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1 Introduction - Motivation

In the last century, the English R.Brown observed that small particles immersed
in a viscous fluid exhibit an extremely irregular motion. If no external force is
applied to the particle, its average velocity is zero, (¥) = 0 and its variance
(v?) is finite. The averages are taken over an ensemble of systems identically
prepared. This phenomenon is since then known as ” Brownian Motion”.

The theoretical treatment is given through the Langevin equation

Mi+nq+V'(g) = f() (1)
(f(t)) = 0 (f@) () = 2nkpTo(t —t')

Here, M is the mass of the particle, n is the dissipation constant, V(g) is an
external potential and f(t) is a fluctuating force. This phenomenological equa-
tion offers a good description only if:

- the mass M of the Brownian particle is much larger than the mass m of the
molecules composing the viscous fluid, M > m.

- we are interested in the behavior of the particle at times ¢ much larger than
the average time 7 between molecular collisions.

Although we have used a classical example to introduce the idea of Brown-
ian motion, other examples are available. For instance, the dynamics of the
magnetic flux in the interior of an RLC circuit obeys the equation

03+ 5%+ 2 = Lo
@) = 0 (a0 15000 = 2L 50

Most of the systems exhibit a purely classical motion. The typical frequency
1/\/LC of the circuit is such that h/\/LC & kT, even at low temperatures.
The quantum effects are negligible when hiwg/kp = To < 1K,

where wy? = % with V'(go) = 0 and V" (go) > 0.

However, some superconducting micro-circuits have been recently created with
To < 1K. In this case, quantum effects should be observed. The paradigm of
these systems is the so called SQUID - Superconducting QUantum Interference
Device, which is a superconducting ring closed by a weak contact. The magnetic
flux in the interior of the ring is described by a Langevin equation under the
action of a "potential” U(¢). This potential can be controlled by an external
magnetic field, and can assume different forms, which are appropriate for the

observation of different quantum effects.

Later in this script, there will be a brief introduction about SQUID’s. Al-
though this system exhibits quantum effects, we should notice that:
1 The dynamical values are macroscopic, i.e., they originate from effects



involving a macroscopically large number of particles. Hence, which is the phys-
ical meaning of this ”macroscopic_,quantization”? In the particular case of the
SQUID, we know that ¢ = ¢ A-di along the superconducting ring. Hence, here
we are actually quantizing the electromagnetic field subject to the boundary
conditions imposed by the physics of superconducting materials and weak con-
tacts. In other cases the interpretation is not so obvious. Here, we will assume
that the quantization is possible ”a priori”.

2 The second problem concerns the quantization of non-isolated sys-
tems. Equation (1) exhibits a dissipative term of the form n¢ and a fluctuating
force f(t). We know that there is no Hamiltonian, so that the Hamilton equa-
tions reproduce (1). Hence, we cannot apply the canonical quantization rules to
this system. The question is: how to reconcile the usual quantization procedure
with dissipative equations of motion?

Finally, if we can answer the last question, which will be the influence of the
dissipative and fluctuating terms in the quantum effects mentioned above? Is it
possible to have a description only in terms of phenomenological constants, for
instance, n?

We will try to find a quantum system which reproduces the Langevin equa-
tion in the classical limit. In order to solve the problem of the system being
non-isolated, we will couple the system of interest to a reservoir, and then we
quantize the composite system in the usual way. Finally, we eliminate the reser-
voir variables and study the effective dynamics of the system of interest. This
method was originally proposed by Senitzki for studying the relaxation of the
normal modes of the EM-field in a cavity.

The composite system is described by the Hamiltonian
H = Hgr + H; +Hg

R : reservoir , I: interaction, S: system of interest

Hence, we can compute the density operator of the composite system through
p) = e p0) e’

As we are interested only in operators referring to the system S, 0= O(p, q),
we have

(Op,@)) = tras{p(t) O} = trs{ltrn p(t)] O} = trs{p(t) O}

where trg and trg represent the partial trace with respect to R and S, and

5(t) = trr pt)

is the reduced density operator of the system of interest. Then, we have to
choose Hgr and Hj so that p(t) will reproduce in the classical limit the result



expected from the classical theory of Brownian Motion. But before proceeding
further with the dissipative theory, let us first study two specific phenomena
that will be fundamentally important for us in these lectures.

2 Superconductivity as a “Macroscopic Quan-
tum State”

A superconductor is a charged superfluid. Therefore, a wave function v is
associated with a macroscopic number of electrons which are “condensate” in
the same quantum state. The “particles” with mass m* and charge e* can be
described as a whole by a macroscopic wave function

¢ = \/n_seiwa (2)

where ¢ is a phase common to all the particles, and ny is their density in the
macrostate. The electric current density in the presence of a vector potential A
is then given by

e*h | . . e ?A
= g |VTVY VYT — YT 3)
m*i m*c
Using then Eq. (2) into Eq. (3), we obtain that
g=2 (nw - €—A> (4)
m c

2.1 Flux quantization

Recalling that the current J = nge*v we have that AVy = m*v +e¢*A/c. Now,
integrating this equation along a path I'" from position 1 to 2 one has

/12 (m*v + %A) Cdr = (s — 1) 5)

because it is an integral of a gradient field. On the other hand, as ¢ is the phase
of a wave function which must be single valued, the integral along a closed loop
(1 =2 above ) must yield

