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A course of lectures on mesoscopic quantum interference phenomena: we begin with a qualitative
survey of the manifestations of quantum phase coherence and interaction in mesoscopic structures.
This will be followed by a more methodologically oriented part which aims to introduce the con-
struction of effective field theories of mesoscopic systems. The remaining sections of the course
will be devoted to the discussion of various applications, with an emphasis on recent developments.
Specifically, we will discuss electron-electron interaction phenomena, review the status of the bal-
listic o-model and its application to problems of ‘quantum chaos’, and introduce basic elements
of mesoscopic superconductivity. Some emphasis will be given to the discussion of the concept of
seven ‘new’ symmetry classes. We discuss why the three-fold symmetry classification of Wigner and
Dyson is not exhaustive and where ‘non-standard’ symmetries are realized. This will be followed
by the discussion of a number of applications, notably disordered hybrid superconducting-normal
structures, dirty d-wave superconductvity, and chiral fermion systems.
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I. INTRODUCTION TO MESOSCOPIC PHYSICS

As students we are usually introduced to the phenom-
ena of solid state physics within the framework of the
“nearly-free electron” theory of metals in which electrons
are thought to interact only weakly with a regular (i.e.
ordered) crystalline lattice potential [1]. The interaction
between electrons is limited to the quantum mechanical
exclusion principle. Yet, in the majority of metals, the
Coulomb interaction between electrons is by no means
small — the energy associated with Coulomb interac-
tion is typically comparable to the kinetic energy. How-
ever, the validity of the non-interacting theory is, in many
cases, assured by the Fermi liquid theory.

The fundamental principle underlying Fermi liquid

theory is one of “adiabatic continuity” [2]: In the absence
of an electronic phase transition (such as “Wigner crys-
tallization” of the electrons, or a “Mott-Hubbard transi-
tion” to a magnetic insulating state), a non-interacting
ground state evolves smoothly or adiabatically into the
interacting ground state as the strength of interaction
is increased. An elementary excitation of the non-
interacting system represents an “approximate excita-
tion” of the interacting system (i.e. the “lifetime” of
an elementary excitation is long).

However, the integrity of a fully ordered lattice poten-
tial is more questionable. Electrons in metals and semi-
conductors typically experience an irregular lattice po-
tential arising from defects or lattice imperfections, grain
boundaries, vacancies, and doped impurities. At length



scales in excess of the (temperature dependent) phase co-
herence length L, (i.e. the scale over which the electron
dynamics is phase coherent), the transport properties in
such a disordered environment can be simply understood
within the framework of quasi-classical techniques such as
the Kinetic or Boltzmann theory [3]. However, at length
scales smaller than L, the quantum phase coherence of
the electron degrees of freedom dramatically influence the
nature of the dynamics. Here at the “mesoscopic” scale,
new physical principles emerge.

> What is mesoscopic physics? As a subject,
Mesoscopic physics involves the domain of length
scales in between the microscopic and macroscopic
where the influence of quantum phase coherence ef-
fects find manifestations in observed physical prop-
erties. Yet, as we will see in these lectures, the
subject of mesoscopic physics is not confined to the
study of electrons in disordered conductors.

> Where can one find mesoscopic structures?
The development of modern fabrication techniques
combined with the routine availability of millikelvin
temperatures in the laboratory have exposed a
novel class of materials macroscopic in their con-
stitution, yet smaller than the typical scales over
which phase coherence is established. The market
forces that drive the semiconductor industry have
driven this “nanostructure” technology to a level
of unprecedented sophistication. These days, arti-
ficial semiconductor devices can be manufactured
with a resolution of 100 nm or less (see below).
Even “nanotubes” of carbon have been successfully
incorporated into small conducting bridges.

> Why study mesoscopic physics? Leaving aside
the obvious benefits brought about by the con-
tinual miniaturization of quantum devices, such
structures present a unique opportunity to study
new and fundamental physical phenomena. Where
phase coherence is established, the manifestations
of quantum mechanics on the observed physical
properties is often substantial. Therefore, the
fabrication of mesoscopic structures such as low-
dimensional, nanostructure or “quantum dot” de-
vices provides a laboratory in which one can explore
the fundamental properties of many-particle sys-
tems from the influence of disorder to strong elec-
tron interaction phenomena.

Aim of these lectures: Mesoscopic physics is an old
subject which, since the late '70’s has engaged a vast
number of researchers. To embark on a comprehensive
review of the entire field would be foolhardy. An at-
tempt to achieve such a goal in just a few lectures would
be futile. Instead, the aim of these lectures will be to
introduce some of the guiding principles, to highlight
some of the more recent developments and generaliza-
tions, and, perhaps most importantly, expose many un-
resolved questions in the field. In doing so, we will exploit

novel methods of quantum statistical field theory which
will establish useful and, sometimes, surprising connec-
tions to other branches of physics from atomic physics
to QCD. Finally, a disclaimer: in preparing this course,
it is inevitable that the subjective choice of material re-
flects to a large extent our own polarized interests and
for which we should apologize.

The outline of the course is as follows: in the remain-
der of this chapter we will introduce the central ideas and
concepts that shape the subject of mesoscopic physics.
In doing so, we aim to review the main questions pre-
sented by experiment as well as providing interpreta-
tions in terms of simple quasi-classical phenomenology.
These qualitative ideas are put on a firm footing in chap-
ter II where a statistical field theory of weakly disordered
metallic conductors is developed within the framework of
a supersymmetric non-linear o-model. In applying the
field theory, particular emphasis is placed on establish-
ing connections which tie together the phenomenology of
“weak localization” and “universality” (the random ma-
trix theory).

To broaden the class of applications of the statisti-
cal approach, chapter IIT is concerned with the gener-
alization of the quantum field theory to the properties
of non-stochastic chaotic quantum structures — “quan-
tum chaos”. Here we will stress the importance of the
intuition afforded by the characteristic mesoscopic phe-
nomena observed in weakly disordered metallic systems,
and point out some of the outstanding problems in the
field.

Chapters I, IT and III focus largely on the properties
of non-interacting quantum structures. Yet, the influence
of Coulomb interaction, particularly in the environment
of disorder, is strong. In chapter IV we will establish
a generalization of the statistical field theory of disor-
dered conductors to encompass the important effects of
Coulomb interaction. Applications of this theory will be
limited as much by the current state of the technology, as
by the constraints placed on the scope of these lectures.

Phase coherence effects in weakly disordered structures
can be usually classified into three universality classes
which reflect the fundamental symmetries of the bare
Hamiltonian. Yet, such a classification is not exhaustive:
recent attempts to extend theories of disordered systems
to encompass superconducting structures and sublattice
models have identified novel universality classes which
exhibit qualitatively new phenomena. Surprisingly, it is
mostly through the study of such systems that unusual
connections to other branches of physics have been iden-
tified. In chapter V we introduce and explore the unusual
spectral and localization properties associated with these
novel symmetry classes pointing out their close connec-
tion to the study of lattice QCD, and the dynamical prop-
erties of random classical operators.

The program is broad: it is therefore not the intention
of these lectures to provide a complete or comprehensive



review of the field. Rather, we hope to convey the cen-
tral concepts of this diverse subject, as well as developing
some of the general technology which has proved to be
so successful in the exploration of this field. Finally, we
have attempted to keep the prerequisites for this course
to a minimum: we will, however, assume a familiarity
with the fundamental principles of elementary solid state
physics, and an exposure to some basic concepts in ad-
vanced statistical mechanics and quantum field theory.

A. Manifestations of Phase Coherence in Mesoscopic
Structures

To begin our investigation of mesoscopic physics we
start with a survey of several of the classic experiments
which explore mechanisms of quantum phase coherence
(for a review see, e.g., Ref. [4]). In doing so, where possi-
ble, we will separate those experiments which find their
origin in Coulomb interaction effects from those which
can be understood within the framework of a purely non-
interacting theory.

The majority of the experiments which we discuss be-
low are performed on low-dimensional semi-conducting
GaAs or Si heterostructures. Without going into exten-
sive detail, we remark that the latter involve “sandwich”
structures where abrupt changes of doping concentra-
tion of donor and acceptor impurities trap electrons in
a narrow regions known as “inversion layers”. The in-
version layer potential can be used to confine electrons
(or holes) to two-dimensional regions, one-dimensional
channels (wires), and zero-dimensional wells (known as
“quantum dots”) — for a review see, e.g., Refs. [5,7,6].
Here, by confinement, we mean that the Fermi energy lies
in an interval of energy well below the energy required
to excite the lowest “transverse” mode. (For a review of
device technology see, e.g., Ref. [8,36].)

For simplicity, we will not dwell on specific fabrica-
tion techniques. Nor will we assess the integrity of de-
vice characteristics. However, to orient our discussion,
we note the typical range of relevant physical parameters
below:

[Parameter |GaAs| Si [Units |
Density n 4.0 | 4.0 |10 cm 2
Mobility p 10° | 10* |cm?/Vs
Scattering Time T 3.8 | 1.1 |10~ '35
Fermi Wavevector Ap| 1.6 | 1.6 |10® cm™!
Fermi Velocity vr 2.76 | 0.97 [107cm/s
Elastic m.f.p. £ 1.05 {0.107|104cm

Before we turn to the experiments, as preparation for
our discussion, let us first recall some elementary con-
cepts in the theory of electron transport. Firstly, in a
degenerate electron gas, the conductivity o and the dif-
fusion constant D are fundamentally connected by the
Einstein relation [1]

o=eée’vD 1)

where v denotes the density of states at the Fermi level.
The diffusion constant can, in turn, be obtained from the
time-integrated velocity-velocity correlation function

1 (o]
D= 8/0 dt (v(t) - v(0))

where the average is taken over all initial velocities v(0).

Now, within the framework of classical transport or
kinetic theory, the velocity of an electron is randomized
on a time scale set by the mean free scattering time be-
tween collisions, 7. In this approximation, the diffusion
constant is specified by D = v%47/d, where vp = pr/m
denotes the Fermi velocity and d the dimensionality. The
latter, in turn, leads to the classical Drude formula for
the conductivity,

where n ~ vEf represents the electron density, and Er
denotes the Fermi energy.

Finally, from the conductivity, we can define the con-
ductance G = o L?>~¢ which, making use of the Einstein
relation (1) can be expressed as

e? hD €2 E
G= EVLdF =39 9= Kc (2)
where A = 1/vL? denotes the average energy level spac-
ing, and E. = hD/L? represents the typical inverse dif-
fusion time for an electron to cross a sample of dimension
L?. This result shows that the conductance of a metallic
sample can be expressed as the product of the quantum
unit of conductance e?/h = (4.1kQ)~!, and a dimension-
less conductance g equal to the number of levels inside an
interval E.. In a good metallic sample, the dimension-
less conductance is large, g > 1. Note, however, that
the control parameter g must not be categorically identi-
fied with the conductance observed in experiment. E.g.
in systems with pronounced quantum localization effects,
to be discussed below, the microscopic conductivity and
the conductance are not related by the simple scaling
relation (2). In such cases, the parameter g becomes a
purely formal, and largely meaningless quantity.

1. Magneto-fingerprints

With this background, we turn our attention to ex-
periment: fig. 1 shows a series of magneto-conductance
measurements [10] (i.e. the dependence of g as a func-
tion of magnetic field) performed on a SiGaAs wire after
repeated heating and cooling.
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FIG. 1. Magneto-conductance measurements of a SiGaAs
wire taken from Ref. [10]. (a) Conductance as a function of
magnetic field for samples which differ by thermal cycling. (b)
The conductance averaged over different realizations. (c) The
variation of the variance of the conductance fluctuations mea-
sured as a function of magnetic field. (Courtesy of Ref. [10].)

Although each individual trace appears to fluctuate
randomly around some uniform value, the measurements
are completely reproduceable. (I.e. when held at a con-
stant low temperature, the fluctuations of the conduc-
tance do not change with time.) However, by thermal cy-
cling, the accompanying rearrangement of the impurities
completely changes the pattern of magneto-conductance
fluctuations. These results, which are typical of those
observed in phase coherent devices, suggest that sample-
sample fluctuations provide a characteristic signature (a
“magneto-fingerprint”) of an individual system [11,12].

Yet characteristic fluctuations of this kind are not lim-
ited to wires. Figs. 2 and 3 show the variation of two-
terminal magneto-conductance measurements together
with an applied gate voltage potential performed on a

mesoscopic GaAs quantum dot. Again, the qualitative
behavior is similar: the system shows a reproduceable
magneto-fingerprint with the same characteristic scale of
fluctuations, €2 /h.
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FIG. 2. Magneto-conductance measurements of a GaAs
quantum dot taken from Ref. [13]. The device, shown inset,
has a transport mean free path and phase coherence length
greatly in excess of the dimensions of the device (ca. 1pm).
The “shape” of the quantum dot can be changed by tuning
a gate or “plunger”. Separate traces are shown for two par-
ticular shapes together with the average over an ensemble of
different realizations. Note the universal scale of the fluctua-
tions, and the conductance minimum at zero field. (Courtesy
of Ref. [13].)
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FIG. 3. Conductance measurements as a function of mag-
netic field and external gate voltage for a quantum dot
qualitatively similar to that shown in Fig. 2. (Courtesy of
Ref. [13].)

Taken together, these measurements pose the following
questions:

> Firstly, why is the magnitude of the conductance
fluctuations universal? That is, for any size or ge-
ometry of the sample, the conductance is found to
fluctuate on a scale comparable to e?/h. More
precisely, defining (---) as the ensemble average
over realizations of the impurity potential (gen-



erated in the present case by thermal cycling),
((6G)?) ~ (e%/h)?, where 6G = G — (G) — i.e.
the characteristic scale of fluctuations is indepen-
dent of the system size.

Secondly, why are these fluctuations so large?
Naively, in a metallic d-dimensional sample, it
is reasonable to suppose that each block of di-
mension £¢, where £, represents a macroscopic
length scale (e.g. mean distance between impuri-
ties), contributes independently to the total con-
ductance. With this assumption, one can expect
the magnitude of conductance fluctuations to van-
ish in the thermodynamic limit as the power law
((6G)?)/{G)? ~ (£./L)%. In this sense, the conduc-
tance is expected to be self-averaging. However,
taking (G) = oL?7% (i.e. Ohm’s law), the exper-
imental measurements above are compatible with
fluctuations of magnitude ((6G)2)/(G)? ~ L* 2¢
which, at least in dimensions d < 4, are substan-
tially larger! Evidently, there exist substantial non-
local correlations which, in turn, lead to the absence
of self-averaging.

Finally, why is the strength of both the ensem-
ble averaged conductance, as well as its fluctua-
tion, magnetic field dependent? More precisely, the
measurements above show two clear effects: firstly,
the conductivity increases with the application of a
weak magnetic field (i.e. a field small enough that
the influence of orbital effects can be ruled out).
Secondly, on the same field scale, the magnitude of
the fluctuations is substantially diminished.
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FIG. 4. Magneto-conductance measurements of a single Au
loop together with the corresponding power spectrum show-
ing periodic oscillations at h/e and h/2e taken from Ref. [14].

2. Aharonov-Bohm Effects

A second classic experiment involves the Aharonov-
Bohm effect. Fig. 4 shows the magneto-resistance mea-
surements of a single gold metallic ring. As with the
quantum wire, the results show a characteristic pattern
of magneto-fingerprint fluctuations. However, these fluc-
tuations are modulated by periodic oscillations. These
oscillations are manifest most clearly in the power spec-
trum which indicate Fourier components at a frequen-
cies of 1/AH corresponding to values of h/e and h/2e.
Furthermore, separate measurements of a statistical en-
semble of mesoscopic rings shows the h/e oscillations to
vanish on averaging, while the h/2e oscillations remain.
To our list above, we can, therefore, add the questions:

> In the Aharonov-Bohm geometry, what is the phys-
ical origin of the h/e and h/2e oscillations?

> And how can we understand the action of ensemble
averaging on these two types of oscillations?

B. Qualitative Considerations: Feynman Paths

To find qualitative answers to the questions raised
above, it is useful to consider a simplified model of elec-
tron dynamics in the background of a random scatter-
ing potential. In doing so, we should first recognize the
crucial distinction between the two types of scattering
an electron can undergo. Elastic scattering (e.g. by
lattice defects or impurities) imparts on the electron a
well-defined phase shift. By contrast, inelastic scattering,
which involves the exchange of energy with other degrees
of freedom (e.g. phonons, other electrons, and spins), in-
troduces uncertainty in the phase. It is this uncertainty
which is responsible for the destruction of quantum in-
terference. In the following, we will assume that the time



scale over which phase coherence is maintained, the in-
elastic scattering time 7, is greatly in excess of the time
scale on which an electron is scattered across the Fermi
surface, the elastic scattering time 7.

At its simplest level, the dynamics of an electron in a
phase coherent environment can be described by a non-
interacting or single-particle Hamiltonian

. 132
H=—+YV 3
D v, 3)
where p = —ih0 denotes the momentum operator, and

V (r) represents a random impurity potential. Now, even
for this simplified model, a given realization of the ran-
dom impurity potential is associated with a complex
spectrum. Yet, if the potential fluctuations are weak as
compared with the typical energy scale of the particle,
the influence of quantum interference on the particle dy-
namics can be determined both qualitatively and, as we
shall see later, quantitatively.

To stay within the domain in which a quasi-classical
analysis is valid, we will focus on the hierarchy of length
scales shown in Fig. 5.

Microscopic

M esoscopic Macroscopic

h e

L.
Semiclassical  Diffusive Min{Ly.Lf }

Phase Coherent

FIG. 5. Hierarchy of length scales which electron dynamics
is phase coherent and diffusive.

Specifically, we will focus on the semi-classical regime in
which the mean free path of the particle £ is greatly in ex-
cess of the corresponding wavelength of the particle Ag
(or, equivalently Ep7 > k). Moreover, to stay within
the regime in which the particle dynamics is diffusive, we
will require the system size L to be greatly in excess of £.
Finally, we will take the system size to be much smaller
than the typical length scale L, over which the particle
dynamics is phase coherent.

With this definition, the quantum transfer probability
amplitude for a particle to propagate from a point r; to
a point rp in a time ¢t is specified by the quantum me-
chanical Feynman propagator

r(t)=rp it ms?
G(rr,r13t) =/ Dr(t)er Jo (= —VEW) -y
r(0)=r;

Now, for an arbitrary configuration of the impurity po-
tential, an exact evaluation of the path integral is, of
course, infeasible. However, we can gain a qualitative

understanding of the problem by visualizing the path in-
tegral as an infinite sum of separate paths ¢ each with its
own amplitude A; and phase ;,

G(I'F, Iy, t) = Z Aiew‘ .

i.e. the superposition of randomly scattered waves.

FIG. 6. Typical Feynman paths connecting lattice sites ry
and rr. When summed over all configurations of the ran-
dom impurity potential, the contribution of paths such as 1
and 2 add incoherently to the average probability amplitude
or Green function. However, the diagonal contribution from
paths 2 and 3 (which follow the same path) contribute coher-
ently to the average probability density.

Typically, different paths have lengths that differ sub-
stantially implying a statistical independence of the
phases p; (i.e. for two paths i and j, |p; — ;| > 2m).
Therefore, applied to the propagator, an ensemble av-
erage over different realizations of the random impurity
potential leads to a random phase cancellation which is
manifest as an exponential decay of the average on the
time scale of the mean free scattering time 7. Equiva-
lently, the ensemble average of the propagator decays on
a length scale comparable to the mean free path £.

By contrast, the corresponding transfer probability
density of a particle from a position ry to rg

P(I'F,I‘I;t) = |G(I‘F,I‘I;t)|2

=) AT +2) AiAjcos(pi — o)),
@ i#]

involves long-ranged correlations. More precisely, when

subjected to an ensemble average, while the interfer-

ence contribution averages to zero, a long-ranged diag-

onal contribution survives:

(P(re,ri;t)) = ) (4F).
K3
Here the random phase accumulated by a particle prop-
agating from a point r; to rp is cancelled by the phase
acquired on the return providing the two paths coincide
on the scale of Fermi wavelength, Ar of the particle (see
Fig. 6, paths 2 and 3).



How can the qualitative Feynman path picture be pro-
moted to a quantitative theory? In a sense, much of the
rest of the course will deal with just this question. How-
ever, for the moment let us restrict ourselves to some pre-
liminary considerations of the two theoretical approaches
most directly related to the path picture: semi-classics
and diagrammatic perturbation theory.

The exact path integral representation (4) of the Green
function is, in general, not amenable to rigorous ana-
lytical manipulations. However, in the vast majority of
problems of mesoscopic physics, semi-classical station-
ary phase approximations schemes can be applied to re-
duce the complexity of the problem. Let us recall that
Feynman path integrals can be evaluated by stationary
phase methods whenever the action S = [(m7?/2 - V)
is greatly in access of i. An action of O(k) is accumu-
lated whenever a quantum particle has propagated over
a distance of O(Ar), the Fermi wave length. As pointed
out above, Ar is substantially smaller than any other rel-
evant length scale, i.e. we are working under conditions
where the path integral can be evaluated by stationary
phase schemes.

This observation forms the basis to the so-called semi-
classical approach to mesoscopic systems, i.e. an ap-
proach that attempts to make the summation over classi-
cal stationary phase paths quantitative. The application
of such methods to effectively clean mesoscopic struc-
tures has been a great success story. (In the context
of mesoscopic physics, a ‘clean’ system is one where the
disorder concentration is so low that on the length/time
scales of interest the electron dynamics is effectively bal-
listic. Examples include high mobility two-dimensional
electron gases. More will be said about such systems in
section III below.) They are, however, far less suited to
the analysis of disordered structures wherefore the ortho-
dox semi-classical approach will not play the main role
in this course. Closely related, but now tailor made to
problems with disorder, are methods of diagrammatic
perturbation theory.

The starting point of the diagrammatic approach is a
formal series expansion of the single particle Green func-
tion,

G=(Gy' =V) ™ =Go+GoVGo+GoVGoVGo + ...,
(5)

where Go = (e — 1%)_1 denotes the free Green func-
tion, controlled by the kinetic part of the Hamilton op-
erator, Hy, and V is some kind of disorder potential. As
usual with diagrammatic approaches, individual terms
contributing to the series are represented graphically like
in Fig. 7.

= + + + +

FIG. 7. Graphical series representation of the single parti-
cle Green function.

Here the thin and thick lines stand for the free and full
Green function, respectively, and the crosses symbolize
scattering off the potential. At this stage, the series ex-
pansion of Fig. 7 merely represents a formal expression
for the scattering paths depicted schematically in Fig. 6.
However, the real advantage of the formal diagrammatic
expansion is that it can be made quantitative. For that
one first needs to specify a probability measure defining
the characteristics of the scattering potential V. E.g., a
popular choice is to assume that V is short range Gaus-
sian correlated,

where the average should be understood as over many
realizations of the scattering potential.

Of course, in order for the whole approach to make sense
the outcome of the diagrammatic analysis (i.e. predictions
for the long range behaviour of observables of interest) must
be insensitive to the particular modeling of the potential dis-
tribution. In the vast majority of applications this condition
is met. Yet there are a few prominent exceptions, e.g. the
d-wave superconductor (to be discussed below) whose low
energy spectral properties sensitively depend on the micro-
scopic features of the scattering potential.

In practical terms, Eq. (6) states that, on average,
scattering events are pairwise correlated. One can inter-
pret this rule by saying that the scattering phase shift ac-
cumulated by the Green function in any scattering event
must be compensated for by a second scattering process
with equal but opposite phase shift. A set of diagrams
conforming with this rule is shown in Fig. 8 where the
dashed lines indicate the pairwise, or Gaussian, correla-
tion of the scattering process.

FIG. 8. Set of diagrams contributing to the averaged single
particle Green function.

The pair correlation rule entails enormous simplifica-
tions and enables one to compute objects like averaged
Green functions in quantitative detail. (Referring to the
literature [15] for detailed expositions of the technicalities
we have included a brief review of diagrammatic methods
in section ID.) E.g., application of the diagram technique
to the average of a single Green function obtains

(G(rr,r1;t)) = Go(rp — r;t)e /27,

i.e. an object that decays rapidly on the scale of [ = vpT7.
This result conforms with our previous qualitative con-
siderations on the short-ranged behaviour of the averaged



Green function. However, the diagrammatic formalism
can equally well be applied to averages of products of
Green functions, as they appear in the analysis of trans-
port probabilities. One then encounters (see section ID
for details) diagrams of the topology shown in Fig. 9 (a).
This diagram formally describes correlated pair propaga-
tion, as depicted qualitatively in Fig. 6, bottom. Again
the scattering events occur pairwise, where now the scat-
tering phase picked up by one Green function gets com-
pensated by a matching term in the other Green function.
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FIG. 9. Diagrammatic representation of the two particle
Green function: (a) Diffuson, (b) a short-ranged non-singular
contribution, and (¢) Cooperon. Note that the maximally
crossed Cooperon diagram can be re-expressed as a ladder
series by time-reversing the advanced Green function.

Quantitative evaluation of the pair propagation pro-
cess shown in Fig. 9 (a) leads to the result

<P(1‘F,I'1;t)> = <|G(rF,r1;t)|2> = HD(I'F — I'I,t) =

(rp —r1)?
(2xDt)2/2 P [_ 2Dt ] @

where D = v27/d denotes the bare classical diffusion
constant. This equation predicts diffusive long time re-
laxation, as one would expect on the basis of the close
analogy between the diagram of Fig. 9 (a) and the
pair-correlated scattering paths shown in Fig. 6, bot-
tom. Within the context of diagrammatic perturbation
theory, a process like Fig. 9 (a) is known as a soft
mode. The origin of the phrase can be understood by
representing the diagram in frequency /momentum space.
Fourier transformation of Eq. (7) obtains the result
Ip(q,N) = (—iQ + ADg?)~!, where q and Q are con-
jugate to r; — rr and ¢, respectively. Notice that IIp di-
verges in the limit of small q (large length scales) and Q2
(large time scales) which is symptomatic for an effective
theory with low, or soft excitations. In the mesoscopic
literature, the mode IIp is know as the Diffuson.

Notice, however, that so far the analysis accounted
only for a very restrictive set of diagrams contributing
to the series expansion of the pair Green function: not
only did the scattering events occur in a pairwise corre-
lated manner, they were also ordered in a highly regular,
‘ladder’ type sequence. (c.f. the ‘irregular’ contribution
shown in Fig. 9 (b) that also contributes to the two par-
ticle Green function.) Why is the ladder contribution
more relevant than generic processes? The point is that
we are interested in computing contributions to the pair
Green function with low phase mismatch. To fulfill this
condition the two Green functions constituting the pair
propagator must run ‘in parallel’; so that the two dynam-
ical quantum phases picked up during the propagation
through the medium largely cancel out. Re-interpreting
a diagram like Fig. 9 (b) in terms of real space scattering
paths, it is clear that the phase cancellation condition is
not fulfilled. For a more rigorous formulation, see section
ID.

However, is the diagram shown in Fig. 9 (a) the only
one with small phase mismatch? Indeed, there is one
more process of relevance, viz. Fig. 9 (¢). From the
topology of this diagram, it should be clear that it de-
scribes propagation of two Green functions through the
same scattering path, albeit in reversed direction. That
such processes might play a role in phase coherent trans-
port can be seen in Fig. 10. The origin of the relevancy
of this contribution is that, in the absence of time re-
versal symmetry breaking perturbations, the quantum
phase picked up during propagation through any one
path equals the phase of propagation in reversed direc-
tion. This symmetry gives rise to a second soft mode,
the so-called Cooperon, IIc(q,Q) = (=i + hDg?)~L.
(Technically, this results obtains from summation over
all diagrams of the type Fig. 9 (b) [c.f. section ID]).
Contrary to the Diffuson, which basically represents the
quantum descriptor of classical diffusive motion, the
Cooperon does not have a classical counterpart; its exis-
tence essentially hinges on the fact that the fundamental
object of quantum dynamics is amplitudes, not densities.
The name ‘Cooperon’ derives from the strong analogy to
Cooper pair propagation in the theory of superconduc-
tivity, a point we will discuss in more detail below.

Quantitative evaluation of the contribution of time
reversed path propagation to the return probability
(P(rs = rr,ry;t)) gives

(P(rgp =r,rp5t)) =2 X Z <Af>,

i.e. the coherent superposition of a path ¢ with its time-
reversed counterpart j = i leads to doubling of the clas-
sical result.

What happens to the Diffuson and Cooperon modes
in cases where time reversal invariance is broken, e.g.
through the application of a magnetic field. Under such
conditions the parity between Diffuson and Cooperon
gets lost: while the former remains invariant, the latter



assumes the form (for the calculation see, e.g., [15])

1 1 1
" L4 2772 D(q — eA/hc)? —iQ’
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where A is the vector potential representing the time re-
versal breaking perturbation. Notice that the Cooperon
denominator no longer diverges in the limit (q,Q) —
(0,0), i.e. the Cooperon is no longer is a soft mode.

The structure of this result can be made plausible as
follows: (for weak enough fields) classical diffusion of a
particle is not affected which is why the Diffuson remains
invariant. However, the Cooperon gets modified, the
reason being that the quantum phases for propagation
through a path in reversed order are no longer identi-
cal. The analytical structure of the perturbed Cooperon
pole is largely dictated by gauge invariance; as with con-
ventional quantum-mechanics a “covariant” combination
like (q — eA/hc)? describes the minimal gauge invariant
coupling of a vector potential.

Together, the Diffusion and Cooperon modes repre-
sents the fundamental “building blocks” out of which
quantum coherence phenomena can be described. As a
first example, we will identity the main quantum inter-
ference corrections to the classical conductivity.

FIG. 10. Quantum phase coherent paths contributing to
the transfer probability. Note that the constructive interfer-
ence of a path with its time-reversed counterpart leads to
an enhancement of the return probability which renormalizes
down the diffusion constant.

1. Weak Localization

Applied to the transfer probability density, the
phase coherent superposition of time-reversed paths (the
Cooperon mode) provides the leading quantum correc-
tion to classical conductivity (see Fig. 10). The enhanced
return probability has a tendency to “delay”, or “weakly
localize” the particle, and has important implications for
localization and transport properties. An estimate of the
quantum correction to the diffusion constant can be ob-
tained by evaluating the reduction in transfer probability
along a diffusing path due to redundant excursions (see
Fig. 11). Requiring that a returning path stays within
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a wavelength of the outgoing path, an estimate for the
relative change in the diffusion constant can be obtained
by accounting for the return probability 1/(Dt)%? at any
point along the trajectory [16]

9D _oP __ Ad_l/“’ dt
D P - UF [ (Do
_ 1 2 2-d _ y2-d

Here tp = L?/D denotes the typical diffusion time across
a sample of size L¢, and v, is the d-dimensional density
of states (DoS).

