

(d) Write down the master equation for P,(¢) and solve it by introducing the generating
function g(x,t) = Y7 o x"P,(t).
(e) Determine the (Doi-Peliti) Hamiltonian H corresponding to this Poisson process.

(f) For this Hamiltonian, solve the saddle-point equations determined at point (c) and
calculate the corresponding value of the action S, ; = Sy [0, ¢]. Compare the saddle-

point estimate ~ e ~5** of the path-integral for P,(¢) at point (b) with the exact ex-
pression determined at point (d) and comment on this result.

Consider, now, the “phase-space” path integral for the Poisson process, with the same rules
and initial conditions as those introduced above.

(g) Write down the Hamiltonian of the process, such that P,(t) = —H(p,n)P,(t), where
p = —id, is the “momentum operator”.

(h) Derive the phase-space path integral representation of P, (7).

(i) Estimate P,(z) from the saddle-point approximation of the path integral determined
at point (h). Compare this result to that of points (f) and (d) and comment.

2. Activation over a potential barrier

Consider the master equation for a system described by an integer n and generic transition
rates W (n — n+r) and cast it in the form discussed in the lecture, i.e.,

atP(n7t) = _H(ﬁan)P(nat)v (1)

where p = —id), is the “momentum operator”.
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(a) Expand H(p,n) = pA(n) + p*B(n) + O(p?): determine the expression of A(n) and
B(n) in terms of the transitions rates and argue that they correspond to the "drift" and
"diffusion" coefficients of the variable n (e.g., n could be the position of a random
walker along a line).

Assume that, within the approximation discussed at point (a), one takes the continuum limit
(think of the random walker), such that n — g, where the variable g takes continuous values
and p = —id,, with P(n,t) — P(q,t).

(b) Assuming that B = ykpT (with 7 a kinetic coefficient and T the temperature, see be-
low) does not depend on ¢ and that higher-orders in the expansion at point (a) can be
neglected, determine the (equilibrium) stationary distribution Peg(g). Fix A(g) such
that Py (g) corresponds to the thermal equilibrium distribution o< exp{ -V (q)/ (kT )}
at temperature T of an overdamped particle with coordinate ¢ in a potential V (g).

Assume that the potential V(g) is such that V — 4o for ¢ — Feo, with only two stationary
points: a local minimum for ¢ = 0, with V(¢ = 0) =0, and a local maximum for g = g3s > 0.

(c) Write down the phase-space path-integral expression for Py (q,t|q0,10). Determine
the equation of motion along the optimal paths which are extremal trajectories of the
associated action and sketch these paths in the “phase space” (p,q).

(d) Assuming that g ~ 0 at t = 0, determine the probability to reach g,s along the sta-
tionary paths. Show that this implies that the probability to overcome the potential
barrier is o< exp{—V (g )/(kgT)}. How long does it take to reach gy;?