%(m*v+%A)-dr:%%(AJ+A>-dr:2wnh (6)

where n is an integer and A = m*c/e**n,. Therefore, with e* = 2e we find

2mnh
%(AJ—}—A) ~dr = 7;”6‘3 = no (7)

where ¢y = he/2e = 2.09 x 10~"gauss ¢cm?. For a simply connected supercon-
ductor where A and J are continuous functions the integral (7) is zero. However,




in a multiply connected region (a thick ring for example), this is no longer true.
If we integrate (5) along a closed path I' deep into the ring where there is no
current, it yields

]{A-dr:/B-ds:nq&o (8)

where ds is an element of area on any surface bounded by I' and we have used
B =V x A and the Stoke’s theorem. From the above equation we see that the
magnetic flux through a superconducting ring is quantized in units of ¢g.

2.2 The Josephson effect

Suppose that we have two pieces of superconductors separated by a non-superconducting
material of thickness d. We call them 1 and 2. If d is very large the two supercon-
ductors do not feel each other’s presence and the dynamics of their condensates

should obey two decoupled Schrodinger equations

iy = Epy
ihpy =  Eaths. (9)

Now if d is such that there is a substantial overlap between the two condensate
wave functions it is reasonable to assume that we now have

iy = By + Ay
iy Esthy + A%y (10)

This arrangement is known in the literature as a Josephson junction.
Let us for simplicity choose A € £ and A = 0. Then writing v = /nse*¢
for each wave function in (10) we can easily get

. n:
—Thpr = A‘/n_j cos(p2 — 1) + By, (11)

a similar equation for s (where one should exchange 1 <+ 2) and also

] 2A . .
1 = ==y sin(pa — 1) = —No. (12)

As ny gives us the current through the junction we can write

J = Josing (13)
. 2eV

) = — 14

@ - (14)

where we assumed 1, & ns, /n1n2 = ng and

— _ .:2"7/.3A and EZ—E1_26V
P=¢1 —¥2, Jo= 7 T




What (13,14) tell us is that the difference between the phases of the wave func-
tions on each superconductor can adjust itself to allow for the transport of a
constant current, without any measurable voltage, up to a critical value jo. Be-
yond this value, a voltage will develop between the two sides of the junction.
This is the celebrated Josephson effect.

These two particular effects will be very important for us in discussing the
devices we will be treating in these lectures.

2.3 Superconducting quantum interference devices (SQUIDs)

Our first device consists of a superconducting ring closed by a Josephson junc-
tion (see Fig.(1)). We shall be particularly interested in the so-called weak links
(metallic junctions or point contacts).

Let us suppose that our SQUID ring is subject to an external field perpen-
dicular to its plane and we wish to study the dynamics of the total magnetic
flux comprised by the ring. If we had an ordinary ring we have just seen that
the total flux would be quantized in units of ¢q. However, in this new example
this quantization rule will be slightly modified.

Figure 1: SQUID ring

This modification comes about because if the two points 1 and 2 in (5) are
located right on the two terminals of the junction (see Fig. 1) it must be more



carefully analyzed. Let us rewrite it as

2 s* 2 s* 2 2
/J-dr:ne*h/ V- dr = < 7’/ A - dr. (16)
1 m 1 1

m*%

The term on the lhs of (16) still vanishes if T' is a path deep into the super-
conducting ring. The last integral on the rhs, due to the continuity of A, can
be approximated by the integral along a closed loop which results in the flux ¢
through the ring. The only term that deserves more attention is the remaining
one which we split as

1
/Vgo-drz%ch-dr—/ V- dr (17)
r 2

to conclude that, since ¢ is a phase we have

/V(p-dr=27m—¢3 (18)
r

where @ = 1 — 2. Consequently, we can write the new quantization relation
in the SQUID as
b0 _
— . 19
o+ 5P naeg (19)

It should be noticed that when ¢ = 0 one recovers the usual flux quantization
of an uniform ring.

Now let us analyze the behavior of the total magnetic flux inside the SQUID
ring. As we know from elementary electrodynamics the total flux can be written
as

6= b + Li (20)

where ¢, is the flux due to the external field H, perpendicular to the rings
plane, L is the self-inductance of the ring and i its total current. The latter, in
the so-called resistively shunted junction (RSJ) model [1], can be decomposed
as

Josephson current : this is the current component due to the tunnelling of
Cooper pairs through the link and is given by (13)

is = tosing (21)

Normal current : this originates from the two-fluid model and obeys Ohm’s
law

IN = I (22)

where V is the voltage across the junction and R the normal resistance of
the material in its normal phase.



Polarization current : this last bit comes from the fact that there is a finite
junction capacitance and it reads

ie=CV (23)
where C' is the above-mentioned capacitance.

Assuming that the total current is given by the sum of these 3 components one
gets

i = igsing + % +C0V (24)

which inserted in (20) reads

— 2 w
%L ¢ = z'osinqsLOq5 + I +C¢ (25)
where we used that V = —q'ﬁ. This is the equation of motion of a particle of

“coordinate” ¢ in a potential (see Fig. 2)

(@ —¢.)* oo 279

U(6) = C5r - G s (26)
and (25) becomes '
Co+ % +U'(¢) =0 (27)

where, as usual, U'(¢) = dU/d¢.