Cooperon

"Hikami Box"

Diffuson
Sy

FIG. 11. The weak localization correction shown in Fig. 10
can be separated into a three stage process: two Diffuson
ladders connected to a Cooperon ladder by a junction region
known as an “Hikami box”. Here, the “tubular” represen-
tation of the soft modes emphasizes that the maximum real
space resolution of the quantum propagation, as described by
the two-particle Green function modes, is given by Ar. Weak
localization arises when the two Green functions constituting
a diffuson mode split up to form a Cooperon mode (see Fig.
10.) Note that the magnitude of the correction is constrained
by the condition to return to the same point in real space all
with a resolution of the Fermi wavelength.

Applying the Einstein relation for the conductivity,
o = e2v4D, this estimate of the weak localization correc-
tion (8) is in accord with the diagrammatic calculation
showing that, in two dimensions [17],

e L (E
2h L)

This result resolves one of the puzzles presented by exper-
iment: when subjected to a weak magnetic field, a given
path no longer interferes constructively with its time-
reversed counterpart. As a result, to leading order, the

(9)



conductivity is predicted to increase in agreement with
the observed negative magneto-resistance measurements.

The long-ranged Diffuson and Cooperon modes pro-
vide the key elements from which a consistent diagram-
matic theory of quantum coherence phenomena in disor-
dered conductors can be assembled. Later, in section II,
their existence will be used to motivate the existence of
a low-energy quantum field theory of disordered conduc-
tors.

FIG. 12. Diagrammatic representation of the main phase
coherent contributions to the fluctuations of the transfer prob-
ability density from (a) the diffuson channel, and (b) the
Cooperon channel.

2. Fluctuations

While the random phase cancellation of different Feyn-
man paths restricts the long-range contributions to the
transfer probability density to classical diagonal contri-
butions, their influence on fluctuations is substantial. In
particular, phase coherent contributions to the quadratic
fluctuations can arise from paths that are non-diagonal
(see Fig. 12). More precisely, since (cos?(p; —p;)) = 1/2,
fluctuations of the probability density differ from the
classical transfer probability by an amount

<(P(I‘F,I'I;t) - <P(I'F,1'I; t)>)2> = 22 <A?A?>

i#]

Mechanisms of quantum interference between different
Feynman trajectories induce fluctuations in the proba-
bility density which depend non-locally on the particu-
lar realization of the impurity potential. These fluctua-
tions resolve a second puzzle concerning the existence of
the characteristic magneto-fingerprint pattern observed
in the conductance measurements: The phase accumu-
lated by a closed Feynman path depends sensitively on
the external magnetic field according to the relation

€ =€ .

Thus, a change of magnetic field by an amount ¢o/L?,
where ¢ = hc/e denotes the magnetic fluz quantum, ef-
fectively changes the configuration space of the system
which in turn induce reproduceable, characteristic fluc-
tuations of the conductance. Equivalently, defining the
magnetic length Ly, = 1/¢o/H as the typical length scale

(10)
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over which phase coherence of Cooperon modes is main-
tained, we can estimate

(5G(0)3G (H)) ~ (Lf)d (%)2

Later we will find an explanation for the universality of
the magnitude of the conductance fluctuations. However,
before doing so, let us see how these ideas can be used to
explain the nature of the Aharonov-Bohm oscillations.

FIG. 13. Schematic diagram showing the interference cor-
rection to a two-terminal conductance measurement of a de-
vice with the geometry of a ring. The second diagram shows a
Cooperon correction from trajectories which circulate around
the ring. The latter is responsible for the h/2e oscillations.

3. Aharonov-Bohm Oscillations

Both mechanisms of quantum interference shown in
Figs. 11 and 12 are manifest in the transport properties
of a metallic ring threaded by a magnetic flux, ¢. In the
Aharonov-Bohm geometry (see Fig. 13) Feynman trajec-
tories which pass anti-clockwise around the ring experi-
ence an additional phase shift relative to those that move
clockwise. A contribution to the transfer probability
or conductance which involves a pair of Feynman paths
which traverse the ring in opposite directions will there-
fore experience an Aharonov-Bohm oscillation of period
he/e. Yet, such contributions add incoherently and do
not appear in the ensemble average conductance. How-
ever, following on from our discussion above, phase co-
herent contributions to the fluctuations do survive. Alto-
gether these results suggest a periodic modulation of the
magneto-conductance fluctuations with a period set by
the flux quantum (6G(0)6G(p)) ~ cos(2mp/¢g). These



fluctuations account for the hc/e oscillations observed in
the experiment.

The hc/2e oscillations of the average conductance itself
finds its origin in the mechanism of weak localization. In
the Aharonov-Bohm geometry the application of a mag-
netic flux imparts a relative phase into the time-reversed
paths encircling the ring (see Fig. 13). Here, each particle
has to completely circumnavigate the ring once. As a re-
sult the average conductance itself is expected to exhibit
oscillations periodic in hc/2e. This effect, predicted by
Altshuler and Aronov [18], was first observed by Sharvin
and Sharvin [19].

4. Energy Level Repulsion and Universality

Our considerations above were primarily concerned
with understanding the influence of quantum phase co-
herence on the transport properties of mesoscopic sys-
tems. However, the same phase coherence phenomena,
are responsible for characteristic fluctuations in spectral
properties. Although clearly there are no low-energy
scale correlations between the energy levels belonging to
completely different impurity configurations, within any
given realization the eigenvalues are strongly correlated.
An estimate of the degree of correlation can be estab-
lished from the two-point correlator of DoS fluctuations,

(11)

where v(E) = tr 6(E — H) denotes the DoS operator,
and A = 1/L% denotes the average level spacing. (For
convenience, here and throughout, the smooth average
DoS is expressed as the shorthand, v = (v(E)).)

To interpret the origin of the statistical correlations
within the framework of interfering trajectories, we can
exploit the identity connecting the Feynman propaga-
tor with the DoS. Defining the advanced Green function
G~ =[E— H —i0]"! = (G*)T, the DoS is defined by

Ry (Q) = A2 (W(E + Q/2)w(E — Q/2)) — 1,

v(E)

= %tr Im G~ (E). (12)
In this representation, the DoS is seen to be associated
with the return probability of Feynman trajectories. As
before, when subjected to an ensemble average, the long-
time contributions to the DoS vanish due to the ran-
dom phase cancellation of Feynman paths. Only the very
short-time ¢ < 7 trajectories, which give rise to a smooth
part of the DoS survive.

However, as with the transfer probability, phase co-
herent long-time contributions to the fluctuations can be
identified (see Fig. 14). The complete phase cancellation
of Feynman trajectories is achieved by matching paths
with two diffusion modes (c.f. the diagrammatic repre-
sentation of the fluctuation correction.) Formally, the
existence of long-range correlations arises from the ex-
change of two diffusion ladders between two closed loops,
and gives the result [20]
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In systems invariant under time-reversal, a second mech-
anism arising from the exchange of Cooperon ladders is
accounted by a further factor of two (see Fig. 14b).

(@ (b)

FIG. 14. Diagrams showing the leading contribution to the
two-point auto-correlator of DoS fluctuations. The first dia-
gram (a) represents the exchange of two diffuson ladders be-
tween two closed loops while the second denotes the exchange
of two Cooperon ladders.

While this result shows that on energy scales 2 in ex-
cess of the “Thouless energy” (i.e. the inverse transport
time),

h _RD

E N
c tD L2,

(14)

level statistics depend explicitly on material properties
such as geometry and morphology, on scales Q < E,,
the zero spatial diffusion mode q = 0 dominates, and

1 (A\?
27?2 (Q) ’
In this limit fluctuations of the DoS are universal, in-
dependent of detailed properties of the system. In fact
Eq. (15) is a manifestation of “rigidity” in the spectrum:
taking N(Q) to be the number of levels inside a band

of width €, Eq. (15) shows fluctuations in N to increase
only logarithmically with Q,

Ry () ~ (15)

(V(@)), = I (N). (16)

This compares with a hypothetical random or Poisson
distribution of energy levels in which fluctuations of N

grow as /(NN).

5. Universal Conductance Fluctuations

Spectral rigidity (16) provides a simple physical inter-
pretation of the characteristic scale of conductance fluc-
tuations [21]: as we have seen, the bare conductance of a
metallic sample of dimension L can be expressed through
the Einstein relation (1) as a ratio of characteristic energy



scales, G = ge?/h, where g = E./A; i.e. the dimension-
less conductance g is equivalent to the number of levels
inside a window of energy E.. Thus, while the aver-
age conductance (G) = ge?/h, is large in a good metal
(9 > 1), Eq. (16) implies that the characteristic scale of
fluctuations,

((6G)?), ~ O(e?/h),

is universal [11,12], independent of the average conduc-
tance, system size, etc. Spectral rigidity of the spectrum
of the disordered quantum Hamiltonian therefore pro-
vides a natural way to understand the characteristic uni-
versal conductance fluctuations observed in experiment.

6. Breakdown of Perturbation Theory: RMT

The estimate for the spectral correlation function (15)
also signals a warning concerning the domain of validity
of the diagrammatic perturbation theory which will be of
relevance in future. At energy scales Q < A, or equiva-
lently at time scales in excess of the inverse level spacing
(known as the “Heisenberg time”), ¢t > tyg = h/A, re-
sponse functions obtained with diagrammatic perturba-
tion theory show unphysical IR divergences. Taking into
account contributions higher order in perturbation the-
ory doesn’t help. Indeed, the strength of the divergence
just becomes enhanced.

In fact, the validity of diagrammatic perturbation the-
ory relies on two independent parameters: firstly, the dis-
order potential should be sufficiently weak that a quasi-
classical approximation is valid (i.e. Ar/¢ < 1). Further-
more, the influence of quantum interference corrections
should be small. More precisely, the validity of Eq. (13)
relies on the further condition,

ANY/2 /AN (2-D)/2
— — 1.

To understand the structure of this criterion, consider the
first order quantum interference correction to the classical
diffusion constant, (8). For any given value of the frequency
Q, the self returning Cooperon mode can propagate for a
time ~ Q™! before phase coherence is lost. This means that
for Q > t5', the upper limit in (8) must be replaced by Q~'.
Doing the integral and expressing all parameters in terms of
A and E. we arrive at the criterion above.

In the quantum regime (i.e. where Q < A), this con-
dition is not met. Here the intuition afforded by the
diagrammatic picture breaks down.

In fact, the universality of the low-energy sector of
the correlation function gives a clue to the true behav-
ior in the quantum regime. On time scales in excess if
tp = L?/D, the entire phase space of the system has been
explored. In this “ergodic regime” spectral and transport
properties of a quantum particle ought to become fully
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universal, dependent only on (a) the fundamental sym-
metries of the system and (b) the total number, N, of
energetically accessible states. Under these conditions
(and with the benefit of a good deal of hindsight) one
would expect the dynamics of the particle in a disordered
environment to be indistinguishable from that of a “ran-
dom matrix” Hamiltonian, i.e. an N-dimensional matrix
H drawn from some distribution P(H)dH that is com-
patible with the symmetries of the system but otherwise
maximally entropic.

In fact, Random Matrix Theory (RMT), as it has come
to be known, provides a convenient way of modelling low
energy regimes of disordered electronic systems. Tem-
porarily restricting the discussion to ordinary normal
metals (thereby excluding superconductors, relativistic
Fermion systems and other less conventional species),
three principal universality classes

P(H)dH o exp [—Jz—fter] dH,
can be identified [22] according to whether the matrix H
is constrained to be real symmetric (8 = 1, Orthogonal),
complex Hermitian (8 = 2, Unitary), or real quaternion
(8 = 4, Symplectic). Hamiltonians invariant under time-
reversal belong to the orthogonal ensemble, while those
which are not belong to the unitary ensemble. Time-
reversal invariant systems with half-integer spin and bro-
ken rotational symmetry belong to the third symplectic
ensemble. (Later on we will see that an exhaustive de-
scription of the ergodic low energy phases of all stochastic
quantum systems requires the introduction of seven more
ensembles.)

Now, expressed in the basis of eigenstates H = UTAU,
where A denotes the matrix of eigenvalues, the probabil-
ity distribution can be recast in the form

P(H)dH = J({E;}) exp l—i—]j > Ef] [1dEdv
% l

where the invariant measure J({E;}) = [],; | E: — E;|°
reveals the characteristic repulsion of the energy levels.
As with the disordered Hamiltonian, the rigidity of the
complex eigenvalue spectrum is revealed in the two-point
correlator of DoS fluctuations. In particular, applied to
the unitary class of complex Hermitian matrices, to lead-
ing order in N random matrix analysis [23,24] reveals a
universal (i.e. independent of the distribution) correla-
tion function

sin®(7Q/A)
~ (mQ/A)

This result, non-perturbative in A/Q, interpolates
smoothly onto the result of Eq. (13) if we set
sin®(7Q/A) — 1/2.

In fact, the connection between RMT and the long-
time or low-energy properties of disordered conductors
is even more robust extending to statistical properties of
the wavefunctions themselves.

Ry(Q) =1 (17)



7. Scaling Theory of Localization

To close this section on coherence effects in non-
interacting disordered systems, let us return to the phe-
nomena of weak localization. Previously, we saw that the
constructive interference of time-reversed paths gave rise
to a quantum correction to the conductivity which was
interpreted as the renormalization of the classical diffu-
sion constant to a lower value. This invites the question,
how does the accumulation of quantum interference cor-
rections finally affect the transport in a disordered envi-
ronment.

This question finds its origin in the pioneering work
by Anderson in a seminal paper entitled “The absence of
diffusion in certain random lattices” [25]. Based on the
consideration of a simple random “tight-binding” Hamil-
tonian, Anderson proposed that, above a certain critical
strength of the disorder potential, there is a qualitative
change in the nature of the electronic wavefunction in
which its envelope becomes exponentially localized.

Here a distinction should be drawn between qualita-
tively different mechanisms of localization. Evidently,
the lowest energy states in a disordered system will be
dictated by “optimal fluctuations” of the random impu-
rity potential. These “tail states” can be interpreted as
“bound states” localized in regions where the potential is
unusually low and uniform [26,27]. Instead, here we are
interested in the localization properties of states with en-
ergies greatly in excess of the typical magnitude of the
impurity potential, i.e. Ep7 > 1. Here, the mechanism
of localization can derive only from the accumulation of
subtle interference corrections.

Mobility

A
DoS Edge

L ocalized Extended
Energyr

FIG. 15. Schematic diagram showing the typical variation
of the DoS with energy. A mobility edge separates regions of
extended and localized states.

According to its energy E, Anderson proposed that
a given state is either extended or localized depending
on the degree of disorder. Following an argument due
to Mott, it is also plausible that extended and localized
states at the same energy do not coexist — in such cir-
cumstances, the admixture of the former due to arbitrar-
ily small perturbations would lead to the delocalization of
the latter. Moreover, it is natural that states at the band
edge are more susceptible to the formation of bound or
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localized states. These considerations suggest a profile
for the DoS in which the low-lying localized states are
separated from higher-energy extended states by a Mo-
bility edge. The transition signalled by the Mobility
edge is known as the Anderson transition.

Since the pioneering work of Anderson, almost two
decades past before a consistent theory of localization
emerged. Its basis was a simple yet powerful scaling hy-
pothesis which followed naturally from a arguments of
Thouless [28,29]. Building on this work, Abrahams, An-
derson, Licciardello, and Ramakrishnan [30] proposed a
one-parameter scaling theory of localization according to
which the conductance of a system of size bL, where b
is some dimensionless scaling parameter, is a function of

g(L) only:

9(bL) = fy(9(L))-

The important point is that f, does not explicitly de-
pend on the system size L. Independently of Thouless’s
argument, this restriction can be made plausible by di-
mensional analysis: since g is dimensionless, the only way
for the parameter L to appear in f is through a dimen-
sionless ratio L/a. Here, a is some compensating scale
of dimensionality ‘length’. This, however, would imply
explicit dependence of the conductance on a microscopic
reference scale which conflicts with the presumption of
universal scaling behaviour. Differentiation of the scal-
ing form with respect to b then obtains the Gell-Mann
Low equation

dlng
dinL

B(g)-

The scaling function 3(g) = f(g)/g is universal, indepen-
dent of the microscopic properties of the sample, such as
the bare microscopic conductance and £/Ar. Reassur-
ingly, this scaling picture fits neatly into the perturbative
scheme of weak localization. In fact the weak localization
correction (8) represents just the first term in a pertur-
bative series which accumulate into a renormalization or
scaling of the diffusion constant D.

The one-parameter scaling theory has profound conse-
quences for the localization properties of disordered con-
ductors. For an ohmic conductor, the scaling function
takes a constant value 8 = d — 2, while deep in the in-
sulating regime, where states are exponentially localized,
B(g) ~ Ing (i.e. g ~ e L/%). A smooth interpolation
between these limits (see Fig. 16) suggests that below
two-dimensions all states are localized, while above there
is a critical conductance, g., above which states are ex-
tended. The unstable fixed point is associated with the
Anderson localization transition.
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FIG. 16. Scaling function of the dimensionless conduc-
tance, 5(g), in dimensions d = 1, 2 and 3. At large values of
the conductance, the scaling function approaches the asymp-
totic B(g) — d—2 corresponding to Ohmic behavior. For very
small values of conductance, the scaling function approaches
B(g) — In(g) characteristic of insulating behavior. According
to the weak localization expansion, a localization transition
is predicted in dimensions greater than two.

The situation in two-dimensions is more delicate. Lo-
calization properties depend sensitively on the asymp-
totic approach of the (8 function to the metallic limit.
However, taking the first quantum correction from
Eq. (9), one obtains 8(g) = —1/n?g which is consistent
with localization of all states in two-dimensions. While
the one-parameter scaling theory of localization has yet
to find a truly rigorous mathematical proof, it neverthe-
less represents a important milestone in phenomenology.
At the same time, trust in the phenomenology places
important constraints on the theories of disordered ma-
terials.

Perturbative Non-Perturbative
i = D ey
;e =
t to ty, time

Ballistic : Diffusive = Ergodic . Quantum

FIG. 17. Schematic diagram showing the relevant time and
energy scales in disordered transport. Also shown is the
regime over which properties can be treated within a per-
turbative framework.
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8. Summary

This concludes our preliminary survey of the quantum
interference phenomena which characterize mesoscopic
structures. To summarize our findings, let us consider
the influence of quantum interference processes on the
dynamics of a spreading wavepacket in a background of
weakly scattering random impurities. (Here we imagine
a wavepacket whose spectral resolution is confined to a
narrow interval (i.e. A < Ewigth < h/7) around the
Fermi level.) The fate of the wave package sensitively
depends on whether the size of the host system is larger
or smaller than the localization length. We begin by con-
sidering the latter case: absence of pronounced Anderson
localization effects. The different regimes encountered by
the diffusing particle are summarized in Fig. 17.

> Ballistic Regime: here, on time scalest < 7 a
wavepacket spreads ballistically at the Fermi veloc-
ity. Within this regime, particle dynamics is largely
insensitive to the impurity background.

Diffusive Regime: one time scales 7 <t < tp =
L?/D, the quantum interference due to scattering
off the background impurity potential leads to dif-
fusive dynamics of the wavepacket. Within the Dif-
fusive regime, quantum weak localization correc-
tions renormalize the diffusion constant below the
bare value. In dimensions d < 2, these quantum
corrections accumulate, and ultimately lead to the
complete localization of the wavepacket.

Ergodic Regime: if the particle does not local-
ize, or if the localization length is greatly in ex-
cess of the system size £ > L, on time scales
t > tp = L?/D the wavepacket extends over the
whole system. In this sense, the particle dynamics
is said to be “ergodic”. Here the dynamics becomes
universal, independent of the geometrical and ma-
terial properties of the system. Spectral properties
of the system become indistinguishable from those
of random matrix ensembles.

Quantum Regime: finally, on time scales ¢t >
tg = h/A, the particle enters a regime in which
its properties are dictated by the universal prop-
erties associated with the resolution of individual
levels. In particular, the rigidity of the spectrum
cooperates to produce a “dynamical echo” of the
wavepacket [31] (c.f. the dynamics of a wavepacket
confined to an harmonic oscillator potential).

For a large system with L > £, the initial stages of the
propagation process, ballistic and diffusive motion, are
identical to those sketched above. However, the diffusive
spreading of the particle is now limited by the localiza-
tion length and not by the system size. On large time
scales t > ¢2/D the particle enters the analog of the



‘ergodic regime’, i.e. it has uniformly explored its acces-
sible phase space. On still larger scales t > Ag, where
A¢ is the characteristic level spacing of a system of vol-
ume ¢9, it enters the ‘quantum regime’. Many of the
non-perturbative phenomena observed in the quantum
regime of finite size systems carry over to the localized
case. However, since neither { nor A, are sharply defined
scales, the notorious level-spacing oscillatory behaviour
displayed by finite size systems is not observed (see, e.g.,
Ref. [32] for a discussion of this point).

C. Interaction Phenomena

Although, as we have seen, many of the characteris-
tic mesoscopic phenomena can be satisfactorily under-
stood within the framework of a non-interacting theory,
the effects of Coulomb interaction give rise to a num-
ber of important manifestations in experiment, including
charging effects, dephazing and various realizations of the
Kondo effect. Indeed the slow dynamics of electrons in
a disordered environment can lead to an enhancement of
interaction effects. In this section, we will discuss several
of the classic experiments in which interaction effects are
important.

1. Coulomb Blockade

Perhaps the most direct and simplest manifestation
of Coulomb interaction in charge transport arises in
measurements of the resonant conductance through al-
most closed quantum structures. Previously, we saw
that in open dots, two-terminal conductance measure-
ments showed characteristic mesoscopic fluctuations —
magneto-fingerprints (see, e.g. Fig. 1). Suppose that a
changing gate potential narrows the constriction to the
dot so that the number of transverse quantum channels
is diminished down to one open channel. When the con-
striction is narrowed even further, an incoming electron
experiences a tunnel barrier. In this regime, one would
expect charge transport to be limited to resonant trans-
mission through the discrete energy levels of the device
when the chemical potential of the leads matches the dot.
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FIG. 18. Schematic diagram showing the condition for
charge transfer through a quantum dot. The continuum of
states in the reservoirs are filled up to the chemical potential
Miett and pright Which are related by the external Source-Drain
voltage V.q. Discrete states of the zero-dimensional quantum
dot are filled up to a chemical potential pgot. Charge trans-
fer is possible when the chemical potential pqot lies between
Mright and pref.

Experimentally, resonant conductance peaks are ob-
served as a function of the chemical potential (i.e. exter-
nal gate voltage), but the separation of the peak spacing
is typically controlled not by the single electron-energy
level spacing of the dot A, but rather by a more sub-
stantial charging energy incurred when an electron is
transferred onto the dot. In the simplest approxima-
tion, the Coulomb interaction of the electrons on the
device can be taken into account phenomenologically by
including in the Hamiltonian a “classical” charging en-
ergy Ec(n) = n%e?/2C, where C denotes the capacitance.
According to this “orthodox model”, charge transfer is
forbidden unless the excess charging energy vanishes,

(Ben+1) — (n+1)eV,) — (Ec(n) — eVen) =0,

where V; is a gate potential controlling the chemical po-
tential of the dot. This condition under which charge
transfer is allowed is met when Vi = (n + 1/2)e?/C.
Away from this value charge transfer is strongly sup-
pressed — the “Coulomb blockade” [33,34]. (For a review
see, e.g., Refs. [35-38].)

Despite its simplicity, the orthodox model of the
Coulomb blockade gives a good qualitative explanation
of experiment. Fig. 19 shows the resonant conductance
measurements of a ballistic GaAs quantum dot. These
results show resonant conductance peaks separated by a
uniform energy scale reflecting the charging energy e?/2C
of device. Fluctuations in the height of the peaks can be
ascribed to mesoscopic fluctuations of the wavefunction
amplitude at the contacts [39] (although their correlation
from one peak to another is harder to explain).
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FIG. 19. Resonant tunneling conductance of a ballistic
quantum dot (with the geometry as shown inset) courtesy
of Ref. [13].



Coulomb blockade oscillations are usually periodic in
the charging energy. However, in a dot containing
a very small number of electrons, both the electron-
electron interaction and the effects of confinement be-
come sufficiently strong that the spacings between the
Coulomb blockade peaks becomes irregular. In such
cases, the quantum dot behaves as an artificial atom
showing “magic numbers” at which angular momentum
states form a closed shell and electronic configurations
are highly stable. Fig. 20 shows a grey-scale plot of the
conductance as a function of gate and source-drain volt-
age of a device known as a vertical quantum dot [40]. At
zero source-drain bias, the Coulomb blockade oscillations
reveal stable configurations in which the total number of
electrons on the dot are N =2, 6 and 12 (c.f. the “noble
gas” configurations). At non-zero bias, features appear
corresponding to the many-body electronic excitations in
the dot.
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FIG. 20. Measurements of the conductance of a vertical
quantum dot as a function of gate and source-drain voltage
courtesy of Ref. [40].

Despite the apparent success of the orthodox theory,
the agreement between theory and experiment reported
in the early literature has, in recent years, been called
into question. Correlation between the parametric de-
pendences of the resonant peaks both as a function of
changing gate voltage and magnetic field point at the
existence of interaction effects which lie outside the or-
thodox scheme [41,42]. The continuing attempts to rec-
oncile these effects with many-body theories of electron
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interactions is the subject of on-going research.

2. Zero-Bias Anomaly

Surprisingly, an effect analogous to the Coulomb block-
ade described above occurs in the tunneling of a particle
onto an open system (i.e. where the net charging en-
ergy vanishes). The transfer of an electron onto a metal
involves two steps: traversing the barrier, followed by
spreading within the metal. Typically the traversal time
is much shorter than the relaxation time in the electron
liquid. Accordingly, it is legitimate to separate tunnel-
ing into a single-electron, and a many-electron process.
At small bias voltages, the first contribution, which is
described by the transmission coeflicient of the barrier,
can typically be taken as constant. The second process
by which the electron is accommodated on the device,
involves the collective motion of a large number of elec-
trons. At low bias voltages, the second collective effect
may dominate the tunneling rate.
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FIG. 21. Schematic diagram showing the geometry for the
measurement of the tunneling conductance of a disordered
metallic conductor.

The effect of charge relaxation on the tunneling rate
has a simple qualitative interpretation. Following the
discussion of Ref. [43], let us consider a situation when
at small bias voltages, one electron is transferred across
a tunnel barrier into a disordered conductor. Since the
traversal time is typically much shorter than the relax-
ation time in the metal, while the electron traverses the
barrier, other electrons practically do not move. Thus
instantly, a large electrostatic potential is established,
both due to the tunneling electron itself, and due to the
screening hole left behind. The jump in electrostatic en-
ergy by an amount much bigger than the bias eV means
that immediately after the one electron transfer, the sys-
tem is found to be in a classically forbidden state under
the Coulomb barrier. In order to accomplish tunneling,
the charge yet has to spread over a large area, so that
the potential of the charge fluctuation is reduced below
eV. If the conductivity is finite, the spreading over large
distances takes a long time, and thus the cooperative
under-barrier action is much bigger than A.

Taking the effective Coulomb interaction to be short-



ranged, a crude estimate of the excess charging energy
suggests Ecoulomb(t) ~ A [ drp(r,t)? where A denotes the
interaction constant. If the charge relaxation is diffusive,
the charge is distributed approximately uniformly over
a radius r7(t) ~ (Dt)'/? (ie. p(r,t) = 1/r(t)%). With
this assumption, we obtain the following estimate for the
excess action,

1/ev VeV ypdt 1
Sint ~ /T dtEcoulomb ~ A /T FW. (18)

Applied to the tunneling conductance, 6G(V)/G ~
ov(V)/v ~ exp|[—Sint/h] implying, for example, a log-
arithmic suppression of the tunneling DoS in two-
dimensions, and a square root singularity in three [44].
Transport properties such as the conductivity and
magneto-resistance are also affected by interaction. For
example, if kgT > E., the interaction correction to the

conductivity is given by
VT d=3

00(T) ~ {lnT d=2

and competes directly with the localization corrections.

3. Inelastic Scattering Rate and Dephazing

A second important manifestation of Coulomb interac-
tion is through the phenomena of inelastic energy relax-
ation and dephazing. As a warmup to our discussion of
electronic interactions in dirty media, let us recapitulate
the concept of the quasi-particle lifetime in the theory of
the Fermi liquid.

Consider an electron with some energy € > 0 at zero
temperature. (In this section, all energies are mea-
sured from the Fermi energy.) Energy relaxation oc-
curs through interaction with a partner electron of energy

h

Tee(€)

where (, = p?/2m — Ep. Defining the Fourier com-
ponents of the screened Coulomb interaction Uy =
47e? /(g% +k2) where k! represents the screening length,
the scattering rate takes the form

h / / N A
~ QdQ) dg———
Teele)  Jo T Mgy
~ GZ/EF d=3
€ ln(e)/Er d=2

Here the parameter 1/qup can be identified with the typi-
cal time scale on which two electrons stay within a radius
1/q and interact.

How do these results change in the presence of disor-
der? Curiously, several decades of application of Fermi
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€ < 0 (see Fig. 22). For large initial energies, processes
of this type will lead to a rapid creation of a cascade of
particle-hole excitations and, thereby, to a swift decay of
the single particle spectral weight into a many body con-
tinuum. However, at small energies, energy/momentum
conservation, and the conditions imposed by the Pauli
exclusion principle impose tight phase space restrictions
on the scattering process; for asymptotically small exci-
tation energies, the quasi-particle becomes stable.

e

e +W

FIG. 22. Schematic illustration of the scattering process
underlying the inelastic relaxation rate. An electron with en-
ergy € > 0 transfers energy € to an electron with energy
€ < 0. The phase space accessible to the scattering process
is limited by the condition of energy and momentum conser-
vation, and by the Pauli exclusion principle.

To get a quantitative estimate for the quasi-particle
life time, one can compute the inelastic scattering rate
1/7ee(€) within a “Golden rule” approximation. At zero
temperature, the result reads (c.f., e.g., [45])

€ 0
~ [ a0 [ de(oifi - a) o + allp)de ~ GIIE ~ Go)ole = 2 = Goma)d(€ + 2= Grva)

liquid theory to dirty electron systems passed before this
obvious question was seriously addressed for the first time
[44]. Yet (albeit with the benefit of hindsight), one should
expect the result for the relaxation rate to undergo qual-
itative changes once disorder is present. The reason is
that in a disordered medium the relevant time scale to
be associated with a characteristic momentum ¢ is not
1/qur but rather the diffusive scale Re[(1/(i2 + ADq?)].
Le. instead of moving ballistically, the electrons diffuse
through the interaction zone. It is intuitively clear, that
slowing down the kinematics of the particles will lead to
an increase of the relaxation rate.

All this is born out of a microscopic calculation [44].
Taking into account the screening of the Coulomb inter-
action, the energy relaxation rate takes the form



1 € 1
* 9(Lo) * vl

Tee(€)
where L. = (hD/€)'/? denotes the diffusion length and
9(Le) = vDL3~2 is the conductance of a system of size
L..
It is instructive to represent the scattering rate of a
dirty system in the general “Golden rule form” [46],

(19)

Tee

€ 0
_ / 49 / de' M (L, Q, ¢, ¢)p(L), (20)
0 —Q

where p(L) is the total density of states and M (L, Q, ¢, €')
some effective transition matrix element (that encapsu-
lates the full information on the disorder dependent dy-
namics and on the effective Coulomb interaction.) As-
suming that M ~ Q% depends primarily on the energy
exchange of the scattering process, we can do the inte-
grals and obtain 7..;' ~ e**2. Comparison with (19) then
leads to the identification z = —2 + d/2, i.e. the ef-
fective matrix element diverges for low energy transfer
in dimensions d < 4; somehow the disordered system
favours quasi-elastic interactions processes with vanish-
ingly small energy transfer.

