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Ex. 4 . Convergence of perturbation theory and Forward Approximation. In this lecture we
discussed Anderson’s estimate of the critical disorder. This is an exercise to integrate some details of the
argument. We have in mind the Anderson Hamiltonian in Zd, given by:

H =
∑
a∈Zd

εa|a〉〈a|+
∑
〈a,b〉

Vab (|a〉〈b|+ |b〉〈a|) = H0 + V, (1)

where the hopping is between nearest-neighboring sites and the εa are independent, uniformly distributed in[
−W2 ,

W
2

]
.

(i) Distribution of paths/loops weights.

– Show that the rescaled variable xn =
∏n
i=1 1/|εi| with εi independent and uniformly distributed in [−1, 1] has distri-

bution:

Pxn (x) =
1

x2

(log x)n−1

(n− 1)!
.

Hint. Compute first the distribution of σn = log xn, by determining its Laplace transform Φσn (u) = Eσn [e−uσn ] and
subsequently inverting it.

– For n large, determine the typical value ωtyp of |ωL| =
(

2V
W

)n
xn and show that it scales exponentially with n, as

ωtyp = λntyp for some λtyp. Show that for λ > λtyp, the probability P (|ωL| > λn) takes the large deviation form:

P (|ωL| > λn) ∼ e−nΛ(λ)+o(n),

and determine the large deviation rate Λ(λ).
Hint. The large deviation probability can be written in terms of the probability of σn: determine Λ(λ) via the
saddle-point approximation.

(ii) Estimate the localization length in FA. We saw in the lecture/notes how to get an approximate expression for the
eigenstate amplitudes ψα(b) in Forward Approximation, assuming ψα(a) ∼ 1:

ψα(b) =
∑

P′∈SDP(a,b)

∏
s∈P′

V

εa − εs
, (2)

where the sum is over the Shortest Directed Paths connecting the sites a, b. Use this expression to estimate the localization
length for W/V > (W/V )c, by computing the ξ such that

P
(

max
b:d(a,b)=n

|ψα(b)|2 < e
−n
ξ

)
n→∞−→ 1. (3)

How does this diverge when W →Wc? What does this criterion give in 1d?
Notice. The 1d result illustrates that indeed the Forward Approximation gives an upper bound for the critical disorder
strength Wc.

(iii) Accounting for self-energy corrections. We saw in the lecture/notes that the self energy corrections introduce an anti-
correlation between consecutive locators in the expansion over self-avoiding paths/loops. One way to account approximately
for this effect was proposed already by Anderson in his ’58 paper, and consists in replacing (E− εi−Si)→ E− ε′i where the
distribution of ε′i has a cutoff, i.e. |ε′i| > 1/W . Can you justify this? Show how the estimate for the critical disorder (in the
case of a uniform distribution) gets modified with respect to the one obtained in the FA: did you expect the critical disorder
to become larger or smaller?
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I. Decay rates of local excitations: a functional order parameter.

• Analytic properties of the resolvent and poles in second Reimann sheet. See handwritten
notes at the end of this file for more details on the computation of the decay rate, and on the poles in the
second Riemann sheet. A nice place where to read about this is in Chapter 5 (on nuclear physics) of the
book by R. Peierls ”More surprises in theoretical physics” [Princeton University Press, 1991].

• Spectral localization In the mathematical literature the criterion for localization given in terms of
pure point spectrum is referred to as “spectral localization”, and the rigorous version of the argument
relating the spectral properties of the Hamiltonian to the occurrence of bound states is given by the so
called RAGE theorem. A standard approach to investigate localization also numerically (that extends
also to the many-body case) consists in characterizing the properties of the energy levels, in particular the
absence of level repulsion and Poisson statistics. For early applications of these approaches to interacting
Hamiltonians see [Oganesyan and Huse, Physical review b 75(15), 155111]. Notice that Poisson statistics
of the eigenvalues is used as a criterion to prove localization in systems where disorder is not given by local
potentials, but rather by the structure of the underlying lattice: this is the case of Erdös–Rényi graphs,
see [Alt, Ducatez, and Knowles, arXiv:2106.12519] and [Tarzia, arXiv:2112.11560] for very recent works.

II. Anderson’s reasoning: a smart perturbation theory and its convergence.

• Self-avoiding paths/loops. It is quite intuitive that the number Nn of self-avoiding paths/loops of
length n in a regular lattice in dimension d scales exponentially with n. For walks, Nn ∼ Aκnnγ−1 where
κ is the so called connective constant, see for instance [Bauerschmidt et al, Lectures on self-avoiding walks,
Clay Mathematics Institute Proceedings 15 (2012): 395].