In reality one should add a white noise fluctuating current I¢(t) to the rhs
of (27) in order to properly account for the thermodynamical equilibrium prop-
erties of the system [2]. With this additional term (27) is nothing but the
well-known classical Langevin equation for the Brownian motion [2].

In order to appreciate the diversity of the physical phenomena in (26), it is
worth analyzing that potential in some detail.

The minima of U(¢) are the solutions, ¢,,, of U'(¢) = 0 subject to U" (¢,,,) >
0. This leads us to two distinct cases:

() 27r% > 1 = several minima;
(i) 271'% <1 = only one minimum.

In Figs. 2,3 and 4 we sketch the form of U(¢) for three distinct values of the
external flux ¢, for the case (i) above.

Suppose that at ¢ = 0 there is no external field and the superconducting
current is zero. In this case the equilibrium value of the flux inside the SQUID
is also zero (point P in Fig.(2)). As we slowly turn on the external field H,, the
potential U(¢) changes accordingly and the equilibrium value of ¢ adiabatically
follows its potential well until it becomes an inflection point of U(¢). In this
example we clearly see that the initial equilibrium position moving from P —
P' — P". It is worth noticing that the adiabatic approximation is valid only
when dH, /dt is much smaller than any typical frequency resulting from (27),



Figure 2: Potential energy for ¢, =0

namely, [U"(¢,,)/C]'/? or 1/2RC. In this way it is possible to see a broad
region of values of H, throughout which the initial flux changes from a stable
to a bistable and, finally, a metastable configuration.

The realization that the dynamics of ¢ is really Brownian comes through
the study of the decay of its metastable configuration by thermal fluctuations
[3]. Here, as H, increases, the value of ¢ that adiabatically evolves from ¢ = 0
might jump to its neighboring minimum before H, reaches H}, the field at
which the initial local minimum would become an inflection point of U(¢). The
mechanism responsible for this transition is thermal activation over the potential
barrier that keeps this configuration metastable. The probability of decaying
from the metastable state in the SQUID ring nicely fits the results obtained by
regarding ¢ as the coordinate of a Brownian particle.

The observation of the above-mentioned phenomena was made at tempera-
tures of about 4 K (for a Nb SQUID). However if the temperature is lowered
below 1 K thermal fluctuations are not so intense to trigger this process. On the
other hand, for the SQUID parameters such as C ~ 10712 F, L ~ 5 x 10710 H
and ig ~ 107° A, one has Ty = hw/k ~ 1 K, where w is one of the natural
frequencies of the SQUID. This means that for T' < 1 K quantum effects are im-
portant and therefore one should ask about the possibility of observing the same
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Figure 3: Potential energy for ¢, = ¢o/2

transition driven by another mechanism: for example, quantum tunnelling. In
this case one should start by neglecting the dissipative term and proceeding
with the canonical quantization applied to the Hamiltonian in terms of the flux
variable which allows us to write a Schrédinger equation for the fictitious par-
ticle represented by the coordinate ¢. From then onwards we can apply, for
example, the standard WKB method to describe the tunnelling of the lowest
energy state initially prepared about the metastable minimum of the potential
(see Fig. (4)).

This procedure would not be useful only for studying the phenomenon of
decay of a metastable configuration but one could also study the coherent tun-
nelling between two bistable configurations or the level structure within a stable
potential well. In the former case we restrict ourselves to the two-dimensional
Hilbert space spanned by the two lowest energy eigenstates of the potential of
Fig. (3). Here, one can also apply approximation methods to describe the co-
herent tunnelling between the two bistable minima of that potential once the
initial state is on one given side of the potential barrier.

We shall shortly address these issues and their interpretation in the next
section.

10
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6 =0,

Figure 4: Potential energy forg, = ¢¢

2.4 Current biased Josephson junctions (CBJJs)

Suppose we have now a weak link coupled to a current source which provides
a constant current I, to the system. In this case the variable of interest is the
phase difference, ¢, across the weak link and here the RSJ model can be used
as well.

We can easily get the dynamics of @ using (27) and the fact that the current
biased junction is an extreme case of a huge SQUID such that L — oo, ¢, — o0
but ¢, /L = I, the current bias. Moreover, since the flux inside the ring ceases
to make any sense for the junction with a current bias one must rewrite it in
terms of the phase difference ¢ as (see (19))

b=-Ro=2y (29)
and (27) becomes
Z—;C¢+%'+U’(¢)=O, (29)
where
Up) = ~L 2o~ By cosp, (30)

11



where we have just defined the Josephson coupling energy as

B, = 2l (31)
2w

U(9)

Figure 5: Washboard potential

When the external current is zero, there is no phase difference across the
junction. As the external current is increased the phase across the junction ad-
justs itself so the current can cross the junction without the generation of any
finite voltage. But, when I, > iy (13,14) a finite voltage develops across the
junction. In our mechanical analogy this means that the maxima and minima
of the washboard potential coalesce at I, = iy and beyond this value our par-
ticle runs downhill which means that ¢ varies with time. The current-voltage
characteristic for a CBJJ is shown in Fig. (6)

However a finite voltage can be generated even before ig is reached because,
once again, thermal fluctuations could drive our fictitious particle out of its
equilibrium position by overcoming the potential barrier. Now, if the temper-
ature is not high enough to create intense thermal fluctuations, one could also
in this case enquire about the possibility of tunnelling induced voltage across
the junction. This means that our fictitious particle of coordinate ¢ tunnels
through the potential barrier provided by the washboard potential. Once again
we must neglect the dissipative term in the equation of motion of ¢ in order to
apply the canonical quantization procedure to this problem as well.