As long as the interest is in ‘high energy’ physics, e.g.
the relaxation rate of large energy electrons with € > T,
the infrared singularity of the interaction matrix element
is of no real concern. (It is over-compensated by the two
extra integrations over € and €'.) However, it is impera-
tive to ask whether there are circumstances where the low
energy behaviour of M does play a role. Indeed, in the
context of mesoscopic physics, one is often not so much
interested in the dynamical aspects of the interaction pro-
cess, but rather in the quantum phase decoherence in-
duced by interactions. To understand what is meant by
that, let us consider the propagation of a low-energy elec-
tron, with characteristic energy € ~ T'. Suppose at time 0
our electron suffered an inelastic collision with small en-
ergy transfer ). After time ¢ the quantum phase of the
electron will have picked up an extra contribution ~ ¢{2.
If we wait only long enough, t ~ Q~1, even arbitrarily
small energy transfers can induce complete “de”phasing
of the particle. Processes of this type limit the long range
phase coherence in, e.g., weak localization measurements.
To get an estimate for the phase relaxation time, i.e.,
the characteristic time scale after which phase coherence
is lost due to quasi-elastic electron-electron scattering,
we can follow the simple argument [46] (which can be
substantiated by microscopic calculation [47]): at finite
temperature 7', our low energy electron propagates in the
vicinity of a Fermi surface softened over a range of O(T).
The upper cutoff of the integration over €' in (20), i.e.
the phase volume accessible to the scattered electron, is
then set by 7T, instead of Q. Replacing in Eq. (19) one
power of € for T', we find that 1/74(e) ~ T/g(L.), where
we have identified the quasi-elastic low energy collision
rate 74 as the relevant time scale for dephazing. This
estimate diverges at low energies and can, therefore, not
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reflect the full truth. To improve the result, we have to
remember that the e-powers in the denominator enter the
result through L, i.e. the length scale over which phase
coherent transport at time scale e ! occurs. However,
in the present context, phase coherence is limited by the
very time scale 74, we wish to compute, i.e. our formula
must be replaced by the self consistency relation,

1 T

T g(LT‘ﬁ—l) )
Solution of this equation obtains the power law 74 ~
T1/(2=4/2) ‘i e. a dephazing time that diverges in the low
temperature limit.

In a sense, this result forms the basis for the entire
field of mesoscopic physics: by cooling a system to ever
lower temperature, the spatial extent over which phase
coherence phenomena can be observed becomes arbitrar-
ily large. At least in principle. In reality, there are other
mechanisms limiting phase coherence, e.g. various types
of noise emitted by the measurement apparatus.

This completes our superficial survey of just some of
the manifestations of interaction in disordered metallic
systems. It is largely included here as a salutary re-
minder that the experimental environment is often more
complex than the models which will address in the fol-
lowing lectures. Indeed, in the majority of the remainder
of the course we will neglect the influence of interaction
altogether. We remark that there exists a number of
reviews on the influence of interaction and disorder in-
cluding Refs. [48-53].

D. Impurity Diagram Technique

For completeness, as a footnote to this section, we in-
clude a more formal discussion of the “impurity diagram tech-
nique” [54,55]. Readers wishing to familiarize themselves on a
deeper level with impurity diagrammatics are referred to the
review [15]. Here we restrict ourselves to a concise outline
of the main concepts that enter the approach. Our aim will
be to find formal expressions for the ensemble average of the
single-particle and two-particle Green function.

Single-Particle Green Function: The starting point of
the diagrammatic perturbation theory is the series represen-
tation of the single particle Green function, Eq. (5) and its
graphic representation Fig. 7 (before averaging) and Fig. 8
(after averaging). For simplicity we assume the scattering po-
tential to be represented by the §- or ’white noise-’ correlated
distribution (6). Separate contributions to the ensemble av-
erage can be arranged into reducible and irreducible parts.
Diagrams that can be split into two by cutting a single Gy
line are called reducible (see, for example, the last diagram
shown in Fig. 8.) Collecting together all the irreducible dia-
grams, the impurity averaged Green function can be written
in the form of a Dyson equation

(é) = éo + éoi](é) = ==

&1 (21)
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where 3 denotes the self-energy operator.

= o / (dQ)G™(p — a; E + i0),
K- where we have used the shorthand, (dq) = d%g/(27)?. In the
_ + N ', literature, the approximation leading to this form of ¥, i.e.
the omission of all diagrams with crossed lines, is referred to
as the non-crossing approximation (NCA) or self-consistent
FIG. 23. Diagrammatic representation of the Dyson equa- Born approximation (SCBA). The real part of the self-energy

tion for the ensemble average of the single-particle Green func- simply leads to an irrelevant shift in energy, while the imagi-
tion in the self-consistent Born approzimation (SCBA). Here nary part is given by

the bold line represents the average Green function while the

dotted line indicates a connection to an impurity scattering Imn*t — 1
center represented by a cross. (Higher order contributions 2nvT
to the ensemble averaged Green function involve higher or-
der corrections to the self-energy small in the quasi-classical
parameter 1/krl, where kr = 27w/Ar represents the Fermi
wavevector of the incoming electron.) 1

(G(p; Er —i0)) = Er + p?/2m —i/27

(dp)ImGo(p; E + i0) = ?%-

Substituting the self-energy into the expression for the impu-
rity average Green function (21), we obtain the result

(22)

An exact evaluation of all diagrams contributing to the
self-energy is impossible. However, in the semi-classical limit
1/krf < 1, diagrams with intersecting impurity lines (like,
e.g., the fourth contribution to the right hand side of Fig. 8)
become negligibly small. (See Ref. [45] for a discussion of this
suppression mechanism.) The remaining set of diagrams is
formally summed through the reduced Dyson equation dis-
played in Fig. 23. The self energy operator entering this

equation, i.e. a full Green function under a potential contrac- FIG. 24. Diagrammatic representation of the ladder series
tion is given by associated with the average two-particle Green function.

showing that, in real space, the average Green function decays
on the length scale of the mean-free path.

= + X o+ XX +

Two-Particle Green Function: The transfer probability
density involved the two-particle Green function P(r,0;t) =

+oy +o . N
H(p) = /(dq)V(q)G (p—aqE+i0)V(-q) = |G(r,0;t)|?. In Fourier space, the latter can be represented as

P(a,) = / (dp1) / (dp2) / (dp) / dEG(p1,p + /% E + 04)G(p — a/2,p2 B — 04),

where Q4 = Q + 0. Expanding the Green functions as a diagrammatic series in V' and subjecting the product to an ensemble
average, one can identify the dominant contribution as that arising from the connection of the Green function lines by a ladder
series (see Fig. 24). More precisely, one finds that

(G(P1,P+d/2 E + Q4 /2)G(P2,P — a/2; E — Q4/2)),
=G(pi; E+94/2)G(p —q/2; E — Q4 /2)lIn(q,2)G(p + q/2; E + 24 /2)G(p2; E — Q4 /2),

where G(p; E +i0) = (G(p — q,q1; E +40)) = (E — p*>/2m =+ i/27) ™! represents the impurity average Green function, and

1 _ _
In(q,?) = 5—— [1 + I(q, DIIn(q, )],  I(q,?) = /(dP)G(p +4a/2,E+Q./2)G(p —q/2, E — Q4/2). (23)
|
From this result we obtain TIp(q,Q) = (27v7 — ['(q,Q))~ . space, one again arrives at a recursion relation like (23). In
For small q and Q, the time reversal invariant case, the solution reads

I'(q,Q) ~ 2707 L% (1 + Q1 — Dq’7),

where D = v%7/d denotes the classical diffusion constant. 1 1 1
Altogether, we obtain the diffusion propagator, HOc(q, ) = e omvr? Dq? —iQ’
1 1 1
lp(q,Q) = ————— ~ .
o(a,9) L4 2nv712 Dq? — iQ
The Cooperon propagator Ilc is calculated in an analogous as for the Diffuson. For the case of broken time reversal in-

manner. Expressing the ladder of Fig. 9 (c) in momentum  variance, see Ref. [15].
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II. FIELD THEORY OF DISORDERED
CONDUCTORS

Having laid the conceptual foundation for the descrip-
tion of mesoscopic phenomena it is now time to put flesh
on these ideas by developing a formal theory. In the
previous section, our terminology implied the existence
of a diagrammatic perturbation theory whose validity
depended on the quasi-classical parameter 1/kpf < 1.
Indeed, within such an approach, a consistent theory
of weak localization and coherence phenomena can be
developed. However, the accumulation of quantum in-
terference corrections within the framework of the one-
parameter scaling theory, together with the appearance
of IR divergences of the diagrammatic perturbation the-
ory hints at the existence of a higher unifying scheme
in which the diffusion modes of density relaxation are
associated with soft modes of a quantum field theory.

In fact, the coherence properties of weakly disordered
conductors can be described within the framework of a
statistical field theory in which all the mesoscopic phe-
nomena described in the previous section can be un-
derstood. Focusing on the properties of an “n-orbital”
Hamiltonian, Wegner [56] established that the diffusion
modes of the diagrammatic perturbation theory were as-
sociated with the soft modes of a functional non-linear o-
model. The renormalization properties of this statistical
field theory are compatible with diagrammatic perturba-
tion theory and the one-parameter scaling. Within this
theory, the breakdown of perturbation theory is under-
stood as a consequence of the proliferation of massless
Goldstone modes associated with mechanisms of quan-
tum interference.

With the benefit of hindsight, we can draw a formal
analogy between the disordered conductor and the clas-
sical O(3) ferromagnet. The classical statistical mechan-
ics of the ferromagnet is also represented by a non-linear
o-model, of the form

Zz =
S2=1

exp [— /KSW(BS)2 -H-S|, (24)

where K, denotes the spin wave stiffness, and H repre-
sents an external magnetic field. As with the disordered
metal, the ferromagnet exhibits a branch of low-lying ex-
citations describing spin wave modes, (Ks,q? + H)~ 1. If
the magnetic field is strong, a controlled diagrammatic
perturbation theory of the ferromagnet can be formally
established. At the same time, the renormalization prop-
erties of the spin wave stiffness can be developed by
studying the influence of spin-wave interactions. How-
ever, by diminishing the magnetic field, the spin wave
modes become massless and perturbation theory breaks
down. Associating the spin wave stiffness Ky, with the
diffusion constant D, and the magnetic field H with the
frequency scale of the two-particle response i€, the anal-
ogy is complete.
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The development of the quantum field theory of dis-
ordered conductors has a history dating back to the pio-
neering work of Wegner [56]. In the following, for reasons
that will become clear, we will develop a more recent ver-
sion of the field theory introduced by Efetov [57]. Our
analysis will concentrate on establishing the fundamen-
tal principles behind the theory (often at the expense of
technical detail). For a more comprehensive discussion
the reader is referred to the existing reviews on the sub-
ject, particularly those by Efetov [58], and Weidenmiiller,
Verbaarschot and Zirnbauer [59] as well as the excellent
and more modern expositions by Fyodorov [60] and Mir-
lin [61,62]. The material developed in this section will
form the backbone for the remainder of the course.

A. Derivation of the c-Model Action

As preparation for the formal analysis, we begin by
presenting a rough outline of the derivation of the effec-
tive field theory. Previously we saw that spectral and
transport properties can be expressed through the cor-
relators of the Green function G(E) = (E — H)~!. The
starting point of the field theoretic approach is the repre-
sentation of the Green function (or rather their product)
as a Gaussian functional field integral. When subjected
to an ensemble average over configurations of the impu-
rity potential, an interaction amongst the fields is gen-
erated. At this stage, a power series expansion of the
action in the interaction can be assembled into the di-
agrammatic perturbation theory described qualitatively
in section I. Instead, anticipating the existence of long-
range diffusion modes, we will introduce a Hubbard-
Stratonovich decoupling of the interaction where the aux-
iliary fields @) are associated with the soft modes of the
theory.

Again, it is useful to draw a formal analogy, this time
with the BCS theory of superconductivity. The quan-
tum partition function of the bare BCS Hamiltonian, is
also expressed in terms of an interacting quantum field
theory. Anticipating the slow fields of the theory to be
associated with the formation of the Cooper pair con-
densate, the interaction can be decoupled by a Hubbard-
Stratonovich transformation involving the BCS order pa-
rameter, A. When subjected to a saddle-point, or mean-
field approximation, the action recovers the “Gap equa-
tion” for A. Taking into account fluctuations around the
saddle-point, a gradient expansion obtains the familiar
Ginzburg-Landau theory. Neglecting the massive fluc-
tuations of the amplitude of the order parameter, the
massless phase fluctuations are described by an action of
non-linear o-model type.

In the present case, the saddle-point field configuration
of @ is associated with the self-consistent Born approx-
imation for the average single-particle Green function.
As with the superconductor, subjecting the action to a
gradient expansion in the vicinity of the saddle-point we



will in turn obtain a non-linear g-model in which the low-
lying modes represent the diffusion modes of the theory.

Finally, before we embark on this program, we should
keep in mind that the Ginzburg-Landau theory of super-
conductivity found its origin in phenomenological con-
siderations. The structure of the theory is fully con-
strained by the fundamental symmetries of the micro-
scopic Hamiltonian. In principle, identifying the fun-
damental symmetries, one could legitimately apply the
same line reasoning to develop the “Ginzburg-Landau
theory” of the disordered conductor. However, for the

G (r,r';EF) = <r'

~ | T

E; —H

where Z[V] denotes the constant of normalization, E, =

Er —i0, and H represents the Hamiltonian (3) of a single
particle subject to a weak impurity potential. Here we
have deliberately introduced the notation Eg for the en-
ergy to remind us that the non-interacting theory devel-
oped below is tailored to the consideration of large Fermi
energy scales in the disordered electron gas. Applied to
a single-particle Hamiltonian, one might wonder why it
is necessary invoke a functional field integral as opposed
to a Feynman path integral — indeed the latter formed
the basis of our conceptual discussions in section I. In
fact, while it is possible to reproduce the diagrammatic
perturbation theory from ensemble averages of the Feyn-
man path integral, for reasons that will become clear, a
trajectory representation seems to be inappropriate as a
vehicle to describe the soft modes.

Expressed in this form, the presence of the normal-
ization factor Z[V], which depends explicitly on the im-
purity potential V', makes ensemble averaging difficult.
The neglect of this dependence leads to unphysical vac-
uum loops when G~ is subjected to an ensemble average.
To circumvent these difficulties, various “tricks” have
been introduced in the literature. Originally conceived to
study the classical spin glass, the “Replica Trick” [63,64]
exploits the formal identity

zZn—1

InZ = lim ,
n—0 n

(25)

to express ensemble averages. However, experience has
shown considerable difficulty in correctly implementing
the analytic continuation » — 0 in a way that respects
the non-perturbative sector of the theory [65,66]. While
very recent advances hint at a resolution of this prob-
lem within the framework of “replica symmetry break-
ing [67,68])", fortunately, at least for systems which are
non-interacting, a second and more reliable approach can
be developed.

The “supersymmetry method” exploits properties of
the Grassmann algebra to implement a scheme of “book-
keeping”. In particular, expressed as a field integral over

sake of clarity, we will stick to the more pedestrian route
of presenting a formal derivation of the o-model action.

1. Field Integral

Following the outline above our first task is to repre-
sent the Green function of the stochastic Hamiltonian (3)
as a Gaussian functional field integral. Applied to the
advanced function,

— Yy (r') "y (r) _ 1 DSS(r)S* (vl S ST (H-EZ)s
e 5 [ DSsws e
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two-component superfields 97 = (S, x), the Green func-
tion can be expressed as

G~ (Er) =i/D¢Ss*e"f¢*(f’*EE)¢.

Here, exploiting the properties of Gaussian integrals
over complex commuting or bosonic (B) variables,
[ DSe=S"M5/2 = det M~!, and anti-commuting or
fermionic (F) variables, [ Dye XMx/2 = det M, the nor-
malization Z = 1 is assured. (A comprehensive introduc-
tion to superalgebra can be found in Ref. [69].)

A doubling of the field space, allows the representa-
tion of two-point correlators or response functions to be
expressed. More precisely, the product of advanced (A)
and retarded (R) Green functions can be expressed as

G~ (Er - Q/2)G(Er +Q/2)
= —/D¢S,SiS+Sieif¢(ﬂ’EF

+
+ (22 agx

)¥

where O+ = Q+10 denotes the frequency source, and the
field integral involves four-component superfields

o= (W) =),

St
XF

Yy

Setting L = 04® ® Epg + 1** ® Egp, where FEpp and
Ey; project onto the bosonic and fermionic sector respec-
tively, the superfields have the property ¥ = ¥!L.

Pauli matrices 05" and o4® respectively break the sym-
metry between boson/fermion and advanced/retarded
degrees of freedom. Convergence of the field integral de-
termines the form of the metric L in the BB sector. While
the choice in the fermionic sector seems arbitrary, a con-
sideration of the saddle-point manifold of the o-model
determines the form above [59].

Finally, our preliminary discussion in the previous sec-
tion classified two modes of density relaxation in the dis-
ordered metal, Diffusons and Cooperons. Both will be



identified in the analysis that follows. Accordingly, an-
ticipating the structure of the saddle-point action, it is
convenient to further double the field space to include
complex or time-reversed components,

5 ()
NOACAN
The elements of the newly defined supervector ¥ are not

independent, but fulfill the “time-reversal” symmetry re-
lation

¥ =

¥t = (cn)7,

where C = o1 @ Egp + t03% Err. Under the transforma-
tion 9 + %*, the Hamiltonian maps to the time-reversed
counterpart H — HT (= H in the present time-reversal
invariant case). In fact, any discrete symmetry of the mi-
croscopic Hamiltonian doubles the number of low-lying
modes of density relaxation. In each case, it is convenient
to double the field space [70].

Finally, instead of representing each vertex separately,
it is often more convenient to introduce a “source term”
into the effective action from which arbitrary correlators
can be constructed,

2] = /D\Ilef [i% (A—Er+ Srog) vt Twtda] (26)

Here the sources J and J obey the same symmetry prop-
erties as ¥ and ¥. Hereafter, for the sake of clarity, we
will turn off the source (i.e. Z[J = 0]), reinstating it only
when essential.

2. Impurity Averaging

Expressed as a functional field integral involving super-
fields, the ensemble average over a Gaussian §-correlated
impurity distribution

~) > |

P.P’ |q|<£~?

f @

where the first and second terms generate the contribu-
tions from the Diffuson and Cooperon respectively, and
the summation over q is limited to low momentum trans-
fer. Both processes are represented diagrammatically in
Fig. 25.
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7»[’ d’p (7»[_’—p—q1/’p’+q)+

P(V)DV = exp [—m/T / V2] DV

can be applied straightforwardly. (Here, and henceforth,
we set i = 1.) Applied to the generating function,

(Z[T =0)) = /D\IJef [i‘P(%_EH%”QR)“’—m(‘I"I’) ]

where (---) J(---)P(V)DV represents the ensem-
ble average. In the absence of the symmetry breaking
sources, 2 and J, the total action is seen to be invari-
ant under pseudo-unitary rotations of the fields in super-
space,

v U, ULU=L, UeSU(2724).

At this stage, an expansion of the total action in powers
of the field interaction can be assembled into a diagram-
matic series expansion from which the perturbative results
of section I can be established. However, anticipating the
dominance of contributions arising from long-range fluc-
tuations of the density, we will instead seek a mean-field
decomposition of the action.

8. Hubbard-Stratonovich Decoupling

To establish a useful mean-field decoupling of the in-
teraction requires the identification of the soft modes
of the theory, i.e. those modes that arise from two-
particle channels undergoing multiple scattering with the
exchange of momenta smaller than the inverse of the elas-
tic mean-free path, £ = v7. The isolation of these modes
is conveniently performed in the Fourier space. Applied
to the interaction of the fields, the relevant contributions
arise from the channels

(1/_’—p’ 7/"1)) (7/_"p’—q¢—p+q)]

23

FIG. 25. Diagrammatic representation of the terms in the
Hubbard-Stratonovich decoupling that lead to (a) the diffu-
sion mode, and (b) the Cooperon mode.

Introducing the Hubbard-Stratonovich decoupling

exp [_/47r11/7'
:/DQexp [—%/( Qu-T" strQ )] (27)

the contributions to the Diffuson and Cooperon degrees
of freedom are accounted for by slow fluctuations of the
8 x 8 supermatrix fields, ). Here the supertrace oper-

str (T @ @)2]



ation is defined by strM = trMgs — trMp. (Note that,
as written, the Hubbard-Stratonovich transformation is
not exact. If all degrees of freedom of @) (fast and slow)
are taken into account, the decoupling (27) involves an
over-counting by a factor of 2. This is because the saddle-
point corresponding to the Cooperonic sector (i.e. those
degrees of freedom which anti-commute with the symme-
try breaking matrix of") can be found in fast fluctuations
of the diffuson sector, and vice versa.)

Finally, the symmetry properties of the dyadic product
¥ ® ¥ are reflected in the symmetry properties of Q by
the constraint

Q =CLQ"LC", (28)

where the transpose of a supermatrix is defined by

wr = (

Gaussian in the fields ¥, the functional integral obtains

(Z[0]) = /DQexp [/ str (g_:cf - %mg‘—l)] ,

where

T
Mz,
_afT
BF

(29)

i p? i oy i -
QSP:__/dp — —Er+i0+ —Qs :_/df Ep —&— —Qsp .
% 2m 2T T 27

From this equation, one can attach to Qsp the interpre-
tation of the self-energy of the impurity averaged single-
particle Green function. Performing the integral over (,
we deduce that the elements of Q¢p take values of +1. To
choose the signs correctly, we note that the expression on
the right-hand side of the saddle-point equation relates to
the Green function for the disordered system in the self-
consistent Born approximation. The disorder preserves
the causal (i.e. advanced versus retarded) character of
the Green function, therefore the signs of the diagonal
elements of s, must coincide with the sign of the imag-
inary part of the energy. This singles out the solution
Qsp = 03‘,‘“-

In the limit @ — 0, the action is invariant under
the global transformations Q(r) — TQ(r)T !, where T
represent pseudo-unitary rotations that are constant in
space and compatible with the symmetry properties of
@ (28). This implies that the saddle-point solution spans
the non-linear manifold Q2, = 1 (i.e. Qs = Toj*T1).
Dividing out rotations that leave o3® invariant, the de-
generacy of the manifold is specified by the coset space
SU(2,2|4)/SU(2|2) ® SU(2|2).

Substituting Qg into Eq. (29), we obtain the follow-
ing expression for the supermatrix Green function at the

represents the supermatrix Green function. In summary,
the problem of computing impurity averaged Green func-
tions has been reduced to the consideration of the Eu-
clidean field theory which depends on an 8 x 8 superma-
trix field Q.

4. Saddle-Point Equation

Following the procedure outlined at the beginning of
this section, we now subject the field integral to a saddle-
point analysis. The legitimacy of such a mean-field de-
composition is ensured by the symmetry properties of
the Hubbard-Stratonovich fields which were chosen to
reflect the soft modes of the disordered Hamiltonian. A
variation of the action with respect to ) generates the
saddle-point equation

Que(r) = ——G(r, ).

p— (30)

Taking the symmetry breaking sources 2 and J to
be vanishingly small, and applying the ansatz that the
saddle-point solution Qs is spatially constant, and diago-
nal in the internal indices, the saddle-point equation (30)
takes the form

1
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saddle-point:
gsp(ra rl) = _iﬂ'Vfd(|r - rll)Qspa

where defining Gy (r) = (G (r,0)), fis denotes the
“Friedel function”

ool ()

fa(r) ImG, (0) kr

J%_l(kr)e* 3,

which decays on a scale comparable to the mean free

path.

e



FIG. 26. Schematic diagram showing the structure of the
saddle-point manifold. For /A > 1, there is a unique sad-
dle-point. As /A — 0, the saddle-point opens to span an
entire manifold. Spatial fluctuations around the saddle-point
can be classified into a massive and massless sector. The
massive sector is controlled by the semi-classical parameter
1 / E FT.

5. Gradient Ezpansion

In the semi-classical limit (i.e. 1/Erp7 < 1 or, equiva-
lently, 1/kpf < 1) spatial fluctuations in the vicinity of
the saddle-point manifold can be separated into a mas-
sive and massless sector (see Fig. 26). To leading order
in the parameter 1/Ep7, the massive fluctuations do not
contribute to the low-energy effective action. Instead, we
will focus on the low-energy spatial fluctuations which
preserve the non-linear constraint Q(r)? = 1. Anticipat-
ing that the relevant field configurations T'(r) fluctuate
only slowly as a function of r, it makes sense to sepa-
rate the momentum operator into two parts, p = p + q,
where the operator @ = —i0 acts exclusively on the fields
Q(r), while the momenta p are associated with the trace.
Taking p?/2m ~ p*/2m + p - @/m, an expansion of the
action yields

1 1
S[Q] = Estrr,pln [Gal -77! (iQ+a3AR +op: (1) T]

where Gy'(p) = E — p?/2m — ig4*/27, and str,p de-
notes a trace over internal indices, and the phase space
coordinates.

Taking 1/Er7 < 1 and A7 < 1 an expansion in the
‘slow’ operators q to lowest non-vanishing order obtains

1 1 s 2
S1Q] = EStrIUP GOTiliQ_FUgRT + 2 (GoTlI)Tn—qT)

(Note that the term linear in the fast momenta p vanishes
under the trace.)

To prepare for the tracing out of the fast momenta,
we first formulate some useful identities involving the
bare average Green function Ggo. All the relations below
can be proved straightforwardly by explicitly performing
the momentum integrations and using some Pauli-matrix
identities.

> Firstly, in the momentum representation, the
Green function can be presented as

1

1+ sog®
p?/2m +is/27

> In this form, the trace over internal momentum
variables obtains:

/(dp)Go (p) = const. x 1** —imvog™
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> Finally, if operators A and B vary slowly in space,
then

[ (@p)stz [Gaelp - AGa(p)p - B

2
m . .
T27rDugstr [(1 +s03")A - (1 — SU§R)B] :

A straightforward application of these identities to the
effective action above leads to the non-linear o-model ac-
tion,

__m™ / str [D(0Q)? + 207 05*Q)] -

S1Q1 = -7

(31)

We have thus succeeded in expressing the average two-
particle properties of weakly disordered metallic grains
in the form of a functional supersymmetric non-linear
o-model. (Note that the generalization of this formal-
ism to account for higher-point response functions fol-
lows straightforwardly.) The derivation of the effective
action relies only on the integrity of the semi-classical
parameter 1/Ep7 (c.f. the discussion of section IB 6).

6. Magnetic Field

An extension of the present theory to include an exter-
nal magnetic field introduces a magnetic vector potential
into the action,

2 = 0] = &) ¥ (p-soB A 4V -Bri oy ]

The magnetic field breaks time-reversal symmetry and
couples to the symmetry breaking matrix o3*. Treat-
ing the magnetic field as a weak perturbation (see be-
low), and proceeding as before (i.e. setting q = —id —
(e/c)o3™A), it is straightforward to show that the ef-
fective action takes the same form as Eq. (31), but
where the derivative is replaced by a covariant deriva-
tive involving the magnetic vector potential,  — 9 =
9 —i(e/c)Alo3", ].

According to this result, the degrees of freedom of @
which commute with ¢3® remain unperturbed by a weak
magnetic field, while those degrees of freedom that do
not commute acquire a mass. The former denote the dif-
fuson modes while the latter represent the field sensitive
Cooperon modes (recall the phenomenological discussion
of section I). For strong enough magnetic fields, the influ-
ence of the Cooperon modes become negligible and can
be neglected. Note that the Cooperon degrees of free-
dom are coupled to an effective charge of 2e reflecting
the two-particle nature of the mode.

The influence of magnetic fields on the phase coherence
properties of disordered conductors appears at minute



fields (ca. one flux quantum through the system.) How-
ever, if the magnetic length Ly = (¢o/B)'/?, equal to the
cyclotron radius, becomes comparable to the mean-free
path £, the influence of orbital effects becomes significant.
In this case we enter the quantum Hall regime, a limit
to which we will return in section III. For simplicity we
will postpone the consideration of this regime and focus
on the limit of weak or zero field.

B. Applications of the ¢-Model

Having established the basis of the statistical field the-
ory, how can the phenomenology of disordered conduc-
tors be recovered. In the twenty years since its construc-
tion, the o-model action has been subject of numerous
investigations. In the following we will briefly review just
afew of the principle applications from which connections
to the conceptual discussions of section I can be drawn.

1. Perturbation Theory

To help digest the form of the effective action it is use-
ful to establish contact between the field integral and the
phenomenology of the diagrammatic perturbation the-
ory. To do so, we focus on the short-time dynamics
limiting our considerations to frequency scales 2 large
as compared to the inverse transport or diffusion time
E. = D/L? — i.e. the diffusive regime. In this case, the
functional integral is dominated by field configurations
of Q(r) which deviate little from the global saddle-point,
o3®. (c.f. the spin wave expansion of the ferromagnet.)

With the parameterization T = e~ /2, where the gen-
erators obey the constraint [W, o4*]; = 0, an expansion
of the effective action obtains

SolW] = -7 /ster[_lW + oW,
where II-! = —D&? + iQt. As anticipated, the slow

modes of density relaxation are associated with diffu-
sion modes. More precisely, the components of W which
commute with o3® represent the diffuson modes while
those which do not acquire a mass in the presence of a
weak magnetic field, and represent the Cooperon modes.
At zero magnetic field, both are controlled by the same
propagator. Corrections to the action higher order in W
induced by the non-linear constraint Q2 = 1 describe
interactions of the diffusion modes, and reflect different
mechanisms of quantum interference.
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FIG. 27. Diagram contributing to the weak localization
correction to the diffusion constant at one loop. The two dia-
monds should be imagined as connected by a Green function
line, the same for the two circles. The shaded area represents
the Hikami box, i.e. the sum of the three single impurity
insertions indicated at the bottom of the figure.

2. Weak Localization, Scaling and the RG

As with the O(3) o-model for the ferromagnet, the ac-
tion (31) can be subjected to a 2 + € perturbative renor-
malization group analysis. Separating slow from fast de-
grees of freedom, an application of the momentum shell
RG to one loop order obtains the renormalization,
2-5)

v

SR CAA ) |
—SI(0,0)]

D—D'=D|1

where 8 = 1 or 2 according to whether or not the Hamil-
tonian is invariant under time-reversal. A diagrammatic
representation of this correction is shown in Fig. 27. This
contribution represents just the first order correction to
an infinite series which forms the one parameter scaling
of the diffusion constant, or equivalently, of the conduc-
tivity.

