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The scope of these lectures is to illustrate the potential of cold atoms systems to investigate
paradigmatic phenomena in topological matter. The focus will be on two examples, the Hal-
dane phase and topological superconductivity. Beyond theoretical considerations, state of the
art quantum engineering and probing methods will be discussed.

The lectures are divided into three parts. In the first one, we will review some generic
features of topological phases in direct continuations with the previous series of lectures on
quantum Hall effects, and some basic aspects of cold atoms experiments. In the second part,
we will discuss the origin of topological phases in quantum spin chains, first from a theoretical
perspective, and then by considering direct realization in cold atom systems. In the last part, we
will discuss topological superconductivity in one-dimensional systems, in particular, Kitaev’s
wire and generalization to number conserving settings.

The leitmotiv of this short course is to emphasize general concepts via simple, paradigmatic
examples. We will not discuss more sophisticated tools to characterize states of matter, such
as the Altland-Zirnbauer classification of free theories and their generalizations to interacting
systems, but rather point out connection to the models presented here. On the cold atom side,
references to technical features will be kept to the minimum.

Several references will be given over the course of the lectures. Here are three general
suggested readings:

• E. Fradkin, Field theories of condensed matter systems;

• B. A. Bernevig, Topological insulators and topological superconductors;

• J. Dalibard et al., Rev. Mod. Phys. 83, 1523 (2011)

1 Introduction to topological matter in cold atom systems

1.1 Some features of topological phases
Before discussing the specific examples below, it is worth reminding some generic features of
topological phases (here, to be broadly intended as both symmetry-protected and true topologi-
cal order):
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1. non-local order parameters: in contrast to symmetry broken, paramagnetic, and critical
phases, topological order is characterized by non-local order parameters - i.e., correlation
functions which are able to unambiguously distinguish such phase. A typical example
here are Polyakov loops in lattice gauge theories (which we do not cover here). We will
see how this applies to one-dimensional systems in the case of the Haldane chain;

2. spectral degeneracies: in addition to the presence of a bulk gap (we will however also
briefly discuss how topological states can coexist with gapless bulk degrees of freedom),
the spectrum of the Hamiltonian operator changes when changing the topology of the
system (as already seen in the QH case). This is an hallmark feature of topology and is
sometimes connected with

3. existence of gapless boundary modes, also seen in the QH case. We will see how this
concept applies in both examples below;

4. specific and universal entanglement properties: this is a direct connection between the
non-local correlations intrinsic of topological order, and entanglement. This connection
is only partly explored: we will discuss few applications in the context of entanglement
spectra;

5. existence of anyonic excitations: often times, topological matter hosts excitations with
exotic statistics. Those are particularly useful in the context of fault tolerant quantum
computation. We will see one example - Majorana zero modes, realizing Ising anyons -
in the context of topological superconductivity.

This list is useful for two main reasons: first, we will re-call several of these concepts in the
examples; second, it makes crystal clear that the challenges in realizing topological matter are
not only at the level of finding the proper system supporting topological order, but actually,
probing the latter might be equally (if not more) difficult!

There is another important element which is missing in the list, that is, resilience to certain
classes of local perturbations. This is directly related to 1 and 2 above. If time allows, we will
discuss this point as well in the last lecture.

1.2 Realizing and probing topological phases in cold atom systems: chal-
lenges

The simple fact that the first observation of topologically ordered phases took place in the early
80s evidences how experimentally accessing topological matter presents qualitatively new chal-
lenges with respect to (Ginzbug-Landau) long-range order, such as antiferromagnetism. Within
the cold atom context, the challenges are both in terms of realizing a Hamiltonian dynamics that
leads to states displaying topological order, and of probing the characteristics features above.
Over the course of the lectures, we will touch both aspects.
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2 The Haldane phase - a paradigmatic example of symmetry-
protected topological phase

Goal of this section:

to show that the 1D S-1 Heisenberg model supports a gapped phase, which we call Hal-
dane phase. The latter is characterized by non-local order parameters, the existence
of boundary zero-energy modes, and a degenerate entanglement spectrum.

2.1 The spin-s 1D Heisenberg model: Hamiltonian and symmetries
We are interested in the dynamics of the one-dimensional Heisenberg model, defined by the
Hamiltonian:

HHS = J
L∑

i=1

~S i~S i+1 = J
L∑

i=1

∑
α=x,y,z

S α
i S α

i+1 (1)

where S α
i is the spin-s operator along the α direction at the site i, J is the coupling strength, and

we have assumed periodic boundary conditions, S α
L+k ≡ S α

k .
The model is invariant under SU(2) transformation, and thus has SU(2) symmetry.