12
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Figure 6: Voltage-current characteristic of a CBJJ

3 Dissipative quantum systems

As we have seen during our first lecture the equation of motion of the variable
of interest of the superconducting devices we have introduced are all dissipa-
tive. This means that despite the quantum mechanical effects take place on the
macroscopic level, this also happens to be the reason why the system cannot be
treated as entirely isolated. It is very hard to isolate any of those devices, or
to be more precise, the macroscopic variable of interest from its environment.
Actually, it is not even true that they might be considered very weakly damped.
As a general rule there is no restriction about the dissipative term and it can
even be controlled by the experimentalist in such a way that they result in
overdamped dynamics.

On the other hand it is known that there is no safe way to generalize the
canonical quantization procedure in order to deal with dissipative systems on
the quantum mechanical level [4]. The way out of this dilemma is to explicitly
consider the fact that the dissipative system is always coupled to a given thermal
environment. We know of no dissipative system in Nature which is not coupled
to another system responsible for its losses. Therefore, before one tries to modify
the canonical scheme of quantization we believe that it is more useful to apply
the traditional methods to more realistic situations.

Conceptually the idea is very simple. However, in practice things are not as
simple as they look. Once we have decided to explicitly consider the coupling

13



of the system of interest to the environment we must know what sort of system
the latter is and how their mutual coupling takes place. This can be a very hard
task.

Nevertheless, fundamentally different composite systems - system of interest-
plus-environment - might have the former presenting Brownian dynamics in the
classical limit. Although this appears to be an additional complication to our
approach it actually gives us a chance to argue in favor of some simplifying hy-
pothesis. For instance, we can assume that, regardless of their differences, they
may share some common characteristics such as the behavior of their spectrum
of excitations or the way they are acted by their Brownian particles.

In what follows we will not attempt to justify the use of one specific model.
We will choose a simple one which under certain conditions reproduces Brownian
motion in the classical regime. Thus, the justification for the choice of the
model will be provided a posteriori. However, it is worth mentioning that the
employment of detailed microscopic models for some environments may show
different quantum mechanical behaviors which turn out be very important in
some cases.

3.1 The Model

Let us suppose our composite system can be described by the Lagrangian

L=Ls+L;+Lr+ Lcr, (32)
where
1 .
Ls= 3 M@ —V(q), (33)
LI:_Zqukq; (34)
3
Le=3tmedt =3 Lt (35)
w2 w2 ’
L ——Zl Ci_p (36)
cT — - 2msz(J>

are respectively the Lagrangian of the system of interest, interaction, reservoir,
and counter-term (see below). The reservoir consists of a set of non-interacting
harmonic oscillators of coordinates ¢, masses my and natural frequencies wy.
Each one of them is coupled to the system of interest, which we will loosely call
the system from now on, by a coupling constant C. A fairly general justification
of this model was made in [5].

14



Initially we shall study the classical equations of motion resulting from (32).
Writing the Euler-Lagrange equations of the composite system one has

2

M{§= ZCka—ZmC—wkq, (37)

my, e = —my i ¢ — Cr q. (38)
Taking the Laplace transform of (38) one gets

dr(0) . sqr(0)  Crdls)

1] = - - ; 39
dk (S) 32 + w]% SZ + w]% my (82 + w]?@) ( )
which after the inverse transformation can be taken to (37) yielding
-1 e+i 00 qk (0) S Qi (0)
Mg+ V'( = — C ‘ *td
g+ Zm wk 2740 Jo oo ; k{sz—l—wz-i_sz—l—w,% ¢ a5t

mE 270 [ 24 wp

2 1 e+1 00 ~
+3 @—/ 4() s et ds, (40)
k g

Thus using the identity

1 1 52
=1 - 41
s? +w? w,%{ sz—i—wfc}’ (41)

we can show that the last term on the rhs of (40) generates a term that exactly
cancels the last one on the lhs and the resulting equation is

c: 1 eHioo 62 G(s)
mrwi 274 Jo i 8%+ wi

27”/:“00 k{ Qk(0)2 n qu(0)2} o5 ds. )

2 2
$° +wj, §° +wj,

estds

M+ V'(q) + Z

Then we see that the inclusion of Lo in (32) was solely to cancel one extra
harmonic contribution that would come from the coupling to the environmental
oscillators.

The last term on the lhs of (42) can be rewritten as

d c: 1 [5G
LIS e S 34(8)2 ot ds (43)
dt M W 270 Jo_joo 87+ W

which with the help of the convolution theorem reads

% {Z mfl;z / cos [wg (t—t")] q(t") dt’} . (44)
k 0

15



In order to replace >, — [ dw let us introduce the spectral function J(w)

as
T C,f
= — — 4
Jw) =5 zkjmkwk 0 (w—wr), (45)
which allows us to write
G cosfun (1 1) / do 29 cosw (= 11)]. (46)
my wk

k

The function J(w) is nothing but the imaginary part of the Fourier transform
of the retarded dynamical susceptibility of the bath of oscillators, namely,

J(w):Im}"{—zG t—t <l20qu ZCk/qk/ ]>} (47)