This result, which predicts a quantum correction to
the conductivity of do/oc = —(2 — 8)II(0,0)/nv, is con-
sistent with the estimate of the weak localization made
in section I. (Note that, while the leading order weak
localization correction is cancelled by a weak magnetic
field, higher order contributions from diffusons alone,
lead to a renormalization of the diffusion constant even
in the unitary ensembles.)

Let us digress for a moment from the construction of the
field theory and comment on some technical aspects of pertur-
bative approaches to computing Green function correlators in
mesoscopic systems. Broadly speaking, three principal per-
turbative schemes exist: diagrammatic perturbation theory,
as discussed in section ID, perturbative evaluation of fluctu-
ations around the mean field of the nonlinear o-model, and
semi-classical schemes aiming at identifying relevant contri-
butions to the Green function path integral.

The principal difficulty of including higher order quantum
interference corrections into diagrammatic summations is that



the ’junction’ between ladder diagrams usually needs to be
dressed by a number of single impurity lines. This is illus-
trated in Fig. 27, where the shaded junction, i.e. the Hikami
box, includes three sub-diagrams differing by a single line.
The proper identification of all those vertex corrections is an
art by itself and any mistake is penalized heavily. Which is
to say that incorrect account for vertex corrections leads to
violations of the unitarity of the theory and, therefore, to non-
sensical results. In principle, it is possible to check the valid-
ity of diagrammatic expansions by confirming compatibility
with various conservation laws, Ward identities etc. However,
the issue remains subtle enough and is responsible for a large
number of serious errors in the literature.

The problem arises in a sharpened form within semi-
classical schemes, based on the path integral. The semi-
classical analog of the junction between a Diffuson and a
Cooperon is a region where a pair of quantum amplitudes
splits and later recombines (c.f. Fig. 10.) It has, so
far, been impossible to identify and include the analog of
the Hikami box correction into semi-classical path counting
schemes. This means that the computation of even first or-
der weak localization corrections is beyond present day semi-
classics.

It is one of the principle advantages of the field theory
scheme, that the aforementioned difficulties do not arise.
Within the field theory approach, unitarity is conserved as
long as the action remains invariant under the action of the
symmetry manifold SU(2, 2|4) (see [59] for a detailed discus-
sion of this point). Since all manipulations done in extracting
the low energy action carefully respect this invariance prop-
erty, all ‘single impurity corrections’ needed to guarantee uni-
tarity of the theory are automatically included, to all orders
in perturbation theory! This makes the field theory approach
an ideal tool for solving problems that require large order
perturbative summations.

8. Lewvel Statistics

As a second application, let us consider the two-point
correlator of DoS fluctuations R2(Q2). In the o-model
representation, the latter is expressed in terms of the

correlator
1 2
=& <[/ %str (05" ® agFQ(r))] >
Q

To leading order, an expansion in terms of the gener-
ators obtains Ry(Q) = ([ str(c5"W?)])?)w /256, where
(-+yw = [ DW ---e~%IW] and the generators

(s %)

are block off-diagonal in AR-space. Focusing on the uni-
tary symmetry class, [@, 03%] = 0, and making use of the
contraction rules [58,72],

(str [B(r)PB(r')R])
(str[B(r)P]str [B(r')R])

Ry (Q) —1.

(r,r') str P str R,
r,

p=1
g = H(r,r')str [PR],
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we recover the perturbative result of Eq. (13)

Az .
= — trII%.

R () 272

(32)
Formally, in the language of diagrammatics, this contri-
bution is associated with the exchange of two diffuson
ladders between two closed loops (see Fig. 14). Per-
forming the trace we find that, for Q@ > E. = D/L?,
R(0) ~ g~ %/2(A/Q)?%/2, In the zero-dimensional limit
this result recovers the perturbative random matrix limit.
Interestingly, in two-dimensions, the constant of propor-
tionality identically vanishes, and a non-trivial depen-
dence of Ry on 2 only emerges from higher order weak
localization corrections [?].

4. Zero-Mode

Having examined the short-time perturbative dynam-
ics, we now switch attention to consider the low energy
quantum regime where diagrammatic analysis fails. Tak-
ing Q <« E., contributions to the effective action involv-
ing spatial fluctuations of @) are strongly suppressed. In
this limit, the contribution at leading order in 1/g is dom-
inated by the spatially uniform zero-mode configuration
Q(r) = Qo. In this case, the effective action takes the
universal form

Qt

str (O'grQo) ; (33)
independent of dimensionality, the value of the diffusion
constant, or geometry of the system. In fact, as will be
shown below, Eq. (33) is an exact representation of sta-
tistical correlators of the corresponding random matrix
ensembles.

Although the zero mode integration is definite, its eval-
uation relies on finding an explicit parameterization for
the @ matrix. While straightforward in principle, the
practice is somewhat involved. As such, the detailed pa-
rameterization of the zero-dimensional () matrix has been
included only as a footnote to this section. Qualitatively,
parameterizing Qo through the pseudo-unitary transfor-
mations which bring it to diagonal form, an expression
for R can be given in terms of eigenvalue integrations,

=ot
A

1 o0 T
Ry(9) = JRe /1 d\ / 1d,\ez A1=2) (34)

Explicit integration over the eigenvalues A, A1 [58] recov-
ers the random matrix result (17).

In conclusion, we have demonstrated that, by exploit-
ing the ensemble average, an effective field theory can
be developed which is capable of describing the response
of disordered conductors from time scales short as com-
pared to the typical transport or diffusion time, to times
in excess of the Heisenberg time tg = 1/A where prop-
erties become universal. As an appendix to this section,



we will employ the same supersymmetry approach to ex-
emplify that the zero-dimensional o-model produces the
correlators of random matrix ensembles.

C. Zero-Mode Integration

The evaluation of the zero mode integrations is most read-
ily performed by finding a convenient parameterization of the
Qo matrix. For this purpose we adopt a parameterization
which separates the degrees of freedom into eigenvalues and
pseudo-unitary rotations. For the unitary ensemble, the pa-
rameterization takes the form [58]

Qo =UHU,

where matrices H and U have the block structure

. cos isinf _ fuiuz O
H_<—isin0 —cosG) ’ U_( 0 v) )
AR AR
These matrices are further separated into components
é:(’gl g) 1™,  6,>0, 0<6<m,
BF
u1 = exp , n= . )
-277 0 BF 0 n TR
B eixa'§R 0
U2 = 0 eiq&ag“ )
BF
o—exp | O 2R oo [0
TP 9k 0 ! “\N0 —k] ’
L BF TR

where @; = uf, 5 = 05" v'6}". Here the coordinates §; and

0 represent the eigenvalues of the non-compact bosonic and
compact fermionic sector respectively.
Employing this parameterization we find

str [03"Qo] =4(A — A1),
str [agB ® o3" ] =4(A1 +A) — 16 (A1 — A) [nim — Kik1],

where A cosf, A1 coshfy, p = (1 — )\2)1/2, and
p1 = (A2 — 1)Y/2. Finally, taking into account the invariant

measure,

1 ppa

4Q0 = 19877 O — 2)?

d0db1dpdxdnidnidridsy,
and integrating over the Grassmann and auxiliary bosonic
variables, we obtain Eq. (34).

D. Random Matrix Theory

To make explicit the connection between the long-time
dynamics of disordered conductors and the properties of
random matrix ensembles we can quickly repeat the con-
struction of the o-model action, now for the Green func-
tions of a random matrix Hamiltonian [74]. In particular,
following the classification scheme of section IB6, the
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application of the field integral technique to a Gaussian
distribution of N x N random matrices,
Np
P(H)dH o exp [—Vtrﬂz] dH,
where 3 indicates the corresponding symmetry class, an
ensemble average of the generating function leads to the
expression

(Z[o)) = /d[\I/]e""T’ (E+%a§“)\lf—§v—z(i’\p)2’

where ¥ represents 8 X N component supervectors.

The interaction of the supervectors generated by the
ensemble average can be decoupled with the introduction
of zero-dimensional 8 X 8 supermatrices with the symme-
try properties shown in Eq. (28). Integrating out the
supervectors obtains

(Z]0]) = /d[Q] exp [str (ng _ %lng—l)]

where G=! = —E + Q" /203% +1AQ.

A variation of the action with respect to fluctuations
of @) obtains the saddle-point equation Qs = iAG from
which we obtain the solution

1/2
) oi®,

E2
(1- i
Applied to the average DoS, the saddle-point solution
recovers the semi-circular Wigner distribution (v(E))
(N/mA)(1 = (E/2))?)Y/2. Finally, taking the energy at
the center of the band, E = 0, and expanding to leading
order in N, we obtain the zero-dimensional non-linear
o-model (33).

To summarize, the correspondence between the zero-
dimensional field theories of the disordered metal and
random matrix ensembles establishes universality of low-
energy spectral correlations. I.e. when rescaled by the
average energy level spacing A = 1/vL4, statistical cor-
relations of the energy levels, ¢; = E;/A, become inde-
pendent of the detailed properties of the system. In fact,
universality can be extended to include the response of
energy levels to an arbitrary external perturbation such
as a magnetic field. Characterizing the field strength by
some parameter X, when subjected to the rescaling

662-(X))2
(%5%) )
the statistical properties of the entire random functions
€;(z) becomes universal [75,76].

The intuition afforded by the random matrix theory
has proved to be of considerable use both qualitatively
and quantitatively. As well as providing a complete de-
scription of the universal properties associated with en-

ergy level, the statistics of wavefunctions is also provided
by the random matrix theory.

1
Qsp = _ﬁE +

c(0)

- = J/CO)X, (36)



E. Theories of Mesoscopic Systems

Let us conclude this more methodologically oriented
section with a brief survey of theories of mesoscopic
systems. Broadly speaking, there are five theoretical
streamlines that have been applied to the analysis of
quantum phase coherence in mesoscopic environments:
random matrix theory, semi-classics, diagrammatic per-
turbation theory, the so-called DMPK-transfer matrix
approach, and field theory. Although the emphasis of
the present text is on field theoretical methods, more
will be said about the complementary theories later on.

However, one important theoretical approach will not be
discussed any further in this course, the DMPK transfer
matrix formalism. For completeness, let us at least try to
formulate the basic idea of this extraordinarily powerful ap-
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FIG. 28. The idea of the transfer matrix approach. Disor-
der scattering of transverse momentum modes (the horizontal
lines) is represented through a sequence of black box scatter-
ers (the shaded areas). The information on the scattering
processes (i.e. the set of inter-mode scattering matrix ele-
ments) is held by transfer matrices T, one for each scatterer.
The total transfer matrix obtains as the product over all T;.

The transfer matrix approach is specific to quasi one-
dimensional systems. A quasi one-dimensional wire can be
imagined as a set of transverse momentum channels (or
“modes”) which scatter off static disorder. Appealing to
the general concept of universality and insensitivity to mi-
croscopic details of the disorder the latter can be modeled
as a set of spatially separated black boxes which scatter be-
tween different modes (see Fig. 28.) Technically speaking,
each box is described by an S-matrix, i.e. a code that re-
lates the set of incoming wave amplitudes to the outgoing
ones. However, sometimes it is more convenient to encode
the scattering information into a transfer-, or T-matrix, i.e.
a matrix that relates the wave amplitudes to the right of a
scattering block to the amplitudes on the left. Of course,
both descriptions are equivalent, i.e. S- and T-matrix carry
the same information. However, the T-matrix formulation
has one big advantage, viz. it can straightforwardly be iter-
ated to yield the scattering profile of eztended regions. E.g.,
it is intuitively clear that the T-matrix of a composite set
of two scatterers 1 and 2 obtains as a convolution over all
scattering states connecting 1 and 2, i.e. as the product of
the two individual transfer matrices: T = T1T>. Building
on this observation, the basic idea of the general T-matrix
approach is ask how much the total transmission through a
one-dimensional structure of K scatterers changes when one
more scatterer is added. In the limit K >> 1, the answer can
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be formulated in terms of a Fokker-Planck type differential
equation, known as the DMPK-equation (after Dorokhov-
Mello-Pereyra-Kumar [77,78]). The DMPK-approach has
proven enormously successful in the analysis of transport
characteristics of quasi one-dimensional structures. A com-
prehensive up to date review of the subject can be found
in [79].

The table below gives a broad and necessarily super-
ficial survey of the suitability of each theory to certain
common applications. Notice that the table does not
say anything about the actual efficiency of a given ap-
proach. E.g. non-interacting quasi one-dimensional sys-
tems can be described in terms of both field theory and
DMPK-transfer matrix methods. However, the DMPK-
formulation, tailor-made to one dimension, turns out
to the more powerful tool. Similarly one would think
twice before constructing a field theory model of a zero-
dimensional quantum dot when the alternative is to em-
ploy a simple random matrix model.

Theory d |non-pert.] e—e |clean/weak dis.
RMT 0 + + ol)
DMPK 1 + - -
semi-classics ||arb.| —/o? - +
diagrammatics||arb. - + -
field theory | arb. + +3) /-4 0%

FIG. 29. Application areas of various theories of meso-
scopic systems. The column “non-pert.” indicates the possi-
bility to address problems of non-perturbative nature; “e —e”
stands for electron-electron interactions and “clean-weak
dis.” for the possibility to describe weakly disordered (i.e.
non-diffusive) or even clean systems. A ‘+’ sign indicates
that an approach is well suited while a ‘-’ stands for a no-go
situation or, at least, for severe difficulties. A ‘o’-symbol in-
dicates an ambivalent status. 1) See the discussion of section
IITA 4; 2) For attempts to apply semi-classical methods in
non-perturbative regimes, see Ref. [80]; 3) Replica- or Ke-
lydsh-field theory, 4) Supersymmetry; 5) See sectionIIIC.

Further detail of the field theoretic approach can be
found in the followings reviews: Ref. [58-62].

III. QUANTUM CHAOS

In the previous section a statistical field theory of
weakly disordered metallic systems was established. The
non-linear o-model (31) provided a formal framework
from which the phenomenology of section I could be de-
veloped: Weak Localization, Scaling, Universality, and
the Random Matrix Theory. In this section, we will ex-
plore generalizations of the statistical approach which ac-
count firstly for the quantum properties of systems whose



classical counterparts are chaotic (but not necessarily dis-
ordered.)

The derivation of the low-energy effective action for
the disordered conductor specifically involved the con-
sideration of a single-particle Hamiltonian in which the
random impurity potential was drawn from a Gaussian
d-correlated white-noise distribution. However, in the
spirit of the Ginzburg-Landau phenomenology, we would
expect the domain of applicability of the low-energy ef-
fective action to be much wider. In particular, for any
model in which the long-time classical dynamics is fun-
damentally diffusive, one would expect the non-linear o-
model to apply. For example, a particle subject to a
random “classical” potential (i.e. one on which the scale
of variation is greatly in excess of the Fermi wavelength)
is expected to be described by the same diffusive o-model
on time scales in excess of the corresponding transport
mean free time (i.e. the typical time scale on which the
momentum of a particle becomes randomized). Yet, such
a model, which has a well defined classical limit, belongs
to the wider class of systems which are chaotic. Does
the field theory tell us something about chaotic quantum
structures?

(@ (b)

FIG. 30. (a) Sketch of the chaotic “stadium” billiard, and
(b) the Sinai billiard.

According to the laws of classical Hamiltonian dynam-
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ics, a system in which the number of degrees of freedom
exceed the number of constants of motion is chaotic. In
the simplest cases, the only constant of motion is the en-
ergy. For strongly chaotic systems, the fundamental non-
integrability of the Hamiltonian is reflected in an expo-
nential sensitivity of the classical dynamics to the initial
boundary condition. (i.e. a classical path in phase space
separates exponentially fast from an initially neighbor-
ing classical path.) Such systems are known as “Axiom
A” or “uniformly hyperbolic”. More generally, chaotic
structures usually exhibit a mixed phase space in which
chaotic regions are intersected by islands of integrability.

The quantum description of systems which are chaotic
in their classical limit is the subject of “Quantum
Chaos” [81]. A wide variety of physical systems fall into
this category. Amongst those most commonly studied are
models of particles confined to irregular potentials, the
so-called “Quantum Billiards” (see Fig. 30), resonances
of microwave cavities, and Rydberg atoms in strong mag-
netic fields. While much of the on-going research in quan-
tum chaos is theoretical, or even mathematical, quite a
few system classes have been the subject of experimental
investigations. We begin our survey of quantum chaos
with a brief (and incomplete) review of these activities:

Our first example is the hydrogen atom subject to a
strong magnetic field (for a review see, e.g., Ref. [82]).
The corresponding non-relativistic Hamiltonian is speci-
fied by (in atomic units)

.~ p> 1 B B ,

H_2 T+2m+8(m+y).

The third term describes the Zeeman splitting separating
levels according to the conserved z-component of angular
momentum, m. This, together with the parity represent
the only good quantum numbers. The final diamagnetic
term prevents the usual separation of variables and is re-
sponsible for non-integrability. For highly excited states,
the diamagnetic energy can become comparable to the
Coulomb energy at which point the classical dynamics

becomes fully chaotic (see Fig. 31).




FIG. 31. Typical section of the spectrum of the diamagnetic hydrogen atom spanning a region in which the phase space is
mixed (shown dotted). The shaded region lies in a domain in which the classical dynamics is fully chaotic. Here the spectral

correlations are universal.
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FIG. 32. Measurements of the typical wavefunction ampli-
tude of a “Sinai stadium” billiard and an array of scatterers
courtesy of Ref. [83].

The second experimental system which has been the
subject of investigation are the stationary modes of a mi-
crowave cavity. In particular, exploiting the equivalence
of the Maxwell equation for the stationary TM modes
of a two-dimensional cavity with a Schrédinger equation,
(V2 + k%) = 0, the eigenfunctions and eigenspectra of
chaotic “billiards” have been investigated. Fig. 32 shows
typical eigenfunctions for modes of a “Sinai stadium” bil-
liard, together with a device involving a disordered array
of scatterers.

side-view

top-view

FIG. 33. Scanning electron microscope image of a deformed
cylindrical semiconductor resonator. The laser active mate-
rial is contained in the disk (of thickness 5.4 um) sitting on
top of an InP pedestal. Light emission occurs in the plane of
the disk. Taken from Ref. [84].

While research on the aforementioned systems has
largely been motivated by fundamental science, recent
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experimental findings have led to the perspective of con-
crete technological applications of quantum chaos: re-
cent technological advances have made possible the fab-
rication of semiconductor micro-lasers with arbitrarily
shaped cavity geometry. Basically, such a device consists
of a GalnAs/AllnAs heterostructure grown by molecular
beam epitaxy onto a substrate [84] (see Fig. 33.) The
quasi two-dimensional core of the structure (i.e. the ‘sta-
dium’ shaped structure shown in Fig. 33 bottom) con-
tains a laser-active material; light is internally reflected
off the boundaries of the structure and emitted in the
plane of the disk. Due to their smallness, a natural prob-
lem with these lasers is emission power. For example, in
a regular, circular shaped geometry, internally reflected
light propagates along ‘whispering gallery’ trajectories
(see Fig. 34, left). Light is then emitted uni-directionally,
at average low intensity. Interestingly, much higher emis-
sion intensities can be achieved [84] with deformed cav-
ity geometries. This is illustrated in Fig. 34, right for
the example of a ‘stadium’ type geometry. The classical
dynamics of a stadium is chaotic. However, the system
supports a number of stable periodic orbits, i.e. solutions
of the classical equations of motion that are periodic. (A
‘bow-tie’ shaped example of such an orbit is displayed
in the figure.) In the stadium laser, such orbits identify
long-lived resonator modes, i.e. modes of anomalously
large photon intensity. This is illustrated in the contour
plot of Fig. 35, left bottom. Bright areas identify regions
of large field intensity, both in the internal geometry of
the cavity and in the far field region. This plot has been
obtained by numerical solution of the Helmholtz equa-
tion defining the optical problem. The experimentally
observed angle-resolved intensity pattern is displayed in
the left part of the figure. Notice that the maximum in-
tensity of the chaotic cavity exceeds that of the regular
one by orders of magnitude!

FIG. 34. Left: schematic plot of circular laser structure.
The internal line indicates a whispering galley type trajec-
tory traced out by the photon beam. Light emission is uni-
directional. Right: strongly deformed cavity geometry. The
system supports a stable periodic orbit of ‘bow-tie’ geometry
which identifies a region of strongly enhanced light intensity.
The strongest light emission occurs in the direction of the four
segments defining the orbit.
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FIG. 35. Upper left: Intensity of a deformed laser cavity
in direction Odeg (open symbols) and 90deg (full symbols) as
a function of the degree of deformation. Here lasing is due
to several whispering galley modes. Deformation leads to a
‘bundling’ of the emission pattern and, therefore, to an in-
crease of the field intensity along the principal axes of the
geometry. Upper right: Numerically obtained contour plot of
the intensity pattern of a moderately deformed cavity. Lower
left: Angle resolved emission pattern of a massively deformed
cavity (circular symbols) as compared to the emission of a cir-
cular cavity (triangles). Lower right: the contour plot clearly
identifies the stable bow-tie mode responsible for the ~ 45deg
emission peak observed in experiment. Taken from Ref. [84].

Over the years, the general properties of these and
many other chaotic quantum structures have come under
intense scrutiny from both mathematicians and physi-
cists alike. All have been motivated in part by the ques-
tion: what are the manifestations of chaotic dynamics
in the quantum properties of classically non-integrable
structures? We begin our investigation with a brief re-
view of the important milestones that have helped to
shape the general field of quantum chaos.

A. Spectral Statistics: A Brief History

1. Wigner Surmise

Perhaps the earliest investigation of the statistical
properties of complex quantum systems began with the
pioneering work of Wigner in the late ’40’s and early
’50’s. Guided by the very complexity of the system,
Wigner introduced a statistical ansatz to explain strong
level correlations observed in the resonance spectra of
complex nuclei [85,86]. Taking matrix elements to be
statistically uncorrelated Wigner obtained, within a two-
level approximation, an estimate of the distribution of
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neighbouring level spacings known as the Wigner sur-
mise,

w52
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where, as usual, A = (E;;1 — E;) denotes the average
level spacing. Qualitatively, this law expresses the fact
that two levels which are correlated (coupled through
some kind of matrix element) will not cross, an ubiqui-
tous feature shown by the spectra of large nuclei, and
other chaotic systems. More accurately, according to the
statistical Ansatz, the spectral properties of complex nu-
clei coincides with those of (time-reversal invariant) ran-
dom matrix ensembles.

Thus, by surrendering information specific to each in-
dividual system, Wigner was able to quantitatively ac-
count for the characteristic level repulsion observed in
experiment. Forty years on, similar considerations are
now frequently given to explain the ground state proper-
ties of artificial atoms, or quantum dots [7] (with so far
only limited success!).

2. Gor’kov-Eliashberg Theory

While successfully studied and applied to the physics
of complex nuclei, it was not until almost twenty years
later that similar ideas were applied to the study of the
quantum properties of weakly disordered metallic grains.
By identifying spectral correlations of the grains with
those of random Hermitian matrix ensembles, Gor’kov
and Eliashberg investigated the dielectric response of
metallic grains embedded in an insulating matrix [87].
Although often neglected in the more recent literature,
this early work anticipated applications of random matrix
theory to the field of mesoscopic physics by two decades.

As confirmation of the random matrix hypothesis for
disordered metallic grains, Fig. 36 shows the distribu-
tion of neighboring level spacings P(s) for an ensemble
of tight-binding models with on-site disorder belonging
to the unitary ensemble. The results compare favourably
with the universal formula for the Wigner surmise.
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FIG. 36. The distribution  of  level spac-

ings for a tight-binding impurity Hamiltonian subject to a
quasi-periodic boundary conditions. The estimate from the
Wigner surmise (P(s) = 32s® exp[—4s?/x]/x? for unitary en-
sembles) is shown for comparison. Inset, a typical set of levels
is shown as a function of the changing quasi-periodic bound-
ary condition. Also shown is are the Fourier components of a
typical high energy wavefunction. The bulk of the weight lies
around the energy shell E = p®/2m.

3. Supersymmetry: Efetov’s Non-linear o-Model

Belonging to a statistical ensemble, average properties
of disordered quantum systems are more susceptible to
analytical investigation than individual systems. As we
have seen, providing the statistical average of an individ-
ual system (for example, over a range of energy levels)
is statistically equivalent to an average over an ensem-
ble of similar systems, analytical results can be obtained
systematically and rigorously.

Relying on such an ergodicity hypothesis, Efetov de-
veloped a statistical field theory of level correlations in
weakly disordered metallic grains [58]. As we have seen
in section II, building upon the seminal work on Ander-
son localization by Wegner [56] and others [88-93], Efe-
tov provided a rigorous mathematical foundation for the
random matrix hypothesis introduced by Gor’kov and
Eliashberg. However, perhaps more importantly, Efe-
tov’s approach provided a systematic way in which non-
universal properties reflecting the intrinsic diffusive dy-
namics of the system could be studied.

4. Bohigas-Giannoni-Schmidt Conjecture

Until the early ’'80’s, the application of random matrix
theory had been largely limited to the study of complex
many-body or disordered quantum systems. However,
an extension of these ideas to a wider class of structures
was suggested by Bohigas, Giannoni and Schmidt [94].
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Based on an extensive numerical investigations the fol-
lowing conjecture was proposed:

> The spectral statistical properties of quantum sys-
tems which are chaotic in their classical limit (even
those with few degrees of freedom) are UNIVERSAL,
independent of material properties of the system,
and coincide with those of random matrix ensem-
bles.

(Being, in general, unable to define an ensemble, the
statistics are assumed to involve averaging over a suit-
ably wide range of states.) This conjecture is now ac-
knowledged as a milestone in the phenomenology of quan-
tum chaos. It suggested a common thread which united
a whole class of qualitatively different systems, and lay
down a gauntlet to mathematicians to establish a proof.
So far, very few exceptions to this rule have been identi-
fied. Importantly, for those that have, it is usually simple
to understand why they lie outside the present scheme.
However, despite more than fifteen years of intense study,
and the accumulation of a wealth of supporting data, this
conjecture still awaits a rigorous mathematical proof.
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FIG. 37. Time scales over which response functions such
as R2({2) are universal.

Although compelling in its simplicity, the conjecture of
Bohigas, Giannoni and Schmidt begs the question: which
properties are universal and, perhaps more importantly,
which are not? Empirically, the study of spectral statis-
tics typically shows level correlations to be universal on
low energy scales comparable with the average energy
level spacing A (see Fig. 37). However, universal cor-
relations are typically observed to break down at some
non-universal large energy scale, or equivalently, some
short-time scale E, = 1/t.. With this observation, one
can ask:

> What, in general, sets the range of universal corre-
lations?

> How is chaos reflected in the statistics of the non-
universal interval?

To address these questions and identify others we can
gain useful insight by drawing on the statistical prop-
erties of weakly disordered conductors. There we saw
that the low-energy response of spectral correlators were
governed by the low-lying modes of density relaxation as
specified by the non-linear o-model action (31). On en-
ergy scales 2 in excess of the Thouless energy E., the



inverse diffusion time across the system t, = L?/D, the
spectral properties depend sensitively on the spectrum
of the diffusion modes. While on energy scales 2 < E;
spectral correlations become universal, independent of
the particular geometry or morphology of the system.
Within this ergodic regime, the statistical properties of
the spectrum and wavefunctions become indistinguish-
able from those of random matrix ensembles.

Does an analogous scenario describe the spectral re-
sponse of, say, an irregular or chaotic cavity (a quantum
billiard) without impurities? In such systems there too
exists some ergodic energy scale below which properties
of the system become universal. How is the unstable na-
ture of the classical dynamics reflected in the large energy
scales properties? More precisely,

> What plays the role of diffusion in describing the
low-lying relaxational degrees of freedom in general
chaotic quantum systems?

> What is the analogue of weak localization and how
are such quantum coherence effects manifest in ex-
periment?

> What determines the domain of universality?

In the following, we will introduce a statistical field the-
ory which provides a solid framework in which these ques-
tions can be answered (at least in principle). However, to
motivate the form of the effective action, (and, indeed,
to answer the first of the questions above) we will be-
gin with a semi-classical analysis based on the Feynman
path integral. Here we will exploit ideas similar to the
phenomenology discussed in section I.

B. Semi-classics and the Trace formula

As with the disordered conductors, expressed as the
trace of the propagator, we can gain some intuition into
spectral properties of chaotic structures by representing
the DoS as a Feynman path integral. In the semi-classical
limit (A — 0), this representation identifies the special
role played by closed (i.e. periodic) classical trajectories.
(Recall v(e) = trImG(e — i0)/w.) Taking into account
the dominant contribution to the Feynman propagator,
the (local) DoS assumes the form [81,95-97]

A oo
=1+Re%§Tp;|

where p labels a primitive orbit with a period T, =
0S,(E)/OE, action Sp(E), and Maslov phase v,. (Here
the first uniform contribution (known as the Weyl term)
depends only on the phase space volume and derives from
very short (non-classical) Feynman trajectories.) The
sum over 7 accounts for repetitions of the classical peri-
odic trajectory. Finally the prefactor takes into account

eiSp (E)r/h—ivpr

det(Mg — 1)[1/2’

v(E)

(37)
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the leading fluctuations around the classical paths and
involves the stability or monodromy matriz M, associ-
ated with the linearized dynamics on the Poincare section
perpendicular to the orbit p (see Fig. 38). Crucially, this
expression identifies the local DoS with a sum over clas-
sical periodic orbits weighted by a phase which depends
sensitively on the orbit.

ij/\

FIG. 38. Schematic diagram showing the meaning of mon-
odromy matrix. Specifically, the monodromy matrix M, here
describes the linearized mapping of a vector on the Poincaré
surface of section to another under a cycle of a periodic orbit

p.

Now, as with the disordered conductor, when subjected
to an average over a range of energies greatly in excess
of the average level spacing, the incoherent superposition
of the phase associated with different classical paths re-
moves the second contribution. However, applied to the
two-point function, the average preserves a long-range
phase coherent contribution. More precisely, substitut-
ing Eq. (37) into Eq. (11), the two-point correlator of
DoS fluctuations is expressed as a double sum over pe-
riodic orbits. A random phase cancellation of long tra-
jectories identifies the “diagonal contribution” as dom-
inant. Taking this contribution alone, and expanding
Sp(E + Q) ~ Sp(E) + TpQ, we obtain

ReA—22T2i
2m2h? s pr:l

In the disordered metal, the diagonal contribution to
the two-point function was identified with the exchange
of diffusion modes. To identify the physical relaxation
mode to which the diagonal sum (38) corresponds we first
consider the propagator of classical phase space density,
the Liouville operator. Formally, the latter is defined by

eiTpr/h

|det(M; —1)|

R>(Q) (38)

plox,6) = el ¥p(,0) = [ ax'8 (x = u(xs ) (', 0)
where
(H, }=0.H-8,— 0,H -0,

denotes the classical Poisson bracket, x = (r, p) represent
phase space coordinates, and u(x;t) denotes the solution
of the classical equations of motion of a particle starting
at a position x after a time ¢.

