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1. Propagator and the saddle-point approximation.
Consider a process in zero spatial dimensions, which is fully characterised by an integer
number n and by the probability Pn(t) that this integer takes the value n at time t. Assuming
that n = 0 at time t = 0 write down, within the Doi-Peliti formalism,

(a) the formal expression of Pn(t) as the expectation value of a suitable operator on
the vacuum |0〉, denoting by H the normally-ordered Hamiltonian of the system.
[Remember that 〈n′|n〉= n!δn′,n]

(b) the corresponding expression as a coherent-state path integral and cast it in the form
Pn(t) =

∫
DφDφ∗e−Sn,t [φ

∗,φ ], with suitable Sn,t .

(c) the saddle-point equations for the action Sn,t [φ
∗,φ ], which determine the saddle-point

fields φ̄∗ and φ̄ . [Due to the presence of boundary terms, care is required when considering
the variations of Sn,t with respect to the boundary fields φ0, φt , φ ∗0 , and φ ∗t .]

As an application, consider the Poisson process defined by transitions n→ n+1 occurring
with a rate W (n→ n+1) = λ .

(d) Write down the master equation for Pn(t) and solve it by introducing the generating
function g(x, t) = ∑

∞
n=0 xnPn(t).

(e) Determine the (Doi-Peliti) Hamiltonian H corresponding to this Poisson process.

(f) For this Hamiltonian, solve the saddle-point equations determined at point (c) and
calculate the corresponding value of the action S̄n,t ≡ Sn,t [φ̄

∗, φ̄ ]. Compare the saddle-
point estimate ' e−S̄n,t of the path-integral for Pn(t) at point (b) with the exact ex-
pression determined at point (d) and comment on this result.

Consider, now, the “phase-space” path integral for the Poisson process, with the same rules
and initial conditions as those introduced above.

(g) Write down the Hamiltonian of the process, such that Ṗn(t) =−H(p̂,n)Pn(t), where
p̂ =−i∂n is the “momentum operator”.

(h) Derive the phase-space path integral representation of Pn(t).

(i) Estimate Pn(t) from the saddle-point approximation of the path integral determined
at point (h). Compare this result to that of points (f) and (d) and comment.

2. Activation over a potential barrier
Consider the master equation for a system described by an integer n and generic transition
rates W (n→ n+ r) and cast it in the form discussed in the lecture, i.e.,

∂tP(n, t) =−H(p̂,n)P(n, t), (1)

where p̂ =−i∂n is the “momentum operator”.
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(a) Expand H(p̂,n) = p̂A(n)+ p̂2B(n)+O(p̂3): determine the expression of A(n) and
B(n) in terms of the transitions rates and argue that they correspond to the "drift" and
"diffusion" coefficients of the variable n (e.g., n could be the position of a random
walker along a line).

Assume that, within the approximation discussed at point (a), one takes the continuum limit
(think of the random walker), such that n→ q, where the variable q takes continuous values
and p̂ =−i∂q, with P(n, t)→ P(q, t).

(b) Assuming that B = γkBT (with γ a kinetic coefficient and T the temperature, see be-
low) does not depend on q and that higher-orders in the expansion at point (a) can be
neglected, determine the (equilibrium) stationary distribution Peq(q). Fix A(q) such
that Peq(q) corresponds to the thermal equilibrium distribution ∝ exp{−V (q)/(kBT )}
at temperature T of an overdamped particle with coordinate q in a potential V (q).

Assume that the potential V (q) is such that V →±∞ for q→∓∞, with only two stationary
points: a local minimum for q= 0, with V (q= 0)= 0, and a local maximum for q= qM > 0.

(c) Write down the phase-space path-integral expression for P1|1(q, t|q0, t0). Determine
the equation of motion along the optimal paths which are extremal trajectories of the
associated action and sketch these paths in the “phase space” (p,q).

(d) Assuming that q ' 0 at t = 0, determine the probability to reach qM along the sta-
tionary paths. Show that this implies that the probability to overcome the potential
barrier is ∝ exp{−V (qM)/(kBT )}. How long does it take to reach qM?
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