Now, assuming that

Jw)={nw ifw < Q,0 ifw > Q, (48)
where (2 is a high frequency cutoff that fixes the frequency (or time) scale of the
problem, we can rewrite (46) as

2

> coslen (t—t')]:%/gncos[w (t—t)=2n6(—1t), (49)

k%K

where we took 2 — oc. This result allows us to rewrite Eq. (44) as
d t

7 2n5(t—t) t")dt' = n4q. (50)

Finally, the rhs of (42) can be interpreted as a force f(t) depending on the
initial conditions imposed on the oscillators of the bath. Suppose the environ-
ment is in thermodynamical equilibrium independently of the position of the
external particle. Thus, using the equipartition theorem we have in the classical
limit

(2,(0)) = (g (0)) = (gx(0) gx(0)) = 0,

(@1(0) v (0)) = e
(ar(0) v (0)) =~ o 61)
k

Using these relations it can be shown that

(f(£)) =0 and
(FO f(E) =2nkTo(t—1). (52)

16



If we now insert (50) in (42) we finally have
Mi+ng+V'ig) = f), (53)

where f(t) satisfies (52). This is the well-known Langevin equation for the
classical Brownian motion.

Along the deduction of (53) we have omitted some minor but crucial details
which have to do with the specific choice of the initial state of the environment
we have chosen. For instance, (50) is not strictly correct but a thorough analysis
of this problem can be found in [6].

As alast remark we would like to mention that another completely equivalent
way to write our model (32) is to replace the interaction Lagrangian (34) by

- Z ék q (jk, (54)
k
and omit L. In this way we can define the canonical momenta py as
oL -
k i k dk k (55)

and write
2 1 2 2
H= pq+pqu—L——+V Z{ (pk+CkQ) +§mkwqu},(56‘)

Now, performing a canonical transformation p — p, ¢ = ¢, p — my wy, qx, and
qr — pr/my wy and defining Cy, = C), wy, we have

H——+V +Zqukq+Z{—+ mkwqu}+2 , (57)

which has (32) as its corresponding Lagrangian. Therefore, the electromagnetic
Lagragian with L; replacing L; in (32) and no counter-term is completely equiv-
alent to (32) itself. It is worth noticing that the spectral density J(w) must be
modified when expressed as a function of 5’k.

Now that we know a treatable model that generates the classical Brownian
motion for the variable of interest (¢(¢) in the present case) we can study the
quantum mechanics of the composite system and extract from it only the part
referring to the system of interest.

3.2 The Dynamical Reduced Density Operator

It is well-known from quantum mechanics that we can get all the information
about a given subsystem S when we perform the partial trace of the total density
operator p(t) with respect to those variables to which that subsystem is coupled.
In what follows we shall briefly resume the essence of the method and then apply
it to our specific model (32).

17



Suppose we have a general system described by the Hamiltonian

H = Hoy(q,p) + Hi(q,qx) + Hr(qk.px) + Her, (58)

where Hy, H;, Hg and Hop are, as usual, the Hamiltonians of the system,
interaction, reservoir and counter-term, respectively. If we introduce the general
vector R = (Ry, ..., Rn), where Ry, is the value assumed by g we can write the
coordinate representation of the total p(t)

Az, Ry, Q,t) = ////dac'dy’dR’dQ' K(z,R,t;2',R,0) K*(y,Q,t;y',Q',0) x
xp(z', Ry, Q',0) (59)
where
K(z,R, ;2"\ R',0) = <x,R|e*"Ht/h|a:',R'> : (60)
is the quantum mechanical propagator of the whole universe S + R and
pl’, Ry, Q' 0) = (', Rp(0)]y', Q) (61)

the coordinate representation of its initial state. Taking the trace with respect
to the environmental variables means to make R = Q and integrate over it.
Then, assuming that (61) is separable

ﬁ(wl7Rl7yl7Ql70) :ﬁ(xliylio)ﬁ(Rl7Ql70)7 (62)

one reaches
pat) = [ [ dedy Iyt 4,0 il 00, (63)
where
J(z,y,t;2',9',0) = ///dR'dQ'dR{K(m,R,t;x',R',O)K*(y,R,t;y',Q',O) X
x p(R/, Q’,O)}. (64)

Here we should notice that if S and R are decoupled K(z,R,t;2',R’,0) =
Ko(x,t;2',0) Kg(R,t; R',0), which inserted in (64) yields

J(z,y,t;2',y',0) = Ko(z,t;2',0) Kg(y,t;9,0), (65)

where we used that trg {pr(t)} = 1. Thus J acts as a super-propagator of the
reduced density operator of the system.

From (63) and (64) we see that all that is needed is to evaluate the total
propagator K(z,R,t;2',R’,0) since p(0) is assumed to be known. However,
as the reservoir consists of a set of IV oscillators, it is quite laborious to go on
with its evaluation through conventional approaches such as the explicit use of

18



the environmental wave functions. Our approach is instead to appeal to the
Feynman representation of K in terms of functional integrals which will prove
more powerful than many other ways to deal with the same problem.

It can be shown [7] that in the functional integral representation the total
propagator reads
T R

K(z,R, ;'\ R',0) = /

" patey o) e { L) R} (60)

where

S[w(t'),R(t')]=/0 L(z(t'),R(t'), ('), R(t)) dt’, (67)

is the action of the composite system R + S. Those integrals in (66) must be
evaluated over all the geometric paths z(t') and R(t') such that z(0) = 2,
z(t) =z, R(0) =R/, and R(t) = R.