From this definition, it is straightforward to obtain the
following expression for the trace [98],



tr elH M = Z Z|dett—"T o

The d-function is associated with the constraint on the
period of the orbit, while the prefactor involving the
Monodromy matrix is associated with the Jacobian of
the §-function in the phase space directions transverse
to the periodic orbit. Comparing this expression to
Eq. (38), and meglecting repetitions, i.e. the contribution
of short periodic orbits that are traversed repeatedly, we
obtain [99]

A2

R () 2hR 8 Q)

/ Qi (H, Yt

27rZR Z zQ++h'y)

where the second equality is based on tr elH:} =
>, exp(tyu), {vu} being the eigenvalues of the classi-
cal evolution operator. This result compares to Eq. (13)
(with v, — Dq?), and suggests that the soft modes of
density relaxation in a general chaotic structure are asso-
ciated with the modes of the classical evolution operator.

But, if this identification is correct, do the modes of
the Liouville operator relax? And how can we account
for mechanisms of weak localization, and account for cor-
rections non-perturbative in A/Q? These questions can
not be answered with the framework of the diagonal ap-
proximation. Recent attempts to go beyond this approxi-
mation within the framework of periodic theory have met
with some limited success [100]. However, these studies
have, as yet, failed to identify weak localization correc-
tions (see Ref. [101] and the remarks made at the end of
section IB 7.) Instead, motivated by this finding, we will
employ a different approach based on a non-perturbative
field theory. Let us mention right away that, far from
being completely developed, the field theory approach to
quantum chaos does not yet provide conclusive answers
to the questions brought up above, and perhaps never
will. However, it represents a fresh, and from our sub-
jective point of view quite promising approach that calls
for further investigation.

C. Ballistic o-Model

The analysis of the trace formula above suggests that
the analogy between weakly disordered conductors and
the general class of chaotic quantum systems is not su-
perficial. In fact, a very close correspondence between
the phase coherence phenomena which characterize meso-
scopic structures and those observed in quantum chaos
can be (at least phenomenologically) established through
a generalization of the statistical field theory.

The first suggestion that such a description was pos-
sible came in an insightful work by Muzykantskii and
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Khmel’nitskii [102]. Guided by the quasi-classical Boltz-
mann description of density relaxation in ballistic trans-
port, they proposed a natural generalization of the diffu-
sive o-model in which the diffusive character of the action
is replaced by a kinetic dependence,

=i / str [ od"Q — HRT 1o {H,T}], (39)

where, in this case, the supermatrix fields Q = To3*T !
depend on the 2d — 1 phase space coordinates parameter-
izing the constant energy shell, x| = (r,p)2q—1. (With
this definition the integration measure is normalized such
that [ = [dx) = 1.) Although still phenomenological,
as we shall see below, their “ballistic action” establishes
a crucial bridge between the semi-classical description of
level statistics based on the Trace formula above, and the
universal random matrix theory.

After its introduction, the phenomenology of
Muzykantskii and Khmel’nitskii found further support in
the work of Andreev, Simons, Agam, and Altshuler [103].
Specifically, recognizing that the spectrum of an individ-
ual system provides a statistical ensemble over which an
average can be performed, an explicit derivation of the
ballistic action was proposed. Yet, it should be noted
that the formal derivation of the action is flawed. In
particular, the formal derivation of Ref. [103] assumes
that fluctuations of the matrix degrees of freedom per-
pendicular to the constant energy shell are suppressed.
However, the mechanism by which the matrix degrees
of freedom become “locked” remains obscure, and has
become the subject of some controversy in the litera-
ture (see e.g. [104,105]). Furthermore, the construction
of Refs. [102,103] implicitly assumes that the low energy
configurations of the field theory are smoothly fluctuat-
ing functions over phase space. This presumption stands
in marked contrast to the fact that for chaotic systems
the eigenfunctions of ‘kinetic energy operator’ of the field
theory, the Liouville operator, are highly singular. This
means that the field theory needs regularization. How-
ever, the practical implementation of a regularization
scheme represents a subject of on-going and controver-
sial research, to be reviewed in the next section.

D. Perturbation Theory

Leaving aside the difficulties in deriving the ballistic
action, there are separate problems in understanding its
behavior. Indeed, to make sense of the functional inte-
gral (39) we must identify the low-lying modes of the
action. To do so, we adopt a perturbative expansion of
the effective action around the high-energy saddle-point
o4*. Employing the parameterization T = e~"/2) an
expansion of the action leads to

S[W] = —SLA / str [Wﬁ—lw] +O(W?) (40)



where II! = —hoj*{H, } + iQ" shows the low-lying
modes of density relaxation are described by modes of
the classical evolution operator — a result compatible
with that obtained in the analysis of the Trace formula.
However this identification deserves some qualification.

As with any functional integral there is a need to de-
fine an appropriate regularization. For example the func-
tional integral (39) may be understood as the limita — 0
of a product of definite integrations over a discretized
space, where a denotes the discretization cell size. This
admits to functions T'(x)) which are smooth and square
integrable. In seeking such a basis, the eigenfunctions of
the classical evolution operator seem to be the natural
choice. However, the intricate nature of chaotic classical
evolution cause these eigenfunctions to lie outside the
Hilbert space: the chaotic dynamics of probability densi-
ties involves contraction along stable manifolds, together
with stretching along unstable ones (see Fig. 39). Thus,
in the course of time, an initially non-uniform distribu-
tion turns into a singular function on the unstable mani-
fold, which in turn covers the whole energy shell densely.
Therefore the eigenfunctions of II are not square inte-
grable and their contribution to the functional integral
cannot be directly recovered by the discretization proce-
dure involved in evaluating the functional integral.

FIG. 39. Schematic diagram showing the tendency for a
hyperbolic system to stretch exponentially rapidly along the
unstable direction and contract along the stable direction.

Thus, in choosing a convenient basis one has to take
account of the regularization. Its primary effect is to
truncate the contraction along the stable manifold and
thereby render the classical evolution irreversible. It is
the eigenfunctions of this regularized classical evolution
operator that serve as a suitable basis for the quantum
mechanical correlator. As mentioned above, the actual
implementation of a regularization scheme represents a
matter of current research. E.g. one may ask whether
a classically vanishing regulator strength (by which we
mean a regulator strength that vanishes in the limit
ki — 0) suffices to render the theory non-singular, or
whether a regulator non-vanishing in the classical limit
must be chosen. Equally important, concrete implemen-
tations of a regularizing operator, i.e. some second order
positive differential operator acting on the field configu-
rations, have to be identified. For further discussion of
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these points, we refer the interested reader to the litera-
ture [104-106].

Remarkably, as the strength of the regulator is taken
to zero, the spectrum, {v,}, of the resulting operator,
known in the literature as the Perron-Frobenius opera-
tor, reflects intrinsic irreversible properties of the purely

classical dynamics [107-111].
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FIG. 40. (a) Formal representation of the eigenvalues of
the reversible evolution operator which lie on the unit cir-
cle. In non-integrable systems, the eigenvalues form an in-
finitely degenerate and dense set. (b) Poles or resonances
of the coarse-grained, regularized Perron-Frobenius operator.
In systems which are uniformly hyperbolic, all resonances lie
within the unit circle (apart from the zero mode), and corre-
spond to modes of density relaxation.

@ (b)

In ergodic systems, the leading eigenvalue yo = 0 is
non-degenerate, and manifests the conservation of prob-
ability density. Thus any initial density relaxes, in the
course of time, to the state associated with . If, in
addition, this relaxation is exponential in time, then the
Perron-Frobenius spectrum has a gap associated with the
slowest decay rate. Thus, the first non-zero eigenvalue
has the property v; = Re(y1) > 0. This gap sets the
ergodic time scale, t. = 1/+] over which the classical dy-
namics relaxes to equilibrium. In the case of disordered
metallic grains it coincides with the transport time, ¢p,
while in ballistic systems or quantum billiards it is of
order of the flight time across the system.

In the limit © > f7y; the perturbative expansion (40)
is justified, and R, takes the form of Eq. (32) but
where the diffusion operator is replaced by the Perron-
Frobenius operator. This result coincides with that ob-
tained within the “diagonal approximation” of periodic
orbit theory [99] thereby establishing a direct correspon-
dence of the field theoretic and semi-classical approaches.
In the limit Q@ < A7y; the dominant contribution to the
semi-classical action (39) arises from the ergodic classical
distribution, the zero-mode {H, T} = 0. Taking this con-
tribution alone, the action coincides with the wuniversal
action (33) from which one can deduce that correlations
coincide with those of random matrix ensembles.

Although much attention has been paid to the spectral
properties of the Perron-Frobenius operator, still little
is known about the resonance spectra in dynamical sys-
tems. Uniformly hyperbolic (the so-called axiom A) sys-
tems, such as billiards with constant negative curvature,
are characterized by exponential decay of classical cor-
relation functions — i.e. the resonance spectrum of the



Perron-Frobenius operator has a gap. Irregular bound-
ary scattering in two-dimensional billiards on flat surfaces
is, instead, characterized by isolated resonances together
with gapless modes (of low spectral weight) associated
with weakly unstable periodic orbits.

Finally, although the resonance spectra of the Perron-
Frobenius operator are well defined, the eigenstates asso-
ciated with the resonances are themselves singular. This
has important implications on the role of quantum “weak
localization” corrections which are beyond the scope of
these lectures. On this point we refer the interested
reader to the insightful work of Aleiner and Larkin [112]

In conclusion, we have argued that the quantum sta-
tistical properties of chaotic structures are expressed in
terms of a ballistic non-linear o-model, Yet, although this
model is a triumph of phenomenology, its formal deriva-
tion, as well as its properties are by no means fully under-
stood. As such, it represents one of the many important
areas of research discussed in these lectures which are
still very much in a stage of early development.

To close this section we will leave behind the subject of
quantum chaos, and explore the connection between the
ballistic and diffusive action. In order to more selectively
probe aspects of the kinematics we will couple our sin-
gle particle Hamiltonian to a strong magnetic field. This
directly leads to the physics of the

E. Quantum Hall Effect

A particle moving in a random impurity potential and
subject to a homogeneous weak magnetic field is specified
by the Hamiltonian

N 1
H

~om

(p - SA)Z +V(r)

where V(r) is drawn from some short-ranged impurity
distribution, and B = 0 x A. Previously, we have stud-
ied the influence of a weak magnetic field on coherence
phenomena, in the disordered conductor. In the follow-
ing, we wish to study the influence of a strong magnetic
field where the kinematic effects become significant. To
account for the latter we will make use of the ballistic
formalism developed above.

Before turning to the formal analysis, we begin with
some qualitative considerations concerning the clean sys-
tem. Firstly, according to the classical theory of trans-
port, an electron subject to a uniform magnetic field
obeys the equation of motion

. m
mv=—-—cE—-evxB—-—v.
T
Evaluating the current density j = —env for a stationary

solution (i.e. ¥ = 0), one obtains the following formulae
for the longitudinal and transverse conductivity

g

Oxx = m,

Oxy = WcTOxx,
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where w. = eB/mc denotes the cyclotron frequency, and
o = ne?7/m represents the zero-field Drude conductivity.
Finally, an inversion of the conductivity tensor reveals
that

1 h

Pxx = —» Pxy = 6_2’

VF

Q|

where the “filling factor”, which measures the ratio of
the number of electrons to the total flux through the
system, is connected to the electron density by the re-
lation vp = 2wL%n, with Lg = y/hc/eB defining the
magnetic length. Classically, the Hall resistivity scales
linearly with the magnetic field.

Quantum mechanically, the situation is found to be
quite different: instead the Hall resistivity is found to be
constant

_1h

Py = 1=1,2,..

ie?’

within a certain range around each integer value of the
filling factor vp (see Fig. 41). At the same time, the
longitudinal resistivity is found to be vanishing in these
ranges so that

62

Oxy =15

1 =1,2,..
h’ t » 4y

Oxx = Oa

The discovery of this remarkable an unexpected phe-
nomenon [113] earned von Klitzing a Nobel prize in 1985.

I
N

ke 4 ‘

B
—_—

0 f s
0 g 70T

FIG. 41. The change of longitudinal Ryx and Hall resis-
tance Ry as a function of magnetic field. The Hall resistance
varies stepwise with changes in magnetic field B. The step
height is given by the constant of resistance h/e* (ca. 25kQ)
divided by an integer i. The figure clearly shows plateaus for
i =2, 3,4, 5, and 6 (courtesy of Ref. [114]).



To discover the origin of the quantum Hall effect and to
understand how it fits into the framework of the statisti-
cal field theory of disordered conductors, we must recall
some elementary facts about the influence of a strong
magnetic field on the dynamics of electrons. In the ab-
sence of disorder, the spectrum of a (spinless) electron
confined to two-dimensions and subject to a strong uni-
form perpendicular magnetic field collapses into highly
degenerate Landau levels separated in energy by hw,.
Each Landau level is associated with an electron density
of n = 1/2xL% (i.e. a filling factor v = 1 corresponds to
the lowest Landau level being completely filled). When
subjected to a weak random impurity potential, the de-
generacy of each Landau level is lifted.

Sxx ’Sxy [e2/h]

DoS

1 2
Filling Factor n

FIG. 42. Schematic diagram showing the broadening of the
lowest three Landau levels due to disorder. A mobility edge is
indicated separating a region of extended states at the band
center, from a region of localized states (shaded) at the band
edges.

Now, according to the phenomenology of the one-
parameter scaling theory of localization, the eigenstates
of a quantum particle confined to two-dimensions and
subject to a weak impurity potential are localized. How-
ever, in the presence of a strong magnetic field, the lo-
calization length is seen to diverge on approaching the
center of the Landau band. In a finite system, a region
of extended states around the band center is separated
from a region of localized states at the band edge by a
sharp mobility edge (see Fig. 42). In the thermodynamic
limit, this region shrinks leaving behind a single delocal-
ized state at the band center.

ZA/

where v = npp/m.

str [Q+03RQ + 2ihos*T ! (v O — EV x B- 6

Dissipative electric currents are due to transitions of
charge carriers from occupied to empty states. At zero
temperature, only states at the Fermi energy contribute
to the conductivity. Therefore, when the Fermi energy
lies in a region of localized states, the longitudinal con-
ductivity oyxvanishes, while in the region of extended
states, the conductivity assumes some non-zero value. By
contrast, every occupied delocalized state contributes to
the non-dissipative Hall current. Therefore, once in the
region of delocalized states, the Hall conductivity oyy as-
sumes a constant value. The value of the constant can be
determined by invoking arguments of adiabatic continu-
ity. In the clean system, the Hall conductivity associated
with a filled Landau level is quantized in units of e2/h.
Adiabatically increasing disorder, the value of this Hall
conductivity at each plateau remains at the same quan-
tized value.

With this preparation, we now ask how this qualitative
picture fits within the framework of the statistical field
theory of the disordered conductor. To account for the
orbital effects associated with the strong magnetic field,
we will turn to the ballistic action (39). However, before
we can import the field theory proposed above, we must
first learn how to deal with the quantum nature of the
short-ranged scattering potential V' (r) due to the impu-
rities. As with a Boltzmann equation, a quantum scat-
tering potential can not be treated entirely within the
framework of a kinetic action (39). Instead, one must
explicitly take into account irreversible scattering pro-
cesses. In such cases, a careful derivation of the effective
action obtains an additional term which takes the form of
a “collision integral” [102,104]. Taking the energy shell
to be specified by the condition Er = p%/2m, the latter
takes the form

qu: A2/

where n = p/pr denotes the unit momentum vector,
S4 represents the total d-dimensional solid angle, and
V(n — n') represents the Fourier elements of the scatter-
ing potential.

In the presence of a strong magnetic field, the
Cooperon degrees of freedom acquire a large mass and
can be safely neglected. In this case we may focus on
the reduced action for the Diffuson modes — the unitary
model. Applied to a Gaussian d-correlated white-noise
impurity potential (6), taking into account the Lorentz
force due to the strong magnetic field, the total ballistic
action takes the form [102,103]

4TA /

dndn ————|V(n — n")|%str [Q(n)Q(n)],

dnd TsrQmQ),

By analogy with the Boltzmann equation, for A7 < h the ballistic action is easily converted to a diffusive form. To
obtain the diffusive action we follow an approach similar to that employed by Muzykantskii and Khmel’nitskii [102].
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Anticipating a rapid relaxation of the momentum dependent degrees of freedom of () on the energy shell, and a
slow variation of the spatial modes, we introduce a parameterization which involves the moment expansion T'(r,n) =
[1+in-W(r)]To(r), where [o3", W]+ = 0. Expanding the action to second order in W and performing integrals over
n we obtain

ot ih|v|

S[Q] = wu/drstr [iTagRQ -3

W - To(0:Q)T;  — %agnw x W — %W2 :

where Q(r) = To(r)o4* T, ' (r), and w. = eB/mc denotes the cyclotron frequency. Finally, performing the Gaussian
integration over W, and treating the term arising from the Lorentz force perturbatively, we obtain the effective unitary
action

5= / drstr [20+02%Q + Du2(0Q)? + DayensQ(0r, @)1, Q)] (41)

where D,, = vpl/d and D,y = D,,w,.T represent the tive discussion above. For an electron density less then
classical longitudinal and transverse diffusion constant. vr = 1/2, an increase of the system size leads to a renor-

From this result, we find that, in the presence of a  malization of the longitudinal and Hall conductivities to
strong magnetic field, the conventional diffusive action  zero. At a filling factor of 1/2 < v < 1, the longitudi-
is modified by a topological or boundary contribution  nal conductivity flows to zero, while the transverse part
which strongly modifies the renormalization properties  flows to €?/h. Finally, at vp = 1/2, the system flows

of the model. In this context, the renormalization prop- towards an unstable fixed point at a critical value of the
erties have been first considered by Pruisken and col-  longitudinal and Hall conductivity.

laborators [115] within the framework of a replica field The success of the two-parameter scaling theory has
theory. These investigations were in qualitative agree- been recorded in a number of papers including Ref. [117].
ment with the phenomenology of a two-parameter scal- On the theoretical side, very recent investigations of the

ing theory proposed by Khmel’nitskii [116]. The latter,  supersymmetric version of the action by Zirnbauer [118]
which can be viewed as a natural generalization of the  have claimed to identify the conformal field theory gov-

one-parameter scaling theory, implies that both the lon- erning the transition between quantized Hall plateaus of

gitudinal and transverse components of the conductivity = a disordered non-interacting 2d electron gas. For a re-

obey renormalization group equations view of the general field, we refer to Refs. [119,120].
ddhllnazx = Aulowe; 0xy), ddhllnazy = Faloes 7). IV. COULOMB INTERACTION PHENOMENA

In two-dimensions, these equations exhibit a non-trivial

fixed point at oxx = €*/2h and oxy = (n +1/2)€’/h (see In section I we saw that many of the coherence phe-

Fig. 43). (Note that the nature of the topological term  nomena that characterize mesoscopic structures can be
places the constraint that the RG flow diagram must be  understood within the framework of a non-interacting
periodic in oyy.) theory. However, experiments both on quantum dots as
well as extended semi-conducting electron heterostruc-

A tures show that Coulomb interaction effects are by
s..[e2/h] no means small. Indeed, dramatic manifestations of
XX Coulomb interaction are seen in both confined and ex-
tended structures. Examples include Coulomb Blockade
phenomena, low energy anomalies in transport and ther-
modynamic coefficients, non-Fermi liquid effects in effec-
tively one-dimensional structures, various manifestations

1r ] Y Y

T T ? of the Kondo effect, the fractional Quantum Hall effect,
- and more. Given the vast extent of the literature on in-
1 2 5 3 teraction phenomena in mesoscopic structures, we will
s, [e4/h]
yy not even attempt a complete survey of the field. In-

stead, staying within the streamline of these notes, we
FIG. 43. The two-parameter scaling flow diagram of the  will ask whether the effects of Coulomb interaction be

integer quantum Hall effect. assimilated into the existing field theory. And if so, how

would that approach connect to more conventional per-

Focusing on the lowest Landau level, the two-  turbative schemes and what kind of new information can
parameter scaling picture is in accord with the qualita-  be obtained?
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The full statistical field theory describing the interplay
of disorder and interaction contains many elements. We
have already seen that, in a non-interacting time-reversal
invariant system, at least two soft relaxation modes op-
erate, the Diffuson and Cooperon. When combined with
the spin singlet and triplet channels associated with the
Coulomb interaction, a complete theory is likely to be-
come unwieldy. To keep our discussion of the influence of
Coulomb interaction pedagogical, we will therefore focus
on a limited scenario restricting attention to a fictitious
gas of spinless electrons interacting via a Coulomb in-
teraction and subject to a weak (time-reversal symmetry
breaking) magnetic field. (I.e. we shall not consider or-
bital effects associated with strong magnetic fields.) In
focusing on spinless electrons, exchange effects associated
with the electronic degrees of freedom do not arise.

Although the framework developed below is quite gen-
eral, as a particular goal we will explore the phenomena
of the zero-bias anomaly seen in the tunneling conduc-
tance measurements in a disordered metal (and described
in chapter I). However, our aim is more ambitious. In
studying this particular problem, we hope to address the
wider phenomenology of electron dynamics in a disor-
dered environment. We will see that the influence of
electron interaction effects are strongly enhanced by the
slow diffusive dynamics due to the impurity potential.

The starting point for our analysis is the microscopic
many-body Hamiltonian H = Hy + H., where

, /drcf(r) [% (6- EA)Z + V(r)] o(r)

i, = % / dr / dr'et (0)et (1) — & e(e")e(r),

e —r'|

cf(r) and ¢(r) represent the particle creation and annihi-
lation operator, and, as usual, V (r) represents a Gaussian
d-correlated impurity potential.

Our aim is to establish a statistical field theory de-
scribing the thermodynamic properties of the electron
system: i.e. to determine the ensemble average free
energy (F) = —kT{ln Z) of the electron gas. For this
purpose we invoke the Replica field theory approach rep-
resenting the free energy as the analytic continuation
InZ = lim, ,o(Z" — 1)/n. Note that the Fermionic
nature of the particles prohibits a supersymmetric for-
mulation of the problem. Therefore, it is pertinent to
ask whether we are equipped to deal properly with the
analytic continuation n — 0.

Indeed this issue has become the subject of some contro-
versy in the literature. Broadly speaking, the state of affairs
can be summarized as follows: as long as the field theory is
evaluated perturbatively, the replica formalism stands on safe
ground; the replica index then merely serves as a book-keeping
index identifying disconnected, or vacuum contributions to
the functional integral [121]. However, going beyond pertur-
bation theory is problematic [122], inasmuch as the analytic
continuation n — 0 becomes ill-founded and, when carried out
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casually, may lead to incorrect results. Recently, ideas have
been formulated [67,68], whereby the replica scheme is com-
bined with an extended saddle point analysis of the o-model,
i.e. an approach that accounts for all stationary phase con-
figurations of the model (including those that are perturba-
tively inaccessible from the ‘trivial saddle point’ 3% discussed
above.) Application of this approach to the non-interacting
problem has correctly produced the large energy asymptotics
of the two point correlation functions describing spectral cor-
relations. (Here ‘large energies’ means energetic structures
in access of the single particle level spacing.) Whether or not
the scheme may may be extended down to low energies (where
the saddle point scheme becomes questionable) is the subject
of some debate [66].

For completeness, we remark that a separate field theo-
retic approach has been developed which circumvents the ex-
plicit need for replicas. The latter, which is based on a tech-
nique due to Keldysh [123], has been introduced by Horbach
and Schon [124] and developed further by Kamenev and An-
dreev [125]. Application of methods similar to generalized
saddle point scheme mentioned above [126] led to the correct
form of spectral correlators. Summarizing, in any situation
where the focus is on energy scales in access of the single par-
ticle level spacing, both the replica and Keldysh version of the
nonlinear o-model stand on safe ground and can be applied to
the analysis of perturbative and non-perturbative problems.

A. Matsubara Field Integral

To gain some confidence in the replica approach ap-
plied to a many-body Hamiltonian, we begin by focus-
ing attention on the purely non-interacting model Hy.
Starting with the coherent state path integral, the repli-
cated quantum partition function for a weakly disordered
metallic conductor is given by

foﬁ dr

[ #a[0- 455 (p—2A)°+V—FBr|ya

25 = [ Dlé,vle

where 1, (r, 7) represent a set (@ = 1,---,n) of Grass-
mann fields. Here the sum over repeated replica indices
is assumed. (In the following, for simplicity, we will avoid
explicitly writing out the replica indices.) Note that,
were the Hamiltonian invariant under time-reversal, a
further doubling of the field space would be necessary.
Switching to the Matsubara representation (7)
(1/vB) Y., € "¢e,, where e, = w(2n + 1)/8 denote
Fermionic frequencies, the ensemble average over the
Gaussian d-correlated impurity potential (6) generates a
quartic interaction of the fields. Following our experience
with the non-interacting theory, the latter are decoupled
with the introduction of matrix fields non-local in time,

exp [/ tr (1/) ® JJ)Z]
= /DQ exp lZitr / (Z UmQmntn — %Vter)]

mn

471'1/Ttr




where the normalization factor has been absorbed into  the diagonal elements are identified with the solutions
the measure. Here note that the matrices @ = Q%3  of the self-consistent Born approximation for the self-
carry both replica a and Matsubara €, indices. As usual, energy. Taking into account the analyticity properties
the symmetry properties of the matrix fields reflect those  of the average Green function one obtains the solution
of the dyadic product ¥ ® ¢ from which we deduce the @ = A where A = sgn(€). As with the supersymmetric

hermiticity constraint, formulation, in the limit low energy limit (i.e. €, — 0),
the saddle-point solution expands to the degenerate man-
Qt=Q. (42)  ifold of homogeneous solutions, Q = TAT 1.

) Finally, subjecting the effective action to a gradient
Integrating over the Grassmann fields, the average  expansion stabilized by the condition ep7: >> 1, one ob-

replicated partition function takes the form tains the non-linear o-model functional
(Z9) = /DQ exp [—/ (4 Q- lné—l)] (20 = /DQexp [—%V/tr [D(8Q)* — 4¢Q)]
Ttr

vsihere, defining the matrix of Matsubara frequencies  where Q(r) = T(r)AT !(r). As with the non-interacting
[€lnm = €ndnm @ 1, theory, to identify the low-lying modes of the effective

) action with the diffusion modes, we employ the parame-

G —ie— 1 (13 — EA) +Ep+—0Q. terization
2m c 2Ty

en >0 €, <0
From this action, the derivation of the non-linear o- T = e—W/2, Wom = ( B) €, >0.
model is straightforward. As with the single-particle the- Bt €, <0
ory, a variation of the action with respect to the matrix
field @ obtains the usual saddle-point equation Qsp(r) = Then, expanding the action to quadratic order in the
(i/mv)G(r,r). Applying the ansatz, Qnm = Qnndnm ® 1,  generators, we obtain the Gaussian functional

(25 / DBexp |—— / > DVngVBng(e —em)BfL‘ngf;l]

n>0,m<0

showing the diffusive nature of the propagator.

With these preliminaries, we turn now to the consideration of the influence of the Coulomb interaction. In this
case, a separate Hubbard-Stratonovich field, local in time, must be introduced to decouple the Coulomb interaction
of the fields. Applying a Hubbard-Stratonovich transformation to the replicated Coulomb interaction, one finds

—/Oﬁdré//lz/;(r)z/_z(r')hf 7 ] /D@expl /w/(@ 0 ¢+z¢e¢¢)

exp

where the Fourier transform of the form factor for the _
Coulomb interaction takes the form Ty '(q) = q?/4r in zZ" = / D[4, 4]D® e
three dimensions, and I';'(q) = |q|/ 27r in two. Here, as
with 1), the fields @ carry replica indices.

—fdrf[éit}—y}c‘:—up]
where

A P .
B. Plasma Theory of the Free Electron Gas G = Ep —0; — % —ted.

We begin by studying the conventional Gell-Mann  Gaussian in the Fermionic fields, the functional integral

Briickner theory [127] of a clean Hamiltonian free of dis-  can be performed exactly and yields the formal expres-
order. Covering standard material, to be found in basi- sion

cally any textbook on many body theory, this introduc-

tory part of the analysis has been included to keep the zZn — / D®exp [_ / dr / 3T0® +Indet &1
discussion self-contained; expert readers are invited to

directly proceed to the next section. After the Hubbard-
Stratonovich decoupling, the quantum partition function  Setting e = 0, the auxiliary photon field decouples from
for the interacting electron gas formally takes the form the determinant and we recover the formal expression
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for the partition function of the non-interacting electron
gas. To deal with the functional integral over ®, fur-
ther progress is possible within an approximation. In
this case, we will take the strength of the Coulomb inter-
action to be weak and look for a perturbative expansion
in ®. In fact, the constraints set by the Fermi liquid
theory extend the validity of the phenomenology of this

expansion beyond the regime in which it can be formally
justified.

Defining the bare free particle Green function (i.e. of
the unperturbed system) as G‘g ' = Ep — 8, — p?/2m,
and expanding in the strength of the interaction e, we
obtain

N N ~ N N N 1 N 2
Indet G =trln (Gal — z'e<I>) = trlnG(;1 + trln [1 - ieG0<I>] = trlnG’a1 —tr [ieGo<I> + 3 (ieGo<I>) + - ] .

Taking each term in order, we note that, since ®(0)

= 0 (due to an implicit neutralizing background),

tr [é’oé} =

Similarly, defining the density-density response function.

1

v/ BL4 ok twn, +ex — Er

3(0) = 0.

1

X(wn,q) =

Una

ﬂLd Z twn + ek — Er iwp +iwm + €k1q — EF

where € = k?/2m, the second term in the expansion gives
SirfGor]’ = Y Golend) B Gown +wmk @TEE = 3 S m @2, a2
o 0 = 0(Wn, 0\Wn T W, Q) —F— = S5 X\ W) Q)P —wm,—qPwmaqs
2 wn Kjwm,q ALY pLe wm,q 2
k+q, witw,

Collecting together the bare photon action with this ex-
pansion, to leading order in e, the quantum partition
function takes the form

Z = zO/D@e*S[q’],

where Z, denotes the partition function of the non-
interacting gas, and the effective action for the photon
field is given by

S[e] = |®unal” +O(e").

12 Dond

Wn,q

This result has a clear physical interpretation: the in-
teraction of the electron gas with the electromagnetic
field induces a modified screened Coulomb interaction
(see Fig. 44),

1 4rre? 4me?
e(wn, q) = 1 - q2

D(wn,q) = m?a
n)

x(wn,q)

where €(wy, q) is the energy and momentum dependent
effective dielectric function. This result, which is known
in the literature as the Random Phase Approzimation
(RPA), amounts to treating the long-range part of the
Coulomb interaction as an “external” polarization field,
and (47e?/q?)x(wn,q) is known as the screened polaris-
ability.
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FIG. 44. The modified screened Coulomb interaction,
D(wn,q) can be viewed as the summation of an infinite ‘di-
agrammatic’ series expansion in the interaction: the bare
Coulomb interaction vertex is ‘dressed’ by repeated parti-
cle-hole excitations of the electron gas. The corresponding
summation of the geometric series (known as a Dyson equa-
tion) is shown schematically.