Exercise 1

verify the SU(2) symmetry of the model.

We really do not need much more information before stating the first result on the model.

2.2 The Haldane ’conjecture’

The Haldane conjecture states that the spectrum of HHS is gapless for half-integer s, and
gapped for integer s.

This ’conjecture’ (actually, it was proven by Haldane within certain approximations, see
below) represents the starting point to analyze the Haldane phase, so we start by proving it.
The proof relies on an approximate mapping between HHS and an O(3) non-linear sigma model
(NLSM), which at the time of Haldane’s paper was already quite well understood in the absence
of a topological term.

2.2.1 Mapping to an O(3) non-linear σ-model

We start by replacing the original spin operators ~S i with a pair of slowly varying field (slowly
with respect to the lattice spacing a):

~S i = S i(±s~ϕ(x) + ~̀(x)) (2)

where the first field represents a staggered magnetization (ϕz
i = +1 for a classical antiferromag-

net along the z direction), and ~l represent fluctuations on the top of this order. The justification
of this representation is that the classical ground state of the model displays long-range order.
We will see later on in which respect this allows simple approximations to carried out.
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We now impose that these low-lying fields are defined on the dual lattice of sites - and will
check the consequences of this choice later on. In particular, we defined them on the sites
(2i + 1/2), so that:

~ϕ(2i + 1/2) =
~S 2i+1 − ~S 2i

2s
, ~̀(2i + 1/2) =

~S 2i+1 + ~S 2i

2a0
(3)

The choice of a two-site magnetic unit cell is again inspired by the classical solution; the latter
is recovered by suppressing the fluctuation field `. Here, the lattice spacing is a0 = 2a.

The pair of fields we introduce satisfy some noteworthy properties:

~ϕ2i+1/2 · ~̀2i+1/2 = 0, ϕ2
2i+1/2 = 1 +

1
s
− a2

0`
2
2i+1/2/s2 (4)

and the following commutation relations:

[ϕa
2i+1/2, ϕ

b
2 j+1/2] = a0iεabcδi j`

c
2i+1/2/2s2, [`a

2i+1/2, `
b
2 j+1/2] = iεabcδi j`

c
2i+1/2/2a0 (5)

[`a
2i+1/2, ϕ

b
2 j+1/2] = iεabcδi jϕ

c
x/2a0 (6)

Exercise 2

verify Eqs. (4), (5), (6).

We now take the continuum limit, by replacing these unit cell operators with slowly varying
fields:

ϕa
2i+1/2 → ϕa(x), `a

2i+1/2 → `a(x), (7)

with x = (2i + 1/2)a0, and then continuum delta function defined as δi j

2a0
→ δ(x − y). After this

limit is taken, the commutation relations read:

[ϕa(x), ϕb(y)] = 0, [`a(x), `b(y)] = iεabc`c(x)δ(x− y), [`a(x), ϕb(y)] = iεabcϕc(x)δ(x− y) (8)

which shall be interpreted as follows: the smooth variations ` satisfy SO(3) algebra, while their
action on the orientation field is just to rotate it. In addition, we retain n(x) · m(x) = 0.

We have now all the pieces to carry out the continuum limit of the Hamiltonian operator.
First, we decompose it into two parts (due to our violation of the lattice parity symmetry, this is
convenient), H = J

∑L/2
i=1

~S 2i · (~S 2i+1 + ~S 2i−1), then we express each term as a function of the field
operators:

~S 2n~S 2n+1 = (sϕ + a0`)(a0` − sϕ) = a2
0`

2 − s2ϕ2 = −s2 + 2a2
0`

2 (9)

where we used Eq. (4) and neglected 1/s corrections, and

~S 2n~S 2n−1 = ... (10)
= 2a2

0`
2 + 2a0s2ϕ · (ϕ′ − a0ϕ

′′) + 2sa2
0(`ϕ′ − `′ϕ) + ... = (11)

= .. (12)

which is obtained by expanding properly the field ϕ, keeping its first derivatives (since ` = ∂tϕ,
we neglet its derivatives are they’re higher order. This can also be seen by looking at the lattice
spacing contributions before taking the continuum limit), and considering ϕ ·ϕ′ = 0,−ϕ′` = ϕ`′
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2.2.2 Hamiltonian in the continuum

The total Hamiltonian in the continuum limit thus reads (remember:
∑

i →
∫

dx/a0):

HHS =
J

2a0

∫
dx
[
+4a2

0`
2 − 2a2

0s2ϕ · ϕ′′ + 2sa2
0(`ϕ′ + ϕ′`)