Inserting (66) in (64) one reaches

St o) = [ [ o) Dyte) exo {55ulat0)} exo {501}

x Fla(t'), y(@)], (68)

where SNO is the action of the system of interest when isolated, Sy, plus the
counter-term action, Scp, and

R rR

Fle('), y(#)] = / / / R’ dQ' dR pp(R',Q',0) / DR() DR(t') x

R JQ
x exp { 5 [Sifa(t), R()] = Sily(¥), Q) + SrIR()] = SelQ()]] |, (69)

is the so-called influence functional [7, 8]. This functional is the average of the
product of two time evolutions over the initial state of the environment . One is
the time evolution of the environment when acted by the system of interest and
the other is its time reversed partner. One needs these two histories to describe
the time evolution of the reduced density operator of the system.

It is clear that this approach can be applied to several systems but it is un-
likely to be exactly soluble in many cases. That is where our model (32) comes
into play. Since our bath is harmonic one can easily compute its propagator
when acted by the coordinate of the particle of interest (forced harmonic oscil-
lators) and perform the average in (69) by assuming that the environment is in
thermal equilibrium at a given temperature 7' [7, 9].

Although the integrals in (69) are all Gaussians we are not going to write
the intermediate steps of their evaluation explicitly.

In order to compute the influence functional (69) we shall make explicit use
of the expression for the propagator of the k" environmental oscillator when it
is acted by an external force Crx(t) which reads [9, 7]

KR — Tk 2 gk
R 2mwihsinwyt eXphSd (70)
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where

k mrWp 2
Sél) = st [(R% + Ry, )coswkt — 2Ry R,
2C Ry, 2C R},

t ¢
/ x(t')sinwgt'dt’ + / x(t')sinwg (¢ — t')dt'

mrwi Jo mrWr Jo

2 2
Ci /dt/ dt’ w(t)a(t )sinwk(t—t')sinwkt”}.

mkwk
(71)

This and its time reversed counter-part must be multiplied by one another for
all £ and averaged over the initial state of the environment. In our particular
problem we will assume that the environment is initially in thermal equilibrium
at temperature T and therefore its density operator can be written as

(R, Q',0) = Hp (R, Q5 0) =

MiWg MiWg 2 2 hw
= sy o0~ {m[(R% + Q) cosh () - 2&@4}

(72)

Since all the integrals in (69) are Gaussians we can readily evaluate them. Sub-
stituting (72,71,70) in (69) and the resulting expression in (68) one gets

J(z,y,t;2",y',0)

[ [ e putiess  {Sotet) - Stoe) -

1

/ / drdola(r) ~ y(r)ar(r — o)lz(o) +y(0)]} X

x exp- 3 / | drdota(s) ~ urantr = lato) st}
(73)
where
ap(t—o0) = Z 2ﬂffwk coth 22“;’;1 coswy (T — o) (74)
and o
ajf(tr—0)=— ; 2mkka sinwyg (1 — o). (75)
Now using (45,48) we can rewrite these expressions as
ag(t — o) = %/OQ dw nw coth2Z:T cosw(T — o) (76)
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and

d Q
A —o) /0 dw nw cosw(T — o).
(77)

In order to obtain the final expression for (68) we must insert (76,77) into
(73) . These substitutions must be carefully done, in particular the one involving
the expression (77) . We shall not go into the details of this analysis but only
warn the reader that in handling the limit 8 — oo and the resulting delta
functions one must always interpret the instant ¢ = 0 as ¢ = 0. The physical
reason for this lies once again on the choice we have made for our initial state
of the whole system (61) . We refer the reader to [10] for a clear discussion on
this issue.

Another point that deserves attention is that (77) carries an extra harmonic
contribution which exactly cancels the counter-term action as expected.

Now that we hope to have settled these questions we must proceed and write

1 /% i
OéI(T—O')Z—;/ dw nwsinw(7—a)=;
0

T

J(z, 2", t;y,y',0) =/

€

/Iy Dx(t")Dy(t') x

1

xexp{ Sole(t)]  Soly(#)] - M7/0 (e — yi + 2 — yi)dt'} x

Q t T
Xexp — 27?477/0 dw w COthQZ:T /0 /0 drdolz(1) — y(7)]cosw(r — o)[z(0) —y(o)],

(78)

where v = 7/2M is the relaxation constant of the system.

3.3 The Equilibrium Reduced Density Operator

Despite the fact that we have developed the expression for the real time evolution
of p(z,y,t) there are several problems for which only the knowledge of the
reduced density operator in equilibrium is necessary. It is also true that this
operator can be obtained by taking the limit ¢ — oo of our previous time
evolution but this task might be fairly difficult sometimes. However, there is a
shortcut one can take by directly evaluating its functional integral representation
in terms of the system variables only. The latter will prove very useful since it
can be handled by some very suitable techniques.
The density operator for the composite system in equilibrium reads