4pe2

To explore the dielectric properties of the interacting
electron gas it is necessary to understand the frequency
and momentum dependence of the density-density re-
sponse function (43). Making use of the analytical prop-
erties of the Green function, a summation over the Mat-
subara frequencies obtains the response function

Nk+
~ I Z -

— (44)
W + €k — €ktq

X(wm,q)

where

1

nk = 76[3(1%'7&) n 1.



denotes the Fermi-Dirac distribution function.
To analyze the screened Coulomb interaction D(wy,, q),
we divide our consideration into two limits:

> STATIC LIMIT (|w,| < kr|q|/m)

For frequencies small as compared to the momen-
tum transfer (and temperatures T < Er), the re-
sponse function converges to the static limit

x(0,q) ~ %Z

k

q - Oknyk
q - Okex

where v(Er) represents the DoS at the Fermi
level. Substituting this result into the expression
for D(wn, q), and applying a Fourier transform, we
obtain the static screened Coulomb interaction

2
e_e—f‘/ATF,

Viscreen (7') r

where Atp = 4ne?v(Er) defines the Thomas-Fermi
screening length. Physically, on length scales in
excess of Arp, the bare Coulomb interaction is
screened by the collective fluctuations of the elec-
tron gas.

Taking into account higher order contributions in
the interaction does not change the conclusions
qualitatively. The screening behavior of the elec-
tron gas is preserved while the formula for the
screen length Arp is modified by Fermi liquid cor-
rections.

HiGH FREQUENCY LIMIT (|wy,| > kr|q|/m)
By contrast, in the high frequency limit, the
density-density response function takes the form
1 q - Ok

L £ iwm — q - Ocex

% 1
(k)
_/ d°k q2 o q2 o
emdmw?, < mw?

(2m)4 twp,
where n = N/L¢ denotes the number density. Ap-
plying the analytic continuation to real frequencies,

iwn, = w + 10, we obtain
-1
4re? 1_ w_f,
2 w2 ’

where w, = 4me?n/m represents the Plasma fre-
quency. This result has a natural physical interpre-
tation: the response of the electron gas is not in-
stantaneous but is retarded. At frequencies greatly
in excess of the plasma frequency, the electrons are
unable to screen an electromagnetic field and the
bare Coulomb interaction is recovered.

X(wm,q)

q-k

1R

1MWy,

D%(w,q) =
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d*k
ﬁ/w@eknk = V(EF),
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How are these results modified when the particles are
subject to a weak impurity potential? Qualitatively, we
can expect the slow diffusive dynamics to have important
manifestations on the screening and relaxation properties
of the electron gas.

C. Plasma Theory of the Disordered Electron Gas

With this background, we turn to the consideration of
the influence of disorder. Applied to the impurity aver-
aged, replicated partition function, the quantum parti-
tion of the electron gas takes the form

(2m) = /DQ/Dcﬁef[““
where the full matrix Green function is defined by

iQ

Ttr

A1
Q@ trin G4 [ dT@FOTQ]

(p— EA)2—ie‘I>+EF+

Previously, with the non-interacting theory, we saw
that fluctuations of the matrix fields separate into mas-
sive and massless contributions. On energy scales € <
1/7,, the latter, which are as associated with the long-
range diffusion mode contributions, dominate the low-
energy effective action. By contrast, in the absence of the
disorder potential, an expansion of the action in the fluc-
tuations of ® obtains the Plasma theory of the screened
Coulomb potential. A consistent theory of the interact-
ing disordered metal must necessarily combine these two
limits. To achieve a correct decoupling of the fast and
slow degrees of freedom it proves convenient to take into
account the gauge invariance of the action [125].

In its present form, the functional is invariant under
the time and space local gauge transformation

Q(r,7';1) = Q(r,7';1) = e*ENQ(r, T';r)e*““(r”").

Applied to the functional, taking k to be diagonal in the
replica space, such a gauge transformation induces a vec-
tor potential,

AsA=A_S8k edrsed=ed— ok

e
In the following, we will find it convenient to leave the
choice of gauge unspecified. Later, we will use (an ap-
proximation for) the saddle-point of the low-energy func-
tional to specify a particularly convenient gauge.

Considering the high energy sector of the action, € >
1/7:, an expansion of the action obtains

P’ zl v z
/ tres1/m, In [ié— o+ Br = ie<I>] ~ / / dre?®?



where high frequency and momentum corrections to the
screened Coulomb interaction are neglected against the
low energy content of the remainder of the action. In the
high-frequency limit, the disorder has no influence on the
dynamics of the electron degrees of freedom.

FIG. 45. Schematic diagram showing the action of the
gauge transformation described in the text.

Turning to the low energy sector, € S 1/7,, setting
Q = TAT!, and applying the gradient expansion

2 1A
P

T-G-'T = Ep —
g F 2m 27

where q = —i@—e;&/ ¢, we obtain the non-linear o-model
action [128]

S[Q] = %V /tr [D(('sQ)2 —4 (é — 65) Q]

where & = 0 — i(e/c)[A, ]. Combined with the high
energy part of the action, and the bare Coulomb interac-
tion, we obtain

(2 = [ D@ [ pae s3] furlatsie ]

At this stage, it is tempting to immediately implement
an expansion perturbative in the interaction, and in the
diffusion modes. Indeed such an expansion recovers the
results of diagrammatic perturbation theory contained
in the literature [129]. However, the interaction field
® couples linearly to @, which implies that the saddle-
point configuration of the @ field is rotated from A (see
Fig. 45). Put differently, the ground state of the inter-
acting electron gas is modified by the impurity potential.
A consistent expansion of the interaction (which avoids
an infinite re-summation of diagrams) requires the iden-
tification of the true saddle-point of the theory.

D. Gauge Fixing: Low-Energy Saddle-Point

A variation of the low energy action with respect to @
subject to the non-linear constraint obtains the saddle-
point equation,

+T! [ié—B-q—ie$]T
m
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Dg (QSPgQSP) + [é - e;I;, QSP] =0.

Ideally, one would like to find the solution Qs which
solves the equation exactly. However, for an arbitrary
(in time and space) configuration of the field ®, such a
program is impossible. Here, instead, we will fix the lo-
cal gauge field k(r, 7) such that the saddle-point solution
for @ approaches the non-interacting solution A. Thus,
setting Qsp = A, we obtain the non-linear equation for k,

c c\2
—ZDAOkA + (;) DsOkABKA + [3,k — e®, A] = 0.

Neglecting the term second order in k (which is justified
if the spatial variation of the gauge function k is small)
the resulting linear equation has the (replica diagonal)
solution

_ i®(w,q)

D= Do) T

where w denotes a bosonic Matsubara frequency. Substi-
tuting this solution back into the action, one obtains the
modified Coulomb interaction,

oq?

Y Rty + =
Dq? + |w|

RPA

$, Th(w,q)=T5"(q)

5:%;/

where as usual 0 = e?vD. This estimate, which in the
present context is known as a random phase approxima-
tion, has a simple physical interpretation. The screening
of Coulomb interaction in the disordered environment is
modified by the diffusive dynamics of the electrons. The
modification can be interpreted diagrammatically as an
infinite summation of polarization loops dressed by dif-
fuson modes (see Fig. 46).

D B

FIG. 46. Diagrammatic representation of the RPA correc-
tion to the Coulomb interaction. The shading within the loop
represents a diffusion ladder.

Now, in principle, an expansion of the action in the
fluctuations of @) around the saddle-point leads to higher
order quantum interference corrections. However, al-
ready at this order, we can obtain the dominant con-
tribution to the tunneling anomaly since the latter can
be interpreted physically as a consequence of diffusively
slowed screening.



E. Zero-Bias Anomaly

To illustrate the utility of the field theoretic approach,
we turn to an application of the functional to examine the
voltage dependence of the tunneling conductance G(V)
of a particle from a point contact (or STM tip) onto a dis-
ordered metallic background. In particular, if the charge
accommodation time is much longer than the transfer
time from contact onto the metal, the tunneling con-
ductance can be identified with the single-particle DoS,
G(V) ~ v(e = eV). The latter is defined as the imagi-
nary part of the single-particle Green function

v(e)

The single-particle DoS can be expressed in terms of
the functional integral above. Specifically, taking into
account the gauge transformation, and performing the
(trivial) replica to zero limit, the saddle-point approx-
imation for the ensemble averaged local single-particle
Green function is given by

1 N
=—=ImG(r,r;€,)

i 1€n —>€+10

(G® (x,1;0, 7))y = —inv <eik(0)A,Te*ik(T) >q)

—imvA_ e 5

where A_, represents the single-particle propagator for
a clean system, and

2 .. 9 FRPA )
S(r) = %/;4sm (wT)ﬁ.

Here the self-consistency of the approach demands that
the Matsubara summation and momentum integration
are limited to the range |w|, vr|a| < 1/7:. Specifically,
for a two-dimensional metal,

S(r) = ¢ In{-~)in (T7e0? (ve?)?)
8o Tir b )
Physically, the single-particle Green function

(G” (r,r;0,7))v represents the amplitude for a parti-
cle injected into a disordered metal at a position r at
time 7 = 0 to return to the point r after a time 7.
That the action S(7) is imaginary expresses the fact
that right after the tunneling, the particle is ‘under the
energy barrier’, due to the Coulomb interaction with its
own charge cloud. The structure of S(7) describes the
diffusive relaxation of the charge density (the two dif-
fuson poles), self-interacting through the RPA-screened
Coulomb potential.

With this definition, the single-particle DoS is given
by

w(e)) =v / dres"SMA_,,

The latter is dominated by the stationary configuration
of the total effective action which (to a good approxima-
tion) is obtained form the condition
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Here 7. can be interpreted as the charge accommodation
time. In two-dimensions, the latter is given by

(727

aresult which is self-consistent in the hydrodynamic limit
Te 3> Tir, i-e. at € < €2/o7,. Substituting this expres-
sion back into the action, we obtain the tunneling con-
ductance

1 ove?

- 4d72eg

Ty
€

)ln(

&2 ‘r'h.a'(ve2 )2
4n2eV

%ln 5 <
<G(V)> — Goe 8w<o (41r geV Ty

where Go denotes a voltage independent constant con-
ductance. Diagrammatically, this results can be inter-
preted as the summation of an infinite series of diagrams
for which the first is shown in Fig. 47.

FIG. 47. Diagrammatic representation of the leading con-
tribution to the Zero-Bias Anomaly. The exponential formula
given in the text represents an infinite re-summation of a set
of diagrams of which this contribution is the first.

The manifestation of Coulomb interaction in the tun-
neling anomaly is not unique. In particular, further anal-
ysis of the effective action, which goes beyond the lead-
ing approximation above, leads to a logarithmic enhance-
ment of the conductivity. This quantum correction com-
petes with the weak localization correction.

This completes our brief survey of the influence of
disorder on Coulomb interaction phenomena is metal-
lic structures. Needless to say, we have touched upon
just a fragment of the literature in this field. Neverthe-
less, the physical concepts exhibited by screening and
the zero-bias anomaly are representative of a wider class
of interaction phenomena in disordered conductors. For
a more comprehensive review of the field, we refer to
Refs. [47,49,129-131,46].



V. NOVEL SYMMETRY CLASSES

Following on from the pioneering work of Wigner [85]
on the properties of complex atomic nuclei, in a classic
series of papers [22] Dyson introduced a complete classifi-
cation of complex many-body systems according to their
fundamental symmetries — “the three-fold way”. Us-
ing arguments based largely on mathematical grounds,
Dyson proposed the existence of three universality classes
which are distinguished by their invariance properties
under time-reversal and spin rotation. In section IB6
we saw that the universal statistical properties of these
classes are characterized by three random matrix ensem-
bles, Unitary, Orthogonal and Symplectic. At the same
time, the importance of the Wigner-Dyson scheme in the
classification of the low-energy statistical properties of
random and complex chaotic phase coherent quantum
structures was stressed.

But is this classification exhaustive? In the course of
the last few years it has become clear that the answer is
negative, i.e. that various classes of stochastic quantum
systems of current interest do not fall into the threefold
classification scheme of Wigner and Dyson. Curiously,
perhaps the most transparent ways of anticipating the
existence these novel and fundamental symmetry classes
is by purely formal mathematical reasoning:

Consider the N-dimensional Hamiltonian H of some
(generally spin-full) quantum system. Besides Hermitic-
ity, one commonly considers two additional discrete sym-
metries, invariance under time reversal 7 and invariance
under spin rotations S:

T :H = UzHT(Tz,
S:[H,o;] =0, 1=1,2,3,

where o; are Pauli matrices acting on spin. Depending
on whether or not the symmetries 7 and S are realized,
one has to distinguish four different cases. How can one
embed these symmetry structures into the quantitative
description of stochastic quantum systems?

The original method, put forward by Wigner and
Dyson, did not concentrate on the Hamiltonian itself
but rather on its transformation behavior. The idea
was to demand that under unitary transformations H —
UHU', U € U(N) the fundamental symmetry of the
Hamiltonian be not changed. E.g. for the case of a spin
invariant (S : +) and time reversal invariant Hamilto-
nian, (7 : +) this requirement entails U* = U, i.e. U €
O(N) C U(N), the orthogonal group in N-dimensions. A
maximally entropic set of Hamiltonians, closing under all
possible orthogonal transformations, forms the so-called
Gaussian Orthogonal Ensemble, GOE, discussed above.
Similar considerations for the other symmetry cases led
to the introduction of the Gaussian Unitary and Sym-
plectic Ensemble, respectively. (It is straightforward to
show that both cases (7 : —,§ : +) and (7 : —,8 : —)
fall into the unitary class.)
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More recently an alternative scheme of classifying sym-
metries has been introduced. The new method, which fo-
cuses on the Hamiltonian itself rather than on its trans-
formation behavior, has the advantage of hinting at a
possible generalization of the three-fold Wigner Dyson
classification. Considering the same Hamiltonian as be-
fore, we define X = ¢H. The motivation for introducing
X is that this object belongs to an algebra, viz. the
algebra of anti-hermitian matrices, u(N) generating the
unitary group U(N). (We will denote the algebra of any
group A by the corresponding small Latin character ‘a’
throughout. u(NN) generates U(N) in the sense that for
X running through all of U(N), exp(X) runs through
all of U(N).) As with the considerations above we next
observe that the objects X corresponding to Hamiltoni-
ans of higher symmetry can not be drawn from the full
algebra but rather symmetry restricted subsets thereof.
Again using (7 : +,8 : +) as an example, we have
XT = X, implying that X € u(N)/o(N). (Here we have
used the fact that the quotient vector space u(IN)/o(NV)
forms the algebra of anti-hermitian symmetric matrices.)
Exponentiating this sub-algebra we generate the coset
space U(N)/O(N) C U(N). Similar considerations for
the case (7 : +,8 : +) lead to the identification of the
coset space U(N)/Sp(N). Why do we care to go through
these, admittedly formal, manipulations? The motiva-
tion is that the sets U(N), U(N)/O(N) and U(N)/Sp(N)
identified for the case of unitary, orthogonal and symplec-
tic symmetry, respectively, possess a very high degree
of mathematical structure: they are representatives of
so-called compact symmetric spaces. Of such structures
only ten different families, each indexed by an integer N,
exist. (For simplicity, we restrict ourselves to the consid-
eration of even N. For N odd, an eleventh symmetric
space exists.) Rather than phrasing the comparatively
involved definition of a symmetric space (c.f., for exam-
ple, Ref. [132]) we here merely display the ten-fold clas-
sification, introduced and labeled by Cartan:

|space |denotation]
TN) A
U(N)/O(N) Al
U(2N)/Sp(2N) AlL
U(N + M)/U(N) x U(M) __|AIIL
SO(N + M)/SO(N) x SO(M)|BDI
Sp(N + M)/Sp(N) x Sp(M) |CII
SO(N) BD
Sp(N) C
Sp(N)/U(N) CI
SO(2N)/U(N) DIII

Above we have shown that the first three of these objects
appear in the context of the established symmetry classes
of Wigner and Dyson. One may now wonder whether the
remaining seven spaces AIII, ..., DIII, too, might have
any physical significance. Of course we would not have
gone through the formal discussion above if the answer
were not positive. Research done in the last few years



has shown that not only may these objects appear in
principle, they even do so in rather interesting physical
contexts. The principal connection between symmetric
spaces on the one hand and their realization as symme-
try classes of physical significance was first revealed in
the seminal paper [133]. Focusing on application ori-
ented aspects, the remainder of this section will discuss
the emergence of the seven new classes in mesoscopic
physics.

A. Realizations of Novel Symmetries

Before turning to the discussion of any specific ex-
ample, let us ask why the — seemingly exhaustive —
Wigner-Dyson scheme might lack completeness. At the
origin of the Wigner-Dyson analysis stands the assump-
tion that the spectral properties of an ergodic quantum
system are on average translationally invariant in energy.
Even for systems where this assumption is not automat-
ically fulfilled, e.g. due to systematic gradients in the
mean DoS, the average spectrum can be made uniform
by suitable ‘unfolding’ procedures. One may then pro-
ceed to analyse spectral fluctuations, as described by one
of the classical symmetry ensembles. However, there are
quite a few system classes were the average spectrum ex-
hibits structure, not due to some non-universal features
but due to symmetry. The example perhaps most famil-
iar to condensed matter physicists is the superconductor.
Here the chemical potential imposes a marked singular-
ity on the spectrum, identified and protected through a
particle-hole symmetry. It is such types of situations to
which the enlarged classification scheme applies.

As a prototype system let us consider the example of
a 2N x 2N matrix Hamiltonian

m=(n 7)

where the matrix elements of the complex matrix Z are
drawn at random from some distribution. As well as be-
ing Hermitian H' = H, the matrix Hamiltonian exhibits
a chiral symmetry in the 2 x 2 block space,

(45)

H = —0’3H0’3. (46)
In consequence, the eigenvalues are either zero, or come
in pairs of opposite sign. In other words, the energy
€ = 0 plays a special role implying that the average uni-
formity of the spectrum is broken in the vicinity of € = 0.
In particular, the average spectral density of H close to
zero energy is non-stationary, yet nevertheless universal
(i-e., for sufficiently low energies, the average density is
independent of the nature of the distribution of the el-
ements Z). Applying symmetry considerations like the
ones outlined above to the chirally symmetric operator
(45) one finds that H is tangent to the symmetric space
U(2N)/U(N) x U(N), i.e. it belongs to symmetry class
ATII.
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In order to more explicitly assess the implications of
the chiral structure of the Hamiltonian, we consider a
random matrix implementation of the Hamiltonian H,
i.e. a model where the blocks Z are drawn from some
maximally entropic random distribution. (For the ap-
pearance of such models in physical applications, see be-
low.) All information about the level statistics of this
system is contained within the joint probability distribu-
tion function of the eigenvalues, P({e}). Computing the
Jacobian of the unitary transformations which bring the
members of the ensemble of Gaussian distributed Hamil-
tonians to diagonal form,

H=U<€ _é)U‘l, € = diag(e1, €2+ +),

one obtains the distribution function [134]

P({e)dl{e}] = ] e} = P [  lenl®e +/*"dex  (47)

i<j k

where 8 = 2, a = 2, and v represents the variance of the
distribution. The structure of the distribution function
makes both the breaking of spectral translational invari-
ance and the special role played by € = 0 manifest. (The
function does not only depend on energy differences but
also on the energies themselves; for levels approaching
€ = 0, the function vanishes.) The vanishing of spectral
weight in the vicinity of € = 0 has a simple physical inter-
pretation: an energy level e attempting to approach zero
encounters its partner —e approaching from the ‘other
side’. The randomness implemented in the Hamiltonian
implies that the two levels repel each other and that the
close vicinity of 0 becomes a ‘no go zone’.

In addition to the fundamental chiral symmetry (46),
the further symmetry under time-reversal (i.e. HY = H
or, equivalently, Z* = Z) can be imposed. According
to the Cartan classification, a Hamiltonian of this type
belongs to the class BDI. In this case, the correspond-
ing distribution function takes the same general form as
Eq. (47) but with 3 = 1 and @ = 1. (An extension
of (45) to a spinful structure identifies another symme-
try class [133] which, for simplicity, we do not consider
here.)

How does the chiral symmetry appear in the context
of stochastic quantum physics? To mention one exam-
ple, in the massless limit the dynamics of a relativis-
tic fermion system is described by a Dirac operator D
anti-commutative with 5 (i.e. in the basis in which
vs is diagonal, the matrix elements of D are block off-
diagonal). When subjected to a random gauge field, the
low-energy properties of the system are specified by one
of the chiral symmetry classes. Here, the different ensem-
bles correspond to different choices of the gauge group
and the number of flavors [135]. As with generic chaotic
systems, the low-energy behaviour of finite size systems
of this type, as realized, e.g., in lattice QCD, can be



modeled by random matrix theory [136]. Later, in sec-
tion VF, we will see that operators of chiral symmetry
appear in other physical contexts including disordered
single-electron systems.

In addition to the four chiral symmetry classes de-
scribed above, there exist a further four classes associ-
ated with “particle/hole”-like structures. Again begin-
ning with the simplest case, (7 : —, S : +), the Hamilto-

nian
a b
r-(5 )

where the block diagonal elements are Hermitian, a! = a,
and the off-diagonal blocks are symmetric, b7 = b, ex-
hibits the PH-symmetry

(48)

H = —03H 5s. (49)
In this case, according to the Cartan -classification
scheme, the Hamiltonian (48) belongs to symmetry class
C. Again, the distribution function takes the general form
of Eq. (47), but now with 8 =2 and o = 2 [137]. By im-
posing the further symmetry of time-reversal (i.e. a* = a
and b* = b), the symmetry is raised to class CI; 8 = 1 and
a = 1. Once again, an extension to a spinful structure
identifies two more symmetry classes [133].
Hamiltonians of symmetry class C and CI also find
applications in various branches of physics. Of these,
perhaps the one most directly motivated from the form
of the Hamiltonian is superconductivity. However, as
we will see below, various stochastic classical operators
can be classified as members of the symmetry class CI.
A summary of the classification scheme for random ma-
trix ensembles (without a symplectic structure), together
with some common applications is tabulated below.

|Class|RM Ensemble| Application |

A |Dyson (GUE) |Conductor in B-Field
Al |Dyson (GOE) |7 -invariant Conductor
AIIT |Chiral GUE |Random Flux Model
BDI|Chiral GOE |Imaginary Vector Potential
C |NS Superconductor in Magnetic Field
CT |NS Dirty d-wave Superconductor

In the following, we will explore some of the unusual
spectral and localization properties which accompany
these different classes. Our first application is to the
study of the quantum coherence properties of dirty su-
perconductors.

B. Dirty Superconductivity

According to the phenomenology of the BCS the-
ory, in the mean-field approximation, the quasi-particle
Hamiltonian of a spin-singlet superconductor is specified
by
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Hyes = /clffca +/ [Ac$c1+h.c. , (50)

where H = Hy + V. Here Hy = (p — (¢/c)A)?/2m — Er)
denotes the bare Hamiltonian of the particle, and A de-
notes the (complex) order parameter. In the Nambu
representation, the corresponding quasi-particle Hamil-
tonian takes the 2 x 2 matrix form Hpes = [ % Hoorkov®

where yf = (c$,c¢), and
defines the Gor’kov Hamiltonian. A comparison of
Hgorxov With Eq. (49) identifies the Gor’kov Hamiltonian
as a member of symmetry class C. In the absence of an ex-
ternal magnetic field A, a gauge can be specified in which
the order parameter is real. In this case the Hamiltonian
is symmetric under time-reversal HI = = Hgorkov,
and belongs to the higher symmetry class CI. Introduc-
ing Pauli matrices 0" which operate in the matrix or
pH-sector of Hgorxov, the PH-symmetry (49) translates
to the condition, Hgorxov = —agﬂfI&RKo\,agH.

In the absence of an impurity potential V', the clean
T-invariant Hamiltonian can be brought to the diagonal
form

H
At

A

_AT (51)

H GORKOV — (

6BCS(p) = j: (6% + A2)1/2

where €, represents the spectrum of the normal Hamilto-

nian Ho. The corresponding single-particle DoS is then
given by

() = (e - (). (52)

2 — A2[1/2

How does disorder influence the quasi-particle spec-
trum? In the normal metallic conductor, disorder was
shown to have no influence on single-particle properties
such as the DoS. Recalling that non-trivial phenomena
in mesoscopic physics typically originate in the inter-
ference of advanced and retarded Green functions, one
might speculate that the average DoS of the supercon-
ductor, a quantity represented by the single Green func-
tion, G*(€) = (e+ — Hoorxoy) ! does not exhibit inter-
esting behavior. The fact is, however, that the average
superconductor DoS is a highly non-trivial object, influ-
enced by various mechanisms of quantum interference.
The reason for the failure of the above naive argument is
that it does not account for the high degree of symmetry
of the Hamiltonian or, equivalently, for the structural in-
formation encoded in (51): applied to the Gor’kov Green
function, the PH-symmetry (49) translates to the prop-
erty

G*(e)

= —ot" [GF(—¢)]" o™ (53)



which brings with it two implications: firstly it shows
that the PH-symmetry entails a pole ambiguity; retarded
and advanced Green functions are equivalent up to a PH-
transformation. This pole structure implies that a single
Gor’kov Green function displays a degree of complexity
comparable to a pair of normal Green functions, a phe-
nomenon whose physical consequences we are going to
discuss below. Secondly, (53) shows that finite energies
€ break the PH-symmetry which is just another way of
expressing the special role played by the band center. In
the presence of disorder, these structures manifest them-
selves in the existence of soft modes which become mas-
sive for finite €. To better understand the formation of
these modes and the mesoscopic phenomena caused by
them, we turn to an effective field theory.

1. Field Theory of the Dirty Superconductor

The general construction of the low energy effective ac-
tion for a bulk superconductor was first discussed by Op-
permann [138], and later developed by Kravtsov and Op-
permann [139] within the framework of a fermion replica
field theory. Their approach was subsequently general-
ized to the supersymmetric scheme by Altland, Simons
and Taras-Semchuk [140] in a study of the coherence
properties of hybrid superconductor-normal structures.
As usual, the field theoretic approach begins with the
representation of the generating function of the Gor’kov
Green function and its products as a functional field in-
tegral. As with the 7-invariant normal metallic systems,
to accommodate the PH-symmetry of the Hamiltonian,
it is convenient to make use of the “charge conjugation”
operation (53) to affect a doubling of the field space.

Following the notation of Ref. [141] (and the general
scheme as outlined in section II), the generating func-
tion of the Gor’kov Green function can be represented
as a functional field integral involving four component
superfields 1 which carry a PH-index and BF-grading.
As with 7-invariant normal conductors, to take into ac-
count the particle/hole symmetry, f Y(Hgorkovy — €)% =
— [pToln (Heorxov + €)o589T, it is convenient to double
the field space after which the generating function takes
the form

2T =0] = e *J T8 Hoomsor) ¥

’

where

1 " 1
v=_"_ - , U =__ —pTgPHY
\/5 (0.2PH,¢)T) \/i ("/" ¢ 2 )
It is in this additional sector, hereafter known as the
“charge conjugation” (cc) sector, that the Pauli matri-
ces 0°° operate. With this definition, the superfields ¥
and ¥ obey the symmetry relations

U = by T, U= _—pTPyt

where v = 1™ Q@ (Fpp ® 05¢ — Err ® 105¢). Note that,
in principle, one could further extend the field space to
accommodate more than a single Green function in par-
allel. Moreover, according to Eq. (53), an extension of
the field space to accommodate advanced and retarded
degrees of freedom is unnecessary as one can be presented
as a transform of the other.

Proceeding as with the normal conductor, taking the
impurity potential to be Gaussian d-correlated, the inter-
action of the fields generated by the ensemble averaging
over the impurity configuration can be decoupled with
the introduction of 8 x 8 component supermatrix fields
Q. As a result, the generating functional takes the form

(27 =0]) = /DQefSt’(’éi"Qz—%lng‘—l) (54)

where vy denotes the normal average DoS, and

N

~ )
g_l = HGORKOV(V = 0) - 6—0§C + EUBPHQa

represents the supermatrix Green function. Here the
symmetry properties of the superfields reflect those of
the dyadic product ¥ ® ¥ and induce the symmetry con-
straint Q = o}"yQTy 10" [141].

Previously, with the normal conductor, progress was
made by subjecting the action to a mean-field analysis
and studying the influence of slow fluctuations around
the saddle-point by means of a gradient expansion. Here
we can attempt to formulate a similar approach. Taking
the typical strength of the disorder potential 1/7 to be
greatly in excess of the strength of the order parameter
|Al, both the superconducting component as well as € can
be treated as a weak perturbation. In this case, a varia-
tion of the action with respect to ) obtains the saddle-
point equation Qgp(r) = iG(r,r)os" /mv. As usual, iden-
tifying the saddle-point solution with the self-consistent
Born approximation for the average Green function, we
obtain the solution Qsp = 05" ® 05°.

However, as with the normal conductor, the invariance
of the action as A — 0, |A| — 0 and € — 0 under the spa-
tially homogeneous transformation Q(r) — TQ(r)T !
where T is compatible with the symmetry properties of
Q, identifies an entire saddle-point manifold. A gradi-
ent expansion of the action which takes into account the
soft modes of the theory associated with the saddle-point
manifold obtains the non-linear o-model action,

MUy

sfQ1 = -

/ [D(EQV — 4 (e_agc + A) agﬂQ] . (55)

where A = |A|oPe 175" § = 8 —i(e/c)Alo", ] and, as
usual, the supermatrix fields are subject to the non-linear
constraint Q(r)? = 1.

As anticipated from our preliminary considerations of
the Gor’kov Green function, the form of the effective ac-
tion closely resembles that of the normal conductor. In-
deed, removing the order parameter, and identifying the



base point o5¥*®05° of the manifold with o5*®1™ the ac-
tion of the normal conductor (31) and (55) coincide. By
analogy with our previous discussions, the action shows
that the soft modes associated with density relaxation
in the PH-channel are made massive by the frequency
source, €. However, in contrast to the normal metal, the
order parameter A further reduces the degeneracy of the
saddle-point manifold even at ¢ = 0.

2. Mean-Field Theory

To determine the influence of the order parameter on
the low-lying structure of S[Q)] it is necessary to subject
the non-linear o-model action to a further saddle-point
analysis.

No confusion should arise as to the iterated use of saddle
point analyses: our model comes with a hierarchy of energy
scales,

n1 2)
EF > ;,A,€>>6-

The first saddle point analysis, stabilized through the in-
equality 1) has led to the general saddle point manifold
T(agH ® ogc)T_l. Symbolically, the T”’s can be understood
as rotations tracing out the angular degrees of freedom of
the mexican hat type structure shown in Fig. 26. The radial
gradients identifying the bottom of the hat are steep (1)).
Looking at the model on a higher resolution scale, one no-
tices that the bottom of the well is not energetically uniform.
This is visualized in Fig. 26 for the simple case of a nor-
mal metal action coupling to an energy parameter 2. The
latter caused some symmetry breaking and identified o4 as
the energetically favourable saddle point on the low energy
manifold. In the present case, the additional presence of the
parameter A leads to a more complex low energy structure
to be discussed below. At any rate, in cases where 2) holds a
second saddle point analysis will be applied to identify low-
lying sub-structures on the bottom of the large scale saddle
point manifold.