• Role of dimensionality, beyond the FA. In Anderson’s argument, dimensionality enters as a parameter
through the connective constant κ. A phenomenological description of the role of dimension in the
single particle case is given within the scaling theory of localization developed in [Abrahams, Anderson,
Licciardello, and Ramakrishnan, Physical Review Letters, 42(1979):673]. This predicts the lower critical
dimension for the Anderson transition to be d = 2: in d = 1 and d = 2 (for system with orthogonal
symmetry) all eigenstates are localized. The mechanisms for localization in these low dimensions is
rather different than that emerging from the FA treatment: it relies more heavily on backscattering in 1d
[Thouless, Journal of Physics C: Solid State Physics 5 (1972): 77], or on the interference between a path
and its time reversed in 2d [Gorkov, Larkin and Khmelnitskii, JETP Lett. 30 (1979): 228]. Localization
in 2d is not rigorously prove, at variance with the 1d case [Furstenberg and Kesten, Ann. Math. Stat. 31,
457-469 (1960)]. For accurate numerical estimates of the critical value of disorder in d = 3− 6 see [Slevin
and Ohtsuki, New. J. Phys. 16 (2014): 015012] and [Tarquini, Biroli and Tarzia, Phys. Rev. B 95 (2017):
094204]. For an example of how to study the Forward Approximation numerically using transfer matrices
see [Pietracaprina et al, Phys. Rev. B 93 (2016):054201].

III. And beyond: from Bethe lattice to Many-Body, passing through directed polymers

• Beyond Anderson’s argument: the Bethe lattice. The Anderson model on the Bethe lattice is
discussed in [Abou-Chacra, Anderson and Thouless, Journal of Physics C: Solid State Physics 6.10 (1973):
1734]. An exact criterion for localization on the Bethe lattice has been proven by Aizenman and Warzel
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in [Journal of the European Mathematical Society, 15 (2013):1167]. Based on this, the large-connectivity
asymptotics of the critical disorder Wc in the middle of the energy band has been worked out rigorously
in [Bapst, Journal of Mathematical Physics 55.9 (2014): 092101].

• FA and connections with the Directed Polymer problem. The FA naturally leads to the problem
of estimating the free energy of a directed polymer in a random potential. A recipe to compute the
quenched free energy of such polymer is given in the seminal paper by Deridda and Spohn [Journal of
Statistical Physics 51.5-6 (1988): 817]. It can be easily shown that the Abou-Chacra, Anderson and
Thouless equations are equivalent to the equations obtained asking that the directed polymer free energy
becomes exactly equal to zero at the localization/delocalization transition. The low temperature phase
β > βc is referred to as the ”frozen” or ”glassy” phase of the directed polymer: in this regime, the partition
function is dominated by a sub-exponential number of paths contributing to the total sum. The localized
phase is entirely contained in this frozen regime. The glassy features of the localized phase on the Bethe
lattice have been investigated in a large variety of works, see for example [Monthus and Garel, Journal
of Physics A: Mathematical and Theoretical 42.7 (2008): 075002] or the more recent [Lemarié, Physical
review letters 122.3 (2019): 030401].

• The many-body criterion. The fate of localization in presence of interactions was already discussed by
Anderson himself in [Fleishman and Anderson, Physical Review B, 21(1980), 2366]. The full extension of
Anderson’s argument to the case of interacting particles came however quite later, with the work [Basko,
Aleiner, Altshuler, Annals of Physics 321 (2006):1126], see also [Gornyi, Mirlin, Polyakov, Phys. Rev. Lett.
95 (2005):206603]. These works build on the important precursor [Altshuler, Gefen, Kamenev, Levitov,
Physical review letters, 78( (1997), 2803]. A discussion of the implications of the self-energy criterion in
the many-body case can be found in [Basko, Aleiner, Altshuler, Problems of Condensed Matter Physics
(2006): 50]. Numerical diagnostics of MBL (based on the eigenstates structure) have been discussed for
example in [De Luca and Scardicchio, Europhys. Lett., 101 (2013): 37003], [Pal and Huse. Phys. Rev.
B 82 (2010): 174411]. A combination of these diagnostics has been used in [Luitz, Laflorencie and Alet,
Physical Review B 91.8 (2015): 081103] to estimate numerically the phase diagram of the random-field
Heisenberg chain.
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