(zRle "M |yQ) = p(z,R;y, Q. B) (79)

where H is the hamiltonian of the complete system, H = Hs+ H;+ Hg+ Hcr,
as in (57,58). This operator also admits a functional integral representation [7]
that reads

z rR
P Ri0.Q.0) = [ DanPREIep ~ £ula) RO) (50
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where
" Lo o 1 . 2 2
Selg(r),R(1)] = dT{ EMq +V(g)+ Z (C’quk + §mkRk + §mkkak) }
0 k
(81)
is the so-called “Euclidean action” of the composite system. The reduced density
operator of the particle is then

ple,y,B) = /dRp(w,R;y,R,ﬁ)Z

@ R
| Pato) [ ar [ DR@)exp - 1 Sela(r). R(7)
=)

which also involves only Gaussian integrals over the environmental variables
[5, 9]. Evaluating these integrals one reaches

pe..8) = 308 [ Datr) e - 73] ety
where . "
po(B) = H 3 cosech( B;k), (84)

k

~ hps
$1a(n)] = 81 la(n)+Scrla(r)] = / ar{ M@ +V (@) }+Serla(r)], (3)
and

C]% e ! hﬁ ! !
Ag(7)] = E pT=—— / dr ; drq(r)q(1")exp — wi|T — '|. (86)
]C — 00

Now, completing squares in the integrand of (86) one cancels the counter-term
contribution for the Euclidean action and gets

pas-8) = 3o(8) | Datr) exp = 3.upsla(r) (s7)
where
hB +o0 hp 9
Sslan) = [ ar{guisv@leg [ ar [ drat—r)tan) o))
N (38)
and
alt—1") = ; 4£C£Wkexp—wk|7'—r'| = %/000 dw J(w) exp —wg|T—7'| (89)

where, as usual, we have transformed the sum into an integral with the help of
(45). For the specific case of interest, namely, ohmic dissipation, this becomes
1 [ 1
a(r—7') = / dwnwexp — wg|T — 7' = S/ - (90)
0

2 2 (1 —71')2
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3.4 Applications

Now let us apply the machinery we have just developed to some problems of
interest.

3.4.1 Damped Harmonic Oscillator

This first application is the simplest one. We want to follow the time evolution
of a harmonic oscillator coupled to our standard environment. We thus initially
prepare a particle of mass M subject to a potential V(q) = Mw2q?/2 in a pure
state given by the wave packet

Figure 7: Gaussian wavepacket

.Tl .TI2

p
(2mo2)t/4 R A

P(a') = (91)

and allow it to interact with a the bath of oscillators which is in equilibrium at
temperature 7. Notice that this wavepacket corresponds to xg = 0 in fig.(7).
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The first step of the calculation is to evaluate the specific form of the super-
propagator J(z,y,t;2',y’,0) for the harmonic potential introduced above. Al-
though the integrations might involve non-local kernels in time, they are all
Gaussian and can be easily performed. We shall omit the details of their evalu-
ation only to avoid encumbering the text with very long expressions. These can
be found, for example, in [4].

Once this has been achieved we can perform the integration in (63), using the
density operator built with (91), to finally get the reduced density operator of
the damped harmonic oscillator at time ¢. Its diagonal element, which represents
the probability density to find the particle at the position z, is given by

1\ 1
- 2
= (—— - (z— ot 2
,0(5!7,37, ) (271'0'2(t)> exp 20’2(t) (iE .170( )) (9 )
from which we can identify the time evolution of its center as x¢(t). In the case
of an underdamped oscillator (wg > ), for example, it can be shown [4] that

xo(t) = ﬁ sinwt e 7t where w=/wi — 7> (93)

which is exactly the classical trajectory of a harmonic particle with initial mo-
mentum p and position zero which are clearly the initial conditions obtained
from (91).

The width of the packet is clearly given by o?(¢) [4] which in the limit ¢ — o
reduces to

ho [ hw (1 2vv
o%(o0) = —/ dvcoth — | — . 94
(c0) T Jo 2T \ M (w2 — v2)? 4 4y2p2 (94)

Recognizing the term inside the parenthesis in the integrand as the imaginary
part of the susceptibility of a damped oscillator, x" (v), we rewrite the above
expression as

v,

(V) (95)

h o0

o?(o0) = —/ dv coth
T Jo

which is nothing but the celebrated fluctuation - dissipation theorem. Now, just

for general information, one sees that the width of the probability density of the

damped oscillator in equilibrium behaves as

7(00) = () (e=2) (96)

wo
where
L (1- 2tant o) it a<1
fla) = (97)
et bt if a>1
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This last expression shows us that the width of the packet always decreases with
increasing dissipation which is a signature of a more efficient localization of a
particle in a damped environment.

3.4.2 Decoherence

In this application we repeat exactly the same steps as before with the difference
that now the initial state of the oscillator is given by (see Fig.(8))

- x? (z + 20)?

U(a) = 1(0) + va(e) = A [exp -y +exp— 0| (98)

where N is a normalization constant. From this state one builds the initial

Figure 8: Delocalized initial state

density operator of the particle as
,0(55,; y’; 0) = p1 (xla y’; 0) + p2 (aj’; y’7 0) + pint(wla yl7 0) (99)
where pi(2',y',0) = o (2 )7 (y') + ¥1(2')3(y'). The first (second) term

on the rhs of (99) represents the wavepacket centered at the origin (position
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—xg), whereas the last term represents the interference term between these two
packets. When zy > o the latter term is negligible.