To keep our discussion simple, we will hereafter limit
our consideration to a 7 -invariant Hamiltonian A = 0,
wherein we adopt a gauge in which the phase of the or-
der parameter ¢ is set to zero. In this case, a variation
of the action with respect to @ subject to the non-linear
constraint Q? = 1, obtains the low-energy saddle-point
equation

Da(QSPaQSP) +1 [Qspa Q- 2] =0 (56)
where we have defined the vectors Q = (0, —i|A|, €) and
¥ = (0,057, 05" ® 05°). Homogeneity of the gap func-
tion A implies homogeneity of the saddle-point solution,
Qsp(r) = Qsp- Applying the ansatz Qs = q - X, where
G2 = 1, the saddle-point equation translates to the con-
dition @ x € = 0. From this equation we obtain the
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homogeneous solution q < 2. A consideration of the an-
alytic properties of the Green function requires that the
branch cut in the definition of € lies along the negative
real axis. With this choice

Q

12|

le| > |A|

le| < |A. (57)

X 1

1= x { —1isgn (€)
Applied to the DoS, the saddle-point solution reproduces
the DoS corresponding to that of a clean bulk supercon-
ductor,

(v(e)

On the level of the saddle-point or mean-field, disorder
has no influence on the average DoS of the superconduc-
tor.

Q—Qse

V—SNRe (str(Qos° ® 03" ®a3"))g Vpes (€).-

3. Fluctuations

In taking into account fluctuation corrections to the
mean-field solution, it is first necessary to identify the
different classes of soft modes that operate in the vicin-
ity of the saddle-point. Based on our earlier considera-
tions of the fundamental symmetries, we anticipate the
existence of two separate universality classes, CI and C.
With e = 0, A = 0, and A (real and) arbitrary, the action
is invariant under global transformations

Q(r) » TQ()T Y,

where T is constant in space and obeys the conditions
v = TyTT and o%* = Tot"TT. Formally, T belongs to
the manifold OSp(2(2) x OSp(2|2). Dividing off those
transformations H: T +— TH which leave 03" ® 0§° in-
variant (i.e. Hoj! ® o§°H-! = 0" ® 0§°), the sym-
metry is reduced to the group manifold OSp(2|2) x
0Sp(2]2)/0Sp(2]|2) = OSp(2|2) which defines the sym-
metry class CL

Here, for completeness, we remark that under the influ-
ence of a non-vanishing external magnetic field A, time-
reversal symmetry is broken, the superconducting gap
collapses, and the symmetry of the invariant manifold
is reduced. Yet, for € = 0, the action remains invari-
ant under global transformations T = 1" ® t, where the
elements t € OSp(2|2) obey the condition v = tytT. Di-
viding off those transformations h: ¢t — th which leave
0§C invariant (i.e. ho§Ch™! = 0§°), the symmetry is re-
duced to the quotient or coset space OSp(2|2)/Gl(1]1)
which defines the symmetry class C.

Having specified the symmetry properties associated
with the soft modes of the action, we are, at least in
principle, in a position to investigate their influence on
the DoS. Here, instead of carrying out that program in
detail, to keep our discussion concise we merely state the
outcome of such an analysis. Referring to Ref. [140] for
technical details, an investigation of the influence of fluc-
tuations on the average DoS reveals the existence of only

(58)



small corrections to the mean-field solution, perturbative
in the parameter E./A, above the gap edge. At least in
the non-interacting model considered here, the integrity
of the superconducting energy gap itself is maintained in
the presence of an impurity potential!

In fact, this result is consistent with the celebrated An-
derson theorem [142], and could have been anticipated
from the outset: going back to the quasi-particle Hamil-
tonian (50), even in the presence of disorder, a canonical
transformation which diagonalizes the bare Hamiltonian
Hgorkov can be used to bring the matrix Hamiltonian to
a block diagonal form. Diagonalized, the quasi-particle
Hamiltonian has the spectrum E; = £(e2 + A%)!/2 where
¢; denotes the eigenvalues of the disordered Hamiltonian
H. Evidently, the gap A is preserved by the impurity
potential. Put differently, Cooper pairs can be formed
out of the exact time-reversed eigenstates of the random
single-particle Hamiltonian, the DoS of which is largely
unaffected by static disorder.

This conclusion also has a natural interpretation at
the level of the diffusion modes. The soft modes asso-
ciated with the PH-symmetry rely on the constructive
phase interference of a particle with energy € and a hole
with energy —e. Since the clean Hamiltonian exhibits no
quasi-particle states below the gap, the “soft modes” are
guaranteed to have a mass of at least A.

At first sight, the conclusion of this investigation might
seem disappointing: low-energy fluctuations associated
with novel modes of density relaxation (in this case in
the PH-sector) seem to have little role to play in the en-
vironment of a superconductor with a large uniform en-
ergy gap. However, as we will see shortly, such modes
can have a dramatic effect on the phase coherence prop-
erties of gapless superconductors (e.g. those of d-wave
symmetry), as well on the properties of a normal metal
brought into contact with a superconductor.

C. Hybrid Superconductor-Normal Systems

With this preparation, let us now consider the in-
fluence of disorder on the spectral properties of a hy-
brid superconductor-normal system. A superconductor
brought into contact with a normal metal tends to im-
part aspects of its superconducting character onto the
normal region. Underlying this effect is the mechanism
of Andreev scattering by which an electron from the
normal region is reflected at the SN-interface as a hole,
and a Cooper pair is added to the superconducting con-
densate. This phenomenon has a striking effect on spec-
tral and transport properties, known collectively as the
proximity effect.
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1. SN Phenomenology

The essential features that distinguish Andreev scat-
tering from normal scattering are summarized below:

> As opposed to ordinary specular reflection, An-
dreev reflection represents a process of retro-
reflection. Apart from a slight angular mismatch
proportional to the excitation energy e of a quasi-
particle above the Fermi energy Ep, the hole is
reflected back along the trajectory of the incoming
electron (see Fig. 48).

An electron with excitation energy e is scattered
into a hole with energy —e.

The hole acquires a scattering phase shift 7/2 — ¢
where ¢ is the phase of the superconducting order
parameter at the interface.

FIG. 48. Schematic diagram showing a typical pair of Feyn-
man paths which, by the mechanism of Andreev scattering off
the superconductor (the dark region), induce a non-zero ex-
pectation value of the anomalous average (cJ{ (r)cj (r)). Notice
the propagation of the particle-hole pair-amplitude can be in-
terpreted as classical diffusion along a trajectory +.

An important consequence of Andreev processes is the
formation of a Cooper pair amplitude (c$(r)cI (r)) in the
normal metal region which, survives even in the disor-
dered environment. The creation of a local pairing field
expectation value can be heuristically understood from
simple semi-classical considerations: consider the cre-
ation of an electron somewhere at a point r inside a
disordered metal adjacent to a superconductor (see Fig.
48). Due to the presence of disorder, the electron prop-
agates diffusively. In doing so it may eventually strike
the SN-interface and be Andreev reflected. In general
the newly created hole may now diffuse along its own
path. However, a particularly interesting situation arises
if the hole happens to propagate along the path of the



incoming electron back to the point of creation. As a
result we not only obtain a non-vanishing pairing field
expectation value but also a quantity that is insensitive
to disorder averaging: during their propagation through
the disordered background, both the incoming electron
and the outgoing hole accumulate a quantum mechan-
ical scattering phase which depends sensitively on mi-
croscopic details of the disorder. However, owing to the
fact that the two particles propagate along the same path
these phases cancel each other to a large extent. (For an
excitation energy € = 0 the cancellation is, in fact, per-
fect. For non-vanishing e one obtains a phase mismatch
~ €L? /D, where L denotes the separation of r from the
interface.) Of course, more generic paths, where the elec-
tron and hole follow different trajectories, also contribute
to the pairing field amplitude. However such contribu-
tions vanish upon disorder averaging due to their strong
phase dependence.

The non-vanishing of the anomalous average
(cx(r)c:[(r)) even within the normal region is the ba-
sic content of the proximity effect. Besides being robust
against disorder, the pairing field amplitude possesses a
number of important features (all of which are related to
the phase argument above):

> (c$(r)c1(r)) varies weakly as a function of r. Specif-
ically, it does not fluctuate on the scale of the wave-
length, but rather on length scales set by the diffu-
sion length L. = (D/e)'/2.

While phase coherent (i.e. € > T, 7, 1), the anoma-

lous average (cﬁ(r)c:rL (r)) decays exponentially as a

function of eL?/D as one moves further into the
normal region away from the SN interface.

Quantitative expressions for the diffusive pairs of
quantum paths entering the physics of the prox-
imity effect are provided by diffuson modes in the
PH-channel.

Finally, the pairing field amplitude depends on the
phases of the order parameters of the adjacent su-
perconductors. If only a single superconducting
terminal with constant phase ¢ is present, the phase
is inessential and can be eliminated by means of a
global gauge transformation. More interesting sit-
uations arise when more than one superconductor
is present. In such cases, the phase sensitivity of
the pairing amplitude provides the mechanism for
the stationary Josephson effect.

The non-vanishing of the pairing field amplitude heav-
ily influences the properties of the normal metal com-
pounds of SN-systems. Widely known examples of prox-
imity effect induced phenomena are the DC and AC
Josephson effect, which allow for the accommodation of
supercurrent across an SNS-junction. Another impor-
tant phenomenon is the dependence of the normal con-
ductance on the phases of adjacent superconductors —
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again triggered by the phase sensitivity of the proximity
amplitude. However, for brevity, we again limit our con-
sideration to the influence of the proximity effect on the
quasi-particle spectrum inside the normal region.



FIG. 49. Schematic diagram showing phase coherent path
configurations contributing to the renormalization of the DoS
at the position r. Top: first order diffusive contribution sup-
pressing the metallic DoS. Middle: quantum correction to
the leading order process. (Notice the structural similarity
to the previously discussed Hikami box forming the origin of
the weak localization correction in normal metals.) Bottom:
higher order process. Contrary to the weak localization, the
quantum corrections to the metallic DoS and must be summed
to infinite order. This is effectively achieved by the solution
of the Usadel equation (56).

Why should the local DoS be influenced by the Prox-
imity Effect? An answer to this question, at least qualita-
tively, is provided by the identification of relevant phase
coherent corrections. Referring to Fig. 49, a particle in-
jected at a position r can propagate diffusively through
the normal region. In the simplest case, a phase coherent
contribution to the local DoS at r is provided by a closed
path in which a particle is Andreev scattered into a hole
and then, later, back to a particle. Taking into account
the total 7 phase shift due to the Andreev scattering pro-
cesses, the local DoS is diminished from the normal value
by such a process.

At higher order in the number of Andreev scatterings,
one can identify “weak localization” type processes (now
in the PH-channel) which induce further corrections to
the local DoS (see Fig. 49). Now, although such contri-
butions are higher order in the number of Andreev scat-
terings, they nevertheless contribute at the same order.
As a result, to account quantitatively for the influence of
the proximity effect on the local DoS, it is necessary to
take into account the accumulation of the infinite hierar-
chy of such contributions. Fortunately, this is achieved
more efficiently within the framework of an effective low-
energy action.
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2. Field Theory of SN-Structures

To investigate the influence of Andreev processes on
the spectral properties of phase coherent SN devices we
can again construct an effective low-energy field theory.
For this purpose, we can immediately import the for-
malism developed for the bulk superconductor above.
In particular, if the contact between the normal metal
and superconductor is metallic, it suffices to consider the
quasi-particle Hamiltonian (50) with an order parameter
which takes a non-zero value only within the supercon-
ducting regions. (Strictly speaking, a rigorous approach
would demand a self-consistent treatment of the order
parameter particularly in the vicinity of the interface.
However, at least for s-wave symmetry, the self-consistent
solution is only slightly modified and the phenomenology
of our discussion below applies.) By taking, for simplic-
ity, the normal average DoS vy, and scattering time 7 to
be uniform throughout the S and N regions, the effective
low-energy theory is represented by the same non-linear
o-model action as (55), with the inhomogeneity of A un-
derstood.

Similarly, varying the action with respect to @, the
low-energy mean-field equation is given by Eq. (56). His-
torically, within this context, the saddle-point equation
was first derived within the framework of a quasi-classical
theory of the average Green function [71], and is known
in the literature as the Usadel equation [143]. (For a
review, see Ref. [144].)

FIG. 50. Arrows showing the real part of the solution g
applied to an SNS junction for a typical range of parameters
(courtesy of Ref. [140]).

The qualitative form of the solution can be easily de-
duced from the asymptotic dependences: deep within the
superconducting region, the solution to the saddle-point
equation converges to the bulk value (57). While, deep
within the normal region, Qs = q - ¥ is dominated by
the quasi-particle energy scale €, and converges on the
bulk solution for the normal region, Qs = 05" @ 65°. To
accommodate the spatial inhomogeneity of the gap func-
tion across the SN-interface, the matrix Qs “rotates” on
a length scale set by the diffusion length L.. Finally, cur-
rent conservation at the SN-interface implies the bound-
ary condition [145], 05sQ0. Q|sx = oxQ01 Q|sy, Where oy
and oy denote the normal conductivity of the S and N



regions.

FIG. 51. Local DoS v of the SNS structure of Fig. 50 shown
as a function of energy and position for a typical range of pa-
rameters (courtesy of Ref. [140]).

As with the bulk superconductor, an explicit solution
of the saddle-point equation can be obtained by applying
the ansatz, Qs = - X, after which Eq. (56) takes the
form

ax (D8’ — 2Q) = 0.

An angular parameterization of q brings the non-linear
Usadel equation to the form of a sine-Gordon equation.
A solution for the latter can be found in closed form.
Again, leaving the details to Ref. [140], we focus on the
qualitative form of the solution. Applied to an SNS-
junction (with the geometry shown in Fig. 50) with a
zero phase difference between the superconducting ter-
minals, the solution to the Usadel equation is shown in
Fig. 50 for a typical range of parameters. The corre-
sponding local DoS, obtained as the projection of q onto
s, v(r) = wRe[§(r)]s is shown in Fig. 51.

The most striking feature of the solution is the appear-
ance of a spatially constant minigap of width ~ D/L?
in the local quasi-particle DoS of the normal metal re-
gion. While, within the superconductor, in the vicinity
of the SN-interface, a non-zero local DoS develops below
the gap. Away the interface, the latter decays expo-
nentially on a scale set by the bulk coherence length
¢ = (D/2A)'/2. Going beyond the quasi-classical mean
field level, one may ask what happens to the gap once
higher order quantum fluctuations around the mean field
level are included. Interestingly, the gap turns out to
be quite ‘hard’; it is robust to all orders in perturba-
tion theory. (More precisely, a one-loop renormalization
group analysis [140] ‘shifts’ the gap edge to Dyen/L?,
where D,., denotes the renormalized diffusion constant
discussed in section I, but leaves the hard gap edge in-
tact.)
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For completeness we should mention that a closer and es-
sentially non-perturbative analysis [146-148] reveals the ex-
istence of DoS tails, ezponentially small in the conductance,
extending into the sub-gap region. Such tail-states form in the
(exponentially improbable) case of a potential configuration
that leads to almost perfect decoupling of superconductor
and parts of the normal region, respectively. Within the field
theoretical formalism, tail state formation is described by
instantons connecting the quasi-classical mean field with per-
turbatively inaccessible configurations. The action associated
with such configurations scales with g [140,147,148] (i.e. the
overall statistical weight associated to tail state formation is

~ exp(—g))-

1.5

0.5

FIG. 52. Numerically computed DoS profile of an inte-
grable and a chaotic Andreev quantum dot. Courtesy of Ref.
[149].

It is interesting to compare the DoS structure of dif-
fusive Andreev systems with that of more general sys-
tem classes, i.e. integrable and generically chaotic. In a
seminal paper [150] de Gennes and Saint-James theoreti-
cally considered a clean quasi two-dimensional (i.e. inte-
grable) metallic film superimposed on a superconductor
substrate, and found a DoS that vanished linearly upon
approaching zero energy. This result exemplifies a gen-
eral rule: the Andreev DoS of integrable systems vanishes
upon approaching zero energy, but is non-gapped. In
contrast, the DoS of finite chaotic SN systems is gapped,
no matter whether chaoticity is caused by diffusive dis-
order or otherwise (c.f. Fig. 52). This was first formu-
lated as a conjecture [149] and has since then been (the-
oretically) confirmed for numerous test-systems. Thus,
the proximity effect acts like some kind of “litmus test”
sharply discriminating between cases of integrable and
chaotic dynamics, respectively. To appreciate the rele-
vance of the statement, one should keep in mind that
traces of quantum chaos are usually sought for in rela-



tively subtle observables measuring spectral correlations
or related. Here, one encounters a massive indication of
chaos in a mean observable.

So far, there is no satisfactory theory of the gap in
generic chaotic systems. (The test systems mentioned
above have been studied numerically.) Semi-classical
approaches to the problem have met with some limited
success [151,152], i.e. it has been possible to understand
the smallness of the DoS in the chaotic case, but not
the formation of a gap. This is, again, due to the fact
that semi-classics is not able to capture weak localization
corrections, let alone the non-perturbative accumulation
of weak localization type processes that is responsible
for the formation of the gap. On this background, it is
interesting to note that a theory of the proximity effect in
non-stochastic structures can be cast in the form of the
ballistic o-model. The corresponding “kinetic equation”
associated with the saddle-point also finds a counterpart
in the early literature and is known as the Eilenberger
equation [71]. Integration over fluctuations around the
Eilenberger mean field [153], produces a DoS profile sup-
pressed below the semi-classical prediction. However,
largely due to the regularization problems mentioned
above, this approach, too, does not have the status of
a complete theory. Summarizing, the proximity DoS of
chaotic systems represents a very basic observable, diffi-
cult to get under control theoretically, on which future
theories of chaotic systems can be put to test.

This concludes our preliminary survey of the influence
of quantum interference on the phase coherence proper-
ties of disordered hybrid SN-structures. Our discussion
has focussed specifically on the influence of the proxim-
ity effect on the single-particle properties of the system.
A discussion of the two-particle properties and the inter-
play of fluctuations in different channels can be found in
Ref. [140].

Finally, we should note that Coulomb interaction ef-
fects can play an important role in the shaping the prop-
erties of dirty superconductors. Again, a generalization
of the statistical field to account for interaction effects
is achieved straightforwardly, while its analysis remains
the subject of on-going research (for a review see, e.g.,
Ref [154].

The investigation of quantum coherence phenomena in
hybrid SN-structures emphasizes the importance of dis-
crete symmetries on the properties of weakly disordered
systems. While the low-lying diffusion modes in the PH-
channel were rendered massive by the gap function in
the bulk superconductor, in the SN-environment the in-
fluence of these modes in the normal region can dramati-
cally influence the quasi-particle spectrum. These results
also beg the question as to whether the disorder can influ-
ence the properties of bulk superconductors with a non-
trivial symmetry.
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D. Dirty d-Wave Superconductivity

To close our survey of coherence properties of disor-
dered superconductors, we turn to the investigation of
the influence of static disorder on the long-range proper-
ties of superconductors of unconventional d-wave symme-
try. In recent years, the latter have come under intense
scrutiny [155-166] in relation to the hole-doped high
temperature cuprate superconductors. Indeed, these at-
tempts to resolve the impact of impurity scattering on
the low temperature spectral and transport properties of
a disordered d-wave superconductor have ignited great
controversy in the literature.

The key feature which distinguishes d-wave from con-
ventional s-wave superconductors, and makes the influ-
ence of disorder harder to resolve, is the existence of
low-lying gapless Dirac-like quasi-particle excitations at
the Fermi energy. Beginning with the work of Gor’kov
and Kalugin [155], and later by Lee [157], early consid-
erations based on approximate self-consistent treatments
suggested that an arbitrarily weak impurity potential in-
duces a finite DoS at the Fermi surface, and leads to
weak localization of all quasi-particle states in the two-
dimensional system. This conclusion found support in an
analysis of a Lorentzian distributed impurity potential by
Ziegler et al. [161].

However, these conclusions were found to be in con-
tradiction with those of Nersesyan et al. [158]. Mapping
the d-wave system onto a conformally invariant Fermion
replica field theory, the latter obtained a power law de-
pendence of the quasi-particle DoS, v(e) ~ |e['/7, and
proposed “critical” or power law localization properties
of the quasi-particle states at the Fermi level. To further
add to this controversy, a mechanism was proposed by
Balatsky and Salkola [160] whereby the weak coupling
of “marginally-bound” impurity states at the Fermi level
lead to the absence of quasi-particle localization.

Very recently, in a study by Senthil et al. [163], a novel
transition between a “spin insulating” phase and “spin
metallic” phase was proposed again within the framework
of replica field theory. There, great emphasis was placed
on the existence of both particle/hole and time-reversal
symmetry of the random Hamiltonian. This property,
which places the model in symmetry class C1, affords the
existence of low energy (spin) diffusion modes which in-
fluence strongly the long-range localization behavior of
the states near zero energy.




FIG. 53. The clean quasi-particle spectrum of a d-wave su-
perconductor showing the existence of four Dirac nodes at the
Fermi level

With this background, we begin our analysis with a
simple model of the d-wave superconductor. In the vicin-
ity of the Fermi energy, the phenomenology of a two-
dimensional d-wave superconductor can be described by
a Gor’kov Hamiltonian (51) with the real inhomogeneous
order parameter,

A=l -a).
Pr

In the absence of disorder, the clean quasi-particle spec-
trum e, = +(e2+A2)"'/? is characterized by the existence
of four Dirac nodes at the Fermi level located at the mo-
mentum coordinates p, = (£1, il)pp/\/i where a = 1,
1, 2 and 2. (The assignation of the coordinates is shown
in Fig. 53.) After subjecting the Hamiltonian to a 7/2 ro-
tation in the PH-sector of the theory, ¥ — exp[—imo}" |y,
an expansion of the Gor’kov Hamiltonian obtains

HGORKOV = Z ¢La}/\t]()?lzuAC¢pa

pPa

(59)

where, setting vy = pp/m, v_ = 2A/pp, and pL =
D1 £ Po,
(1)
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Adding disorder to the linearized Hamiltonian, the im-
purity potential can be separated into forward (intra-
node) Hys = Vobou 05", and backward (inter-node) scat-
tering channels Hys. To formulate the effective field the-
ory of the d-wave Hamiltonian, our strategy will be first
to consider the forward scattering component, focusing
on the properties of a single node, and then treat the
backward scattering perturbatively.

1. Field Theory of a Single Dirac Node

To construct an effective field theory for a single node
(say 1) we can make use of the preliminary analysis of
the bulk s-wave superconductor. In particular, since the
formulation of the functional (54) made no assumption
about the symmetry of the order parameter, we can im-
mediately cast the ensemble averaged generating func-
tional for the d-wave case in the same general form but
with the supermatrix Green function,

g—l

ios"

= 7'21()%1)%(1 o

—€e 05°+ Q.

Note that, according to the 7/2 rotation implemented
earlier, the ) matrices obey a modified symmetry con-
straint.
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As usual, further progress is possible only within a
saddle-point approximation. However, in contrast to the
bulk s-wave superconductor, the influence of the order
parameter, and its effect on the structure of the clean
quasi-particle spectrum demands a careful consideration
of the saddle-point equation, Qsp(r) = iG(r,r)os" /nv.
Applying the ansatz Qsp = go5" ® 05°, the saddle-point
solution is found from the (properly UV regularized) self-
consistency condition,

_ / dp 1
7= (2m)2 v2p% + 2 p? + ¢? /472

However, as with the normal metallic conductor, at € = 0,
the solution Qg is not unique, but rather the saddle-
point is spanned by a whole manifold of solutions pa-
rameterized by

PH 0g°T
Oy Q—Q< T—la.gc PH-

where the spatially homogeneous 4 x 4 supermatrices T’
belong to the group manifold GL(2|2). Taking into ac-
count the slow variation of the fields T'(r), at e = 0, the
low-energy effective action takes the form

2
SIT] = —Lstrin [1 4+ 2110701
2 q?

where O = v_p_ —iv_p_.

2. Gradient Ezpansion

In this form, the effective action can be subjected to
a gradient expansion. However, the Dirac structure of
the clean quasi-particle action leads to UV divergences
whose regularization must be treated with care. Fortu-
nately, there exists a regularization procedure based on
a “heat kernel expansion” [167] which provides a man-
ifestly UV and IR regular scheme for expanding deter-
minants of Dirac operators. In the present case, the
analysis of Ref. [167] can be applied directly. Referring
to Ref. [168] for a detailed discussion, we note that at
e = 0, the effective action separates into two contribu-
tions, S = Sy + Swznw: the first term in the action,

1
16mvyv_

So = /str [v_zi_(9+T6+T71 + v2_8,T8,T71:|

denotes the standard gradient term of a non-linear o-

model action while, defining T(¢t = 0) = 1, and T(t =
1) =T, the second term

. 1
Swanw = 6L7T/ dt/faw/su‘ [T_laaTT_lauTT_layT
0

represents a Wess-Zumino-Novikov-Witten (WZNW)
model (of level k = —1). (Evidently, at least in the case



of a single node, a trivial rescaling of the coordinates al-
lows the velocity scales vy, and v_ to be removed from
the action.) The forward scattering disorder couples to
the action through

Sais = % /dzr str(T~'0,T) str(T3,T™1),

where g is a dimensionless constant measuring the
strength of the disorder. Finally, at non-zero values of
the energy €, the action acquires the relevant symmetry
breaking perturbation

e _
SG=_7/str[T L+ T].

Notice an intriguing feature of the field theory defined
through S = Sp + Swznw + Sais + Se: even if we switch
off the disorder, Sgi;s = 0, it looks quite non-trivial. On
the other hand, the non-disordered problem is just free
relativistic fermions and, therefore, be exactly solvable.
This means that the field theory must, in some way that
is certainly not manifest from the appearance of its ac-
tion, exactly solvable, too. The key to the solution of
the problem lies in some fundamental connections be-
tween theories of free relativistic fermions on the one
hand and group valued nonlinear o-models on the other
hand. Roughly speaking, the equivalence between the
two theories represents a non-Abelian generalization of
the celebrated bosonization approach to one-dimensional
fermions: (141)-dimensional relativistic fermions can be
represented in terms of a free bosonic field theory, a con-
nection that forms the basis of the long success-story
of theories of 1d-fermion materials (see [169] for a re-
view). Indeed, it is straightforward to verify that a re-
striction of the matrix fields 7" to the Abelian sector, i.e.
to their diagonal components, lets the action S collapse
to a Gaussian form. The full matrix character of the T's
encodes the non-trivial GL(1|1) rotation invariance of the
fermionic parent theory.

Further discussion of this point would directly lead us
into the realm of non-Abelian bosonization and con-
formal field theory which lie well beyond the scope of
the present text. Instead, we just summarize a few prin-
cipal features of the WZNW theory. Two-dimensional
models of this type have been studied extensively in the
literature [170-172] and many of their properties are
known independently of the specific realization of the
field manifold. In particular it is known that the WZNW
theory (i.e. at € = 0) is critical and possesses an infrared
attractive fixed point. The conformal invariance of the
action indeed admits an exact computation of the scaling
behavior of various physical observables. Without going
into great detail, let us remark on some results of this
analysis [172].

Now according to standard RG arguments (see, for ex-
ample Ludwig et al. [173]) the local DoS can be shown
to obey the homogeneity relation

v(E) = b~ (b*"9E),
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where g (which in the present case is equal to 1/3) denotes
the scaling dimension of the primary field T' and its in-
verse T~! (i.e. the fields coupling to the DoS). Applying
scaling concepts of conformal field theory [173,158,168]
one identifies the dimension of the relevant combination
T+T-'asq=1-2g/n. Solving the homogeneity equa-
tion for this value of g leads to

g 1-2g/7
2—q 1+2g/n

v(E) ~|EI*,  a= (60)

Therefore, under the influence of disorder, a Dirac node
spectrum is transformed to one in which the DoS vanishes
as a power law with a disorder dependent exponent. Sim-
ilarly, under renormalization, the bare coupling constant
of the contribution Sy to the action, which in turn de-
termines the spin conductance [163], flows to a universal
value.

This completes our study of the spectral and transport
properties associated with a single Dirac node. However,
in the context of the d-wave superconductor, we must
recall that four nodes contribute to the low-energy prop-
erties of the quasi-particle spectrum.

3. Mode Locking

Dealing first with the intra-node or forward scattering
potential, an extension of the field manifold to accom-
modate all four Dirac nodes, reveals that no soft modes
operate within the node-space: the soft manifold is de-
scribed by four copies of a field theory with target man-
ifold GL(2|2). In fact, these field theories are not quite
independent as can be seen from the following heuristic
argument. (For a rigorous discussion of these aspects,
see Ref. [168].) Consider quasi-particle excitations be-
longing to node 1. Low energy soft modes operating in
this sector are characterized by a center of mass momen-
tum ~ (7/2,w/2). What happens when the dynamics
of the system is subjected to a time reversal operation?
Clearly, the average component of the momentum will be
flipped to its opposite, i.e. ~ (—m/2, —m/2), which is sim-
ply to say that time reversal maps node 1 onto 1 and vice
versa. From this picture it is plausible that the low en-
ergy field configurations of node 1 and 1 are not entirely
independent but rather related through some symmetry
operations.

Yet this type of correlation is irrelevant as long as the
nodes are not coupled through some concrete physical
scattering mechanism. This is illustrated in Fig. 54 where
the disorder dependent scaling exponents of a numeri-
cally simulated soft scattering d-wave superconductor are
compared with the analytical prediction (60).
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FIG. 54. Numerically computed scaling exponents of the
DoS of a 35 x 35 lattice d-wave superconductor in compari-
son with the analytical prediction (solid line). The parameter
W parameterizes the strength of the disorder. Notice that
the DoS exponents level off at a value of W that corresponds
to a sign change of the scaling exponent. This conforms with
a recent analytical prediction of a ‘phase transition’ in the
d-wave quasi-particle system at large disorder, g = 7/2 [164].
Courtesy of Ref. [165].

But what happens when the influence of the inter-node
scattering channels is taken into account? In the pres-
ence of an isotropic inter-node scattering potential, the
low energy action of the theory contains an extra contri-
bution

Sint = —Cinx / ZStr [TaTa_rl + h.C.] s

aa'

where ¢y represents the coupling constant associated
with the scattering potential and the indexa = (1,1,2,2)
labels the nodes. For low enough energies €, the mas-
sive coupling locks the fields associated with each node.
Roughly speaking, this has two consequences: first, the
locking of the (symmetry related!) fields at nodes 1
and 1 (similarly for 2 and 2) leads to a symmetry re-
duction: the target manifold of the locked theory is
0OSp(2|2) € GL(2|2). Second, the superposition of the
separate theories leads to a cancellation of the WZNW
term. As a result, the total effective action takes the
form

S = —/str [LBT(?T_l +4cie(T+T7Y)|,
4mg

where g = 2v,v_/(v] +v2) and T = Ty = =Tj is the
‘equilibrated’ field configuration. This is the generic form
of the field theory of a time reversal invariant spin sin-
glet superconductor, i.e. a superconductor belonging to
symmetry class CT [138,139,163,168].