]
=

=
J

2a0

∫
dx
[
4a2

0`
2 + 2a2

0s2(ϕ′)2 + 2sa2
0(`ϕ′ + ϕ′`)

]
+ ... (13)

and then, after defining the sound velocity v (actually, it is the same as the spin wave one) and
the θ angle

v = 2sJa0, θ = 2πs, g = 2/s (14)

the final Hamiltonian reads

HHS =
v
2

∫
dx
[
g(` −

θ

4π
ϕ′)2 +

(ϕ′)2

g2

]
(15)

which, when completed with the constraint ϕ2 = 1, corresponds to the (1+1)-d non-linear σ-
model. For this model, it is known that the spectrum is massive for generic values of θ (in fact,
this is a typical occurrence of dynamical mass generation via instantons), while it is gapless for
θ = π. This proves Haldane’s ’conjecture’ 1. The topological origin of the θ-term is directly
manifest in the Lagrangian formulation, where this is related to the Pontryagin index - we will
see this in the next subsection.

It is worth noting that, at the time of Haldane’s original work, the θ = 0 case was well
studied, and the presence of a mass gap was proven. However, the gaplessness of the θ = π case
was not yet established, and Haldane provided arguments in support if that (it was later proven
by Read and ...). This somehow was going into the opposite direction with respect to what was
known on the lattice, where the S=1/2 case was known to be gapless from Bethe’s solution,
and S>1/2 exactly soluble chains were already known to be gapless upon the addition of further
couplings (Takhtajan and Babujian).

2.2.3 Lagrangian formulation of the NLSM and topological origin of the θ-term

It is possible to verify that the Hamiltonian below corresponds to the following action in Eu-
clidean space-time:

S = S NLS M + iθQ, S NLS M =

∫
dxdτ(∂µϕ)2, Q =

∫
dxdτ

εµν

8π
ϕ(x) · (∂µϕ(x) × ∂νϕ(x)) (16)

It is already apparent that the last term does not have a clear-cut interpretation in the two-
dimensional classical statistical mechanics context. However, the important aspect here is that
Q is 1) a conserved quantity, and 2) has topological origin, and is an integer.

2.2.4 Numerical experiments

Numerical evidence in support of the Haldane conjecture for

1The mass gap of the NLSM would be scaling as Js2e−s for s � 1 - a signature of non-perturbative dynamical
mass generation.

5



2.3 String order parameters and Kennedy-Tasaki transformation
So far, we have only provided evidence for the presence of a finite mass gap.
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3 Haldane phase in synthetic quantum systems
So far, several properties of the Haldane phase have been already experimentally verified in
quasi-1D magnetic systems - in particular, the finite gap was spectroscopically confirmed. Syn-
thetic quantum systems are complementary to solid state ones in the sense that a different set up
probing tools is available, and as such, other key feature of topological order - not accessible in
magnetic systems - can be probed. What we have in mind here are especially non-local order
parameters and entanglement features.

The first challenge on this way is to find system dynamics which (approximately) reproduce
the behavior of the 1D s-1 Heisenberg model, or, even better, of the Bilinear-biquadratic version.
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4 One-dimensional topological superconductors - the Kitaev
model

5 Syllabus
1. Second part [Lect. 4-5]: non-local order in one-dimensional spin liquids. On the nature

of the hidden order, a very good reference is the long article by Kennedy and Tasaki [? ]
(pay attention to few typos in Sec. 2). A good reference on antiferromagnetic spin chains
is the review article by Affleck [? ], a bit old but excellent in terms of field theory insights.
Some good references for the O(3) non-linear σ-model are contained in Ref. [? ].

• One-dimensional spin-liquids - hidden order

• the Haldane chain: mapping to a non-linear sigma model and topological angles;

• string order, hidden symmetries, and Kennedy-Tasaki transformation;

• AKLT ground state and edge states.

2. Fourth part [Lect. 8-9]: topological insulators and non-Abelian anyons. The best refer-
ence on the Kitaev model is Kitaev’s original article [? ? ]. A nice review by Ludwig pro-
vides an relatively up-to-date account on the classificaton of non-interacting fermions [?
], which an especially clear part on Anderson localization.

• Kitaev model: phase diagram via exact solution. Relation to the Ising model and
role of the boundary conditions.

• Majorana edge modes.

• beyond Majorana: parafermions and clock chains.

• (if time allows) towards the Altland-Zirnbauer classification of non-interacting topo-
logical matter

6 Other info
Exam. – Some of you might be interested in carrying out an exam, valid for certain phDs in
Italy. Please, contact me before the end of the lectures to set this up. The exam will consist
in a carrying out an exercise, either analytical or numerical, and producing a written report
discussing the solution.
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