What conclusions can be drawn on the spectral prop-
erties of the d-wave superconductor? The one loop renor-
malization group equations of the field theory predict lo-
calization on some scale £. Following the logics of sec-
tion IB 8 one expects that the low energy quasi-particle
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spectrum will resemble that of a random matrix ensemble
with a level spacing Ag, i.e. the level spacing of a sys-
tem with linear extent £. The matrix ensemble relevant
for our present discussion is of type CT [137]. One of its
hallmarks is a linear vanishing of the DoS at zero energy,
on a scale set by the level spacing. (c.f. the disorder de-
pendent power law vanishing obtained in the soft case.)
Indeed, regimes with linearly vanishing DoS have been
numerically identified [166]. However, given that local-
ization lengths in two-dimensional systems are large, it
is not obvious that the numerical analyses really probe a
massively localized phase.

So far we have discussed the influence of continuously
distributed disorder potentials on spectral properties of
the d-wave superconductor. For completeness, let us
mention that there is another way to model the disor-
der which has not been discussed so far. Rather than
starting from some kind of smooth distribution, one may
contemplate a set of isolated scattering centers, each de-
scribed by some potential envelope function. Within this
latter approach, which is commonly referred to as Pois-
son distributed disorder, averaging amounts to inte-
grating over the impurity centers. In most mesoscopic
applications, the specifics of the modeling are of no real
concern, and one may employ the model that one finds
technically most convenient. In the d-wave superconduc-
tor, however, the situation is different. The point is that
infinitely strong repulsive impurities, so-called impurities
at the unitary limit, may lead to the creation of zero en-
ergy impurity bound states [157]. I.e. for unitary scat-
terers, the DoS does not vanish at zero energy, it rather
diverges. The qualitatively different spectral properties
obtained from different modelings of the d-wave system
ignited a lively debate as to which model is the ‘correct’
one. Interestingly, it took almost a decade to realize that
there is no real contradiction, i.e. that the d-wave super-
conductor supports a number of different spectral pro-
files, depending on the realization of the disorder.

But which type of disorder is ‘real’; i.e. which comes
closest to the situation encountered in experiment. This
question is difficult to answer, especially for a theorist.
On the face of it, disorder in d-wave superconductors is
mostly realized in terms of Zn-donor atoms, which come
fairly close to what one would term a unitary scatterer.
However, too strong an amount of isotropic (s-wave) im-
purity scattering would not sit comfortably with the very
formation of a d-wave order parameter phase. Indeed, it
has been argued that the effective disorder potential seen
by quasi-particles might be predominantly soft [174]. At
any rate, the present body of experimental works on spec-
tral and transport properties of the d-wave system does
not allow for an unambiguous identification of both, the
‘relevant’ type of disorder and its localization properties.
Our discussion above also entails that, for any given real-
ization of the impurity potential, complex crossover sce-
narios between different universal regimes may be real-
ized. E.g. for large energies, the inter-node coupling of
a moderately soft potential may not suffice to effectively



lock the nodal soft modes (class AIII.) However, for lower
energies, the relevancy of the inter-node coupling might
stabilize a node-equilibrated phase (class C1.)

This concludes our survey of the influence of disorder
on the quasi-particle properties of a d-wave supercon-
ductor. For completeness, we remark that, under the
influence of an external magnetic field, the fundamen-
tal symmetry is reduced from class CT to class C. In
the present context, this symmetry breaking transforms
the WZNW term into a topological Pruisken term and
admits, at least in principle, to the existence of a spin
quantum Hall effect [175]. Whether such a state is real-
ized in practice is the subject of continuing investigation.

The analysis above emphasizes the importance of dis-
crete PH-symmetries in providing novel mechanisms of
quantum coherence. Yet, as we have discussed earlier,
PH-like symmetries represent just one class of models in
which discrete symmetries play a crucial role. In the fol-
lowing we will examine how sublattice or chiral symme-
tries lead to unusual spectral and localization properties
in so-called stochastic sublattice models.

E. Systems with Chiral Symmetries

In section VA we had argued that there are basi-
cally two different categories of matrix systems with non-
standard symmetry: systems with superconductor parti-
cle/hole symmetry and systems with chiral symmetry,
i.e. systems whose Hamiltonian that can be cast into an
off-diagonal structure (45). That superconductors play
a prominent role in condensed matter physics does not
need further explanation but what can be said about sys-
tems of the latter class? Indeed, there are quite a few
condensed matter problems that possess inherent chiral
symmetries:

> In the section on d-wave superconductivity, we have
encountered a Fermion system that behaves essen-
tially relativistic, i.e. a system whose dynamics
is described by a massless Dirac operator. Rel-
ativistic fermion systems find numerous appli-
cations in condensed matter physics. They are real-
ized in effectively one-dimensional conductors [176],
narrow-gap semiconductors [177], anomalous su-
perconductors [178], and others.

In the next section we will discuss bond-
disordered lattice fermion systems, i.e. lat-
tice systems with stochastic inter-site hopping ma-
trix elements. In cases where the host lattice is bi-
partite (e.g. cubic), such systems possess a chiral
symmetry which leads to highly non-trivial local-
ization behaviour in the vicinity of the tight bind-
ing band center.

> A number of problems of condensed matter and
general statistical physics can be described in terms
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of effectively non-hermitian dynamical sys-
tems. The behaviour of such systems, too, is af-
fected by chiral symmetries, albeit in a less obvious
sense than with the previously mentioned classes.

In the next section we will discuss bond-disordered
fermion systems as an example of a problem with in-
herent chiral symmetry.

F. Bond-Disordered Fermion Systems

The classes of disordered systems we discussed so far
were described in terms of some continuum microscopic
Hamiltonian H = Ho + V, where Hy modeled the un-
derlying ‘clean’ system (e.g. Hy = p?/2m), and disorder
was introduced via some randomly distributed operator
V (e.g. V = V(r) random). However, in lattice mod-
els, disorder is often implemented in terms of stochastic
operators which operate in purely off-diagonal elements,

B=-y

> [c}LaU.‘;ﬁcjg + h.c.] ,

(61)

where (ij) denote neighboring sites of a d-dimensional
hypercubic lattice, the N-component operators cIa, a=
1,--- N, create lattice Fermions, and Ui‘;ﬂ represent N-
dimensional matrices residing on the links of the lattice.
Stochasticity is introduced by drawing the (generally
complex) matrix elements U from some random distribu-
tion (subject to the Hermiticity requirement U;; = U, ;’z)
For N = 1, Hamiltonians of the type (61) are commonly
referred to as random flux (RF) models, a denotation
we will hereafter adopt for the cases N # 1. . (Also no-
tice that our Hamiltonian has dimensionality unity, i.e.
all energies are measured in units of the tight binding
band width.)

N

FIG. 55. The generalized random flux model.



In fact RF-models appear in a variety of different phys-
ical contexts: the two-dimensional N = 1 version de-
scribes the dynamics of lattice Fermions subject to a ran-
dom magnetic field or, more accurately, a random vector
potential [179-183]. This model has also been discussed
in connection with the physics of the half-filled fractional
quantum Hall phase [184], the physics of the spin-split
Landau level [181,197], and the gauge theory of high
T, superconductivity [186]. Identifying the two fermion
components of the N = 2 RF-model with a spin degree
of freedom, (61) describes the propagation of lattice elec-
trons on a spin-disordered background, a situation that
occurs, for example, in connection with the physics of
manganese oxides [187].

At first sight it would seem that the random flux
Hamiltonian falls into the general category of Anderson
Hamiltonians for disordered systems. Being Hermitian
but not real, the Hamiltonian (61) is therefore expected
to belong to the general class of models with unitary sym-
metry. As such, according to the one-parameter scaling
theory, all states are expected to be Anderson localized
in two-dimensions. However, as will be discussed below,
this picture is correct only as long as one stays away from
Zero energy.

Being of pure nearest neighbor type (i.e. having no
matrix elements connecting orbitals on the same site),
the RF-Hamiltonian (61) possesses an implicit discrete
symmetry which, as will be explored below, heavily in-
fluences the physical properties of the model. The nature
of the symmetry can easily be understood by inspection
of Fig. 55. As mentioned above, our model is defined
on a bi-partite lattice, i.e. a lattice that can be subdi-
vided into two nested sublattices (the o’s and the x’s in
Fig. 55). When represented in a (o, x)-basis the lattice
Hamiltonian becomes purely off-diagonal,

Hy o

This sublattice off-diagonal form of the Hamiltonian has
led to the alternative denotation sublattice model for
the bond-disordered system. More importantly for us,
the form of H exposes an implicit chiral symmetry (46)
and shows the spectrum to be symmetric, ¢ — —e.
Therefore, according to the Cartan classification intro-
duced in section V A, a generic member of the random
flux Hamiltonian belongs to the chiral symmetry class
ATII.

As with the d-wave superconductor, the existence of
a chiral symmetry has far reaching consequences for the
physics of the model at the band-center. Although the
Hamiltonian is always chiral, i.e. not just in the band cen-
ter, for finite energies the chiral symmetry is ineffective.
The reason is that the information about both thermody-
namic and transport properties of the system is encoded
in the single-particle Green function G*(¢) = (e* — H) !
rather than in the Hamiltonian itself. Now, as with the
superconductor, since G* (€) = —03GT(—¢€)o3, where the
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Pauli matrices operate in the space of the sublattice, the
inversion property under adjungation with o3 is broken
by finite e.

In the vicinity of the band center, the chiral symme-
try of the Hamiltonian gives rise to the existence of soft
modes. To explore the influence of these modes on the
spectral and delocalization properties of the states near
the band center we will again look for an effective low-
energy field theory. To keep our discussion specific, we
begin by identifying different types of disorder and ge-
ometry that may be considered.

> One obvious choice would be to model the tight
binding hopping matrix elements according to
U{;ﬁ =1+ R;"jﬁ where R;; = R}L-z- are Gaussian
distributed matrices with variance (Rfjﬁ Riﬁj'a’) =
A6,5003 /N, and A < 1. This is the weakly dis-
ordered limit, i.e. the bond-disordered analog of
the weakly disordered Anderson model discussed
before. Beginning with the early paper of Gade
[188] various replica and supersymmetric field the-
ory approaches to this model have been formu-
lated [189-192]. While most of these theories fo-
cused on the two-dimensional lattice, the quasi one-
dimensional bond-disordered chain has been anal-
ysed too, notably by transfer-matrix methods [193],
but also by field theory [192]. The 1ld-variant is of
particular interest because (a) it stands interme-
diate in complexity between the zero-dimensional
ergodic limit and the two-dimensional case, (b) it
is to a large extent exactly solvable and (c) it ex-
hibits strikingly different behaviour from conven-
tional disordered wires.

Alternatively, one may consider a maximally disor-
dered version of the sublattice system. By which
we mean a model where the U;; are unitary matri-
ces uniformly distributed over U(N). Interestingly,
this maximally disordered version of the sublattice
system is amenable to analytical analysis, too [194].

Taking the strongly disordered variant as an example,
the next two sections will review the construction of a
low energy field theory for RF-model. It’s — interesting
— low energy spectral and transport properties will then
be discussed in section VF 3.

1. Field Theory of the RF-Model

Previously, the construction of an effective field the-
ory has relied on a separation of energy scales in which
the influence of disorder is assumed to be weak (i.e.
1/EpT < 1). However, in the present case, there is no
separation of energy scales — the disorder potential is
manifestly strong. In principle, to implement the usual
scheme, we could deliberately limit our considerations
to sublattice models of the general form of Eq. (61) but



where the disordered components of the matrix elements
U;; are small as compared to some uniform part. In-
deed, beginning with the seminal work of Gade [188],
sublattice models of this kind have been studied in the
literature within the framework of conventional (replica)
field theory approaches [189].

However, instead, we will introduce a second kind of
approach tailored to the study of unitary stochastic op-
erators. This approach, known in the literature as the
‘color-flavor transformation’; provides a formal method
for mapping model systems of this kind onto functional
integrals containing a low-energy sector describing the
large distance physics [195]. One could legitimately argue
that such a generalization is gratuitous — if we believe
that the form of the low-energy action is universal, dic-
tated solely by fundamental symmetries, we could work
with a weak coupling theory, and ultimately, in the spirit
of Ginzburg-Landau theory, extend the effective action
into the strong coupling regime. However, apart from an
obvious aesthetic appeal, our motivation for developing
this novel approach is to emphasize the bridge that ex-
ists between mesoscopic physics, and other branches of
theoretical physics. At the same time, one can view the
coincidence of the strong and weak coupling theories as
a microscopic or “ab initio” confirmation of universality.

As a first step towards establishing the transformed
theory, we consider the ensemble average of the usual
generating functional (Z[J]) where

iy gieTgiti Y (BiUswi UL )
Z[J=0]= /DdJe i (iea.jen)
Here (---) = H(i’j>deij("') represents the non-

Abelian generalization of a phase average, and dU;; de-
notes the Haar measure on U(N). As usual, the fields
¢ = {y¢,} carry three types of indices: a lattice index i,
a ‘color’ index a (coupling to the internal group indices
of the U’s), and a ‘flavor’ index a = B, F referring to the
boson/fermion grading. (An extension of the field space
to accommodate n-point functions is easily achieved by
increasing the number of flavor components. Here, for
simplicity, we focus on the one-point function.)

2. Color-Flavor Transformation

The ensemble average over the bond matrices U;; in-
duces a complicated interaction of the fields. The color-
flavor transformation provides a method of decoupling
of the interaction effectively trading the group integrals
over the U;; for integrations over a set of auxiliary field
variables Z;;. Remarkably, despite the complicated na-
ture of the interaction, the transformation is exact! (And
straightforwardly generalized to other groups.) Following
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Ref. [195], an application of the transformation to link ¢j
of the lattice, one obtains

<ei(¢iUij¢j+1/7jUfj¢i)> = /D(Z, Z)Mijei(ll_’eziwi-l-tl_’jzjlﬁj)’

where M;; = sdet(1 — Z;;Z;;)N represents the invariant
measure, and the fields
Zij € GL(1|1), Zij € GL(1|1) (62)
are 2 x 2-dimensional supermatrices living on the directed
link from the A site 7 to the nearest neighbor B-site j.
(By ‘directed’ we mean that there is no Z;;.) The inte-
gration [ D(Z,Z) over all pairs (Z;;, Z;;) is subject to
the further set of constraints:
_7*

Zij,FF = ij,FF? Zz’j,BB = 4jj BB, (63)

while the Grassmann valued components, Z;;zr, Zij rp,
Z,-j,BF, and Zi]-,FB are independent.

Conceptually, the color-flavor transformation has a
status similar to that of the Hubbard-Stratonovich trans-
formation employed in the study of continuum Hamilto-
nians. The motivation for introducing the Z-fields is that
they rearrange the coupling between the fields (see Fig.
56). Qualitatively, the Z’s connect pairs of fields that, by
construction, represent segments of ‘paired paths’. Seg-
ments of this structure are stabilized by mechanisms of
quantum interference, implying that the Z’s connect to
a sector of the theory which contains information about
the long-range behavior. In addition, the Z’s couple non-
trivially to the ‘flavor’ space. The remainder of the anal-
ysis will essentially amount to extracting the low-energy
sector of the Z-functional stabilized by the interference.

FIG. 56. Visualization of the different coupling of the U’s
and the Z’s, respectively, to the field variables 9 (represented
by the solid dots).

Applying the color-flavor transformation to each link
of the lattice, and integrating over the 1-fields, we obtain
the functional



(Z[J = 0)) = /D(Z, 7)

(i€ A,jEB)

where the symbol 3, . denotes a summation over all
sites j which neighbor 3.

So far all manipulations have been exact. Further
progress is made possible by subjecting the functional
(64) to a saddle-point analysis. At € = 0, the varia-
tion of the action with respect to Z;; and Z;; obtains
a saddle-point equation with the homogeneous solution
Zsp = Zsp ~ izll®F where z = (2d — 1)~1/2. However,
as usual, this solution is not unique. The isotropy of
the € = 0 action in the BF-sector, which follows directly
from the chiral structure of the Hamiltonian, implies a
manifold of degeneracy spanned by the transformations

Zsp = igTT,  Zsp = iz(TT) !, (65)
where T, T € GI(1]1). Taking into account the fact
that GL(1|1) x GL(1|]1) = GI(1]1), we conclude that
the full extent of the saddle-point manifold is given by
GL(1]1) [196]

Eq. (65) defines the maximum manifold of solutions
of the saddle-point equations. In order to complete the
determination of the global structure of the theory, we
next need to explore how the manifold (65) intersects
with the domain of the field integration (as specified by
(62), and (63)). To this end, we represent a general pair
of matrices as

(Z,Z) = iz(PT, T P), (66)

where P,T € GL(1|1) and we have omitted the site in-
dex (i) for notational transparency. The restriction of
Eq. (63) leads to the relations,

P € GL(1)/UQ1),  Tw € U(1)

Pw € U(1),  Tus € GL(1)/U(1), (67)

while the off-diagonal elements Pgy, Prg, Tpr and Ty are
independent. Since Egs. (65) and (66) imply that the
saddle-point configurations of the theory are specified by
P =1, the measure of the P-integration is flat Euclidean,

S[T] = — / [cl str(OT~'0T) + icostr (e(T +T1)) + c5 (str (T‘lc’)T))2] + Su[T],

where T € GL(1|1) (i.e. T belongs to the group of
invertible supermatrices of dimension 2). Defining N;,

1=1,---,d as the number of sites in the &;-direction,
N Z.(Ni+1)5i
Sp[T] = 2 Z (—)& str In (T(s1L1,...,s4L4)),
s;=0,1
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B + ) + Zi;
H Moe NZieA strln (e +ZjGN,- Z,J) NZjGB striln (e +ZieNj Z,J)
ij

; (64)

whilst the T-integration is over the invariant measures on
the manifolds (67).

The saddle-point decomposition (67) can now be used
to reduce the exact functional (64) to a simpler effec-
tive functional describing the long-range behavior of the
model. Technically, the procedure is based on a contin-
uum approximation in combination with a gradient ex-
pansion around the spatially constant saddle-point mani-
fold. It is important to realize that this evaluation scheme
is, in fact, problematic: as compared to analogous treat-
ments of weakly disordered models, the gradient expan-
sion is not stabilized by the presence of a small parameter
(e.g. 1/EpT). Apart from the external parameter e, all
energy scales are rather of the same order. With the non-
Abelian versions of the RF-model, N > 1, the situation
is less problematic, the reason being that the mean field
analysis is stabilized by the parameter 1/N.

Keeping these words of caution in mind, we now turn to
the discussion of the continuum expansion of the theory.
On general grounds, it may be anticipated that after inte-
gration over massive modes P, the effective action takes
the form S[P,T] — Sex[T] = Se[T] + Sa[T] + Sw[T],
where S.[T] is the contribution due to finite energies e,
Sa[T] is the action associated with fluctuations of the
Goldstone modes (the T’s), and Sy, [T'] represents a resid-
ual action induced by the interaction between massive
and Goldstone modes, respectively. (Note that, in con-
ventional disordered models, to leading order in 1/kgZ,
no coupling between the massless and massive modes sur-
vives.) Assuming that the field configurations relevant to
the long-range physics are smooth, the different contri-
butions to the action can then be computed by a gradient
expansion followed by a continuum limit. Albeit concep-
tually straightforward, the explicit formulation of this
program is somewhat involved and we therefore choose
to omit it here. Referring instead to the original litera-
ture [194] for technical details, we simply note that the
outcome of the gradient expansion is the effective group
action

(68)

represents a boundary action that depends on the val-
ues of the fields T at the corner points of the lattice.
The coupling constants are defined by ¢; = Na?~%/8d,
ca = N(2d — 1)/2a?/4d, c3 = a*> ?C/16d where a rep-
resents the lattice spacing, and C' denotes a geometry-
dependent numerical constant O(1).

Thus, for the ensemble of random flux lattice mod-



els whose matrix elements belong to the unitary group
U(N), we have succeeded in formulating a low energy
effective field theory. Based on the fundamental sym-
metries of the action, we can expect (68) to describe
the long-range properties of any stochastic Hamiltonian
which belongs to the symmetry class AIII, a conjecture
which finds support in the analysis of the weak coupling
version of the random flux model [188]. As a caveat,
we remark that, as with the class CI action for the dis-
ordered d-wave superconductor, the group structure of
the field manifold, in principle, admits the existence of
a WZWN-term. However, at least for the random flux
model considered here, such a term does not appear.

3. Properties of the Field Theory

What information can be drawn from the field theory?
To answer this question, it is convenient to distinguish
the very low energy, or “ergodic regime” from the diffu-
sive. As usual, on energy scales € < E. = ¢;/(czL?), the
functional is dominated by the spatially constant zero
mode configuration Tp = const.,

1%

So [To] = —TStI‘ (é(To + TO_I)) + S [To], (69)
where v is the bulk mean DoS of the system. As expected,
up to the boundary term, correlation functions computed
with respect to the zero mode action coincide with those
otherwise obtained from an analysis of the chiral unitary
random matrix ensemble ChGUE [134,197,198,135], (the
matrix ensemble of symmetry class AIII in the classifi-
cation scheme of Ref. [133]). In particular, an explicit
calculation of the mean DoS shows that [135]

(Jg(ﬂ'eu) +J2 (rev)) ,

if the total number of lattice sites is even (and therefore
Sy = 0), while, for N orbitals,

(JR (rev) — In—1(mev) Iny1(mev)),

if the number of sites is odd. These results show that, as
€ — 0, the DoS vanishes on a scale set by the mean level
spacing. (Moreover, in contrast to conventional disor-
dered systems, the limit € — 0 does not behave absolutely
universally: the fine structure of the DoS close to e = 0
depends sensitively on the ‘parity’ of the lattice, i.e. on
whether the number of sites is even or odd [135,199,193].
Without going into detail, we remark that the informa-
tion about this effect is encoded in the boundary term
Sh.)

Leaving the random matrix regime, we turn to the
more interesting case of a quasi one-dimensional sublat-
tice chain. Let us briefly recapitulate the central charac-
teristics of conventional N-channel disordered wires: the
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average DoS is structureless and all states are localized
on the scale of a localization length £ ~ N£. In contrast,
the phenomenology of the sublattice wire [193,192]

> depends sensitively on the number of channels, N,
being even or odd.

> For N even, the system exhibits conventional lo-
calization behaviour while the DoS exhibits a gap
on the scale of A.. This gap is direct manifesta-
tion of a mechanism discussed in section IB8: a
localized system can be imagined as an assembly
of isolated “localization volumes”. For small ener-
gies € < Ag each of these behaves ergodic. As a
consequence, the system exhibits RMT type phe-
nomenology where the role of the level spacing is
assumed by A;. In contrast,

for N odd, the sublattice chain supports a delo-
calized mode. Its conductance decays algebraically
with the system size, g ~ (£/L)'/?, while the DoS
diverges for small energies, v(e) ~ 1/(|¢|1In?(|¢])).

As with the zero dimensional case, it is the term S}, that
is responsible for the unusual N even/odd staggering be-
haviour. In the 1d-case, this term can be cast into the
form [192]

Sp = —%/ str (TOT ™).

At first sight it looks like this operator is at odds with the
left < right parity invariance of the microscopic parent
model. (The derivative changes sign under a mapping
x — —x which, on the other hand, leaves the averaged
microscopic system invariant.) To resolve the paradox
let us (a) focus attention on the phase valued compact
sector of our theory, Trr(z) = €*¢(®) (for the role of the
non-compact sector, see Ref. [192]) and (b) appeal to
the standard analogy: 1d statistical field theory < single
particle quantum mechanics. Within this latter picture,
our field integral acquires the meaning of a path integral
of a particle on a ring (the latter being parameterized
by the phase variable ¢); and the length L of our system
has become time. Looking at the Lagrangian, we identify
2(c1 + c3) as the mass of our particle, cae as the coeffi-
cient of a cos ¢-potential, and, most importantly, N/2-as
the vector potential of a magnetic flux N/2 threading the
ring. (Remember that a vector potential couples through
a Lagrangian as ~ [ A - %, where x is coordinate.) This
resolves our puzzle. The magnetic flux is quantized to
half-integer multiples of the flux quantum. Since an inte-
ger flux quantum has no effect, the fluxes N/2 and —N/2
are equivalent, which explains why the sign of the deriva-
tive operator is inessential. More importantly, we can
intuitively understand the origin of the staggering phe-
nomena. A non-integer flux alters the spectrum of a par-
ticle on a ring. This in turn leads to modified long-time
behaviour of the Green function. Within the statistical
field theory context, “long-time” becomes “large length”.



Working out this analogy in quantitative terms one finds
that for N odd, i.e. for a half integer flux quantum, the
Green function becomes long-ranged: delocalization.

To which extent do these anomalies carry over to the
two-dimensional case? Although no longer exactly solv-
able, conclusions regarding the physical behavior of the
RF-model, most notably about its localization behav-
ior, can be directly inferred from the RG analysis of
Ref. [188]. There it was shown that the conductance of
the weakly disordered 2d model at the band center (which
is essentially determined by the coupling constant c;)
did not change under one-loop perturbative renormaliza-
tion. This observation suggests that a non-localized state
might exist in the middle of the band. Since the stabil-
ity of the perturbative RG merely relies on the smallness
of the parameters a?~%c; ', and a*~%cy/c} < 1, its re-
sults can be straightforwardly carried over to the N > 1
non-Abelian RF model: the one-loop renormalization in-
dicates that for N > 1 the strongly disordered RF model
exhibits metallic behavior at the band center.

As for the validity the RG results in the Abelian case
(N = 1), from the results presented here, there appears
to be only one useful test of consistency: the existence
of a metallic state for N = 1 with strong disorder would
at least be compatible with the behavior in the limiting
cases: N =1 and weak disorder, and N >> 1 with arbi-
trary disorder. Moreover, this conclusion does also seem
to be consistent with the most recent numerical investi-
gations [179]. More concrete analytical evidence in favor
of band center delocalizion is not currently available.

Besides the conductance, the DoS of the extended
model also behaves in an unusual manner: in particu-
lar, the analysis of Ref. [188] predicts divergent behavior
upon approaching the band center, where the detailed
functional form of the divergence depends on the dimen-
sionality of the system. In particular, at energy scales
E. < |¢] € 1, in two-dimensions the RG analysis pre-
dicts

e—n\/ln(—lel)

vie) m ——.
€]

The scale below which the |¢|~! divergence begins to
dominate over the exponential factor is determined by
the constant k. Unfortunately the dependence of that
constant on the relevant parameters of the model can
not be reliably extracted from the perturbative RG anal-
ysis. The only statement that can safely be made is that
a divergence forms at some point upon approaching the
band center. Ultimately, the divergent behavior is cut-
off by the onset of the non-perturbative ergodic regime
discussed above. A quantitative understanding of both
the formation of the divergence and its truncation in the
close vicinity of the band center would necessitate a com-
bination of an RG analysis with a non-perturbative treat-
ment of the zero mode contribution. Nevertheless, these
conclusions bare at least qualitative comparison with nu-
merics (see Fig. 57).
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DoS (Arb. units)

EnerQy (Arb. ﬁnits)

FIG. 57. Measurement of the DoS of an N = 1 random
flux Hamiltonian for a 20 x 20 tight-binding lattice Hamilto-
nian. The data clearly shows a divergence in the vicinity of
zero energy together with a “microgap” corresponding to the
ergodic regime of the model.

A third piece of information that can be extracted from
Ref. [188] is how finite energy arguments e affect the lo-
calization properties of the model: in the spirit of the
RG, finite energies have the significance of relevant per-
turbations. Thus, the band center represents a critical
manifold whilst for finite €, the model flows into a dif-
ferent universality class. More precisely, the band center
field theory — belonging to the universality class AIIT —
develops into an ordinary GUE type model. (Note that
this conclusion is in accord with the analysis in Ref. [182]
where a continuum random field model far away from the
band center was shown to be described by a supersym-
metric unitary model.)

In that context, one may ask how the degrees of free-
dom of the model of reduced, unitary symmetry, denoted
by @ [58], emerge from the fields T of the present model
upon crossing over to the unitary regime. In fact the
full RF model could have been formulated in terms of
Q-matrices (albeit @’s of a symmetry different from the
standard unitary symmetry) from the outset: defining
Q = TosT ™', where T = exp[Wo5] and the o; operate
in sublattice space, the matrices T are then related to
our T’s by the identity T' = exp[W]. The price to pay for
this more common @-formulation of the theory would be
a certain amount of redundancy: a description in terms
of structures Q ~ To3T ! is the natural one for prob-
lems with coset space symmetry. However, the present
problem has the group symmetry GL(1|1) implying that
a modeling directly in terms of group degrees of freedom
is more natural.

Besides the weakly disordered sublattice model ex-
plored by Gade, the field theory (68) has at least two
other close relatives: in QCD, (68) has been suggested
on phenomenological grounds as relevant for the deter-
mination of the low energy spectrum of the Dirac opera-



tor (see Ref. [136] for review). (In QCD, ‘randomness’ is
represented by gauge field fluctuations in the Yang-Mills
Hamiltonian.) The simplest lattice action of a matter
field with NV ‘color’ indices subject to a non-Abelian lo-
cal gauge symmetry is given by

u 1 1
S = —ZciTUijC? — %Z [(1 — NtrDU4) +hc] .
a

(4:3)

where ¢ = 1,...,n has the physical significance of a
fermionic flavor index, ) is a sum over all plaquettes of
the lattice, and tro(U*) = tr (U;;U;xUnUli) represents
the trace over all U’s residing on the links of the plaque-
tte. Physically, the plaquette action represents the dis-
crete version of a continuum field strength tensor. In the
strong coupling limit, g — oo (i.e. the long distance, con-
finement phase of the theory) the gauge fields become free
and the Hamiltonian is governed by a structure like (61).
In this context, the base manifold is 4 4+ 1-dimensional
whilst the fields T € U(ny + 1|1), where ny is the num-
ber of quark flavors. For a comprehensive discussion of
the QCD-analogue of (68), its connection with ChRMT
and its relevance for lattice QCD-analyses, we refer the
reader to Refs. [24,136]. The similarity between the the-
ories is again a manifestation of the universality of chiral
o-models or, more physically, the universal consequences
chiral symmetries have for the long-range properties of
random systems.

This concludes our investigation of the unusual low-
energy properties of the ensembles that make up the
novel symmetry classes. Our survey has been incomplete
missing the ensembles exhibiting a symplectic structure.
However, the generic features of these models and the
unusual localization properties have been explored.
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