It is our intention to study the time evolution of p(x, z,t) = p(x,t) as before.
As the time evolution is linear one has

ﬁ(ﬂ:,t) = ﬁl(wat) + :52(w7t) + ﬁint(aj7t) (100)

where p;(z,t) and pa(z,t) are the probability densities corresponding to the
time evolution of the initial wavepackets 1; and 1, respectively, and pin.(x, t)
is obtained by

ﬁint(xat) :/dw’dylj(xaxat;wlayliO)ﬁint(xlaylao)' (101)

This integral can be readily evaluated and gives

ﬁint (x’ t) = 2\/:51 (xa t) \/ﬁ2 (xa t) Cos ¢($, t) €xp _f(t) (102)

where ¢(z, t) is a function that determines the interference pattern and exp— f(t)
is an attenuation factor for the intensity of this pattern. It should be stressed
that in an undamped system the interference pattern develops every time the
two wave packets overlap. An interesting question is to compare the time scale
for the destruction of the interference pattern with the relaxation time of the
system (y71). Once again we refer the reader to the details of this calculation
elsewhere [11]. It can be shown that

exp —f(t) ~ exp —TI't (103)

where the general behavior of the so-called decoherence rate I is illustrated
below,

. 2NET if v<wy
high temperatures (K < 1) ,nir w2 )
o 2—% if v> wo
I = (104)
Ny if v<<wo
low temperatures E>1 w2 .

where £ = hwo/kT and N = w2/40” is a measure of the average number of
quanta of energy initially present in the system and also the square distance
between the two wavepackets in units of their width. So, for wavepackets ini-
tially prepared quite far apart from one another, the decoherence time is much
shorter than the relaxation time of the system regardless of the strength of its
damping term. This time scale is even shorter for high temperatures.

This result can be easily understood through the following analysis. Suppose
that the initial state of the composite system can be approximated by

|61) = {[v0) + [¢2)} ® |0) (105)
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where [¢)9) +|10;) is the initial state of the system and |0) the ground state of the
environment which we assume to be initially at zero temperature. Moreover,
since |1),) is displaced from the origin, the initial state of the system contains
an average number N of quanta of energy.

After a time interval 7 (the relaxation time of the system), the composite
system will be in the state

[67) = |tho) ®|N) (106)

where |N) is the state of the reservoir containing N quanta of energy hwp.

Now, let us investigate the state of the composite system once the oscillator
has lost only one quantum of energy to the environment.

Since the emission of N quanta takes place in 7 the emission of a single
quantum is expected to happen within 7/N. On the other hand, once the
interaction Hamiltonian of our model involves coordinate-coordinate coupling,
the state of the composite system at this instant can be approximated by

|$1) ~ Wz) ® [1) + WNJo) ® ]0) (107)

because states at different positions will correlate differently with the environ-
ment. Therefore, using the orthogonality between |0) and |1) we can compute
the reduced density operator of the system as

p = trgld){(é1] = [0:2)(P: | + [do) (o] (108)

which is a statistical mixture. So, since the off-diagonal terms have been washed
out within such a short time scale the overlap of the wavepackets will present
no interference pattern any more.

The finite temperature effect can also be accounted for with a very similar
reasoning [11].

3.4.3 Dissipative Quantum Tunnelling

This is one of the examples where all that is needed can be extracted from the
reduced density operator of the particle in equilibrium.
We are interested in studying the decay of a particle out of a metastable

potential well. The potential we are going to employ in our exercise is given by
(see Fig.(9))

1 o .
Vig) = §Mw§q2 -\ (A >0). (109)

As one usually does in the undamped case, a possible strategy here is to
compute the imaginary part of the energy of the metastable state initially pre-
pared as, for example, a Gaussian centered at the position ¢ = 0. The difference
is that we now have a composite system and, therefore, this imaginary part of
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Figure 9: Metastable potential

the energy carries with it all the influence the environment might have in the
tunnelling event of the particle.

Let us start by writing the density operator of the composite system in
equilibrium which reads

pea(® Ry, Q. ) =D ¥n(a, R)¥}(y, Q) exp —BE,. (110)
n
The reduced density of the particle in equilibrium is then
ol ) = [ dRpuy(aRigB) = [ dRY (o, R 0 R) exp ~ 5B, (111
n
or, using the functional integral representation,
ulev, ) = [ dRGRIAR)
z,R SE
= [ar [ Dy DRE exp - SElar) R (12

y,R

where H is the hamiltonian of the composite system and Sg its corresponding
Euclidean action. The energy of the metastable state of the composite system
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can be computed if we take the limit § — oo in (111) when z = y. Defining
7 = hf we have

o,R
/ AR [ (0, R)[2e=50/h ~ / iR /0 i Dq(T’)'DR(T')eXp—%[q(T’),R(T’)](lI?;)

On the other hand the trace of the functional integral over R(7’') in (113) has
already been performed and the result is (87,88)

0
70.0.8) = () | Dalryexp~ 2L g(r') (114)

and
Sstatrl = [ {2mit s viofar s 2 [" a [Tar W20 )

Now we have to evaluate the path integral (114) in order to identify the imagi-
nary part of the energy of the metastable state of the composite system through
(113). We shall associate this quantity, which we denote by I from now onwards,
to the effective decay rate of the metastable state of the system of interest in-
fluenced by the presence of the environment.

This computation is not simple. It involves the application of the saddle
point method to the functional integral (114) once an appropriate analytic ex-
tension of the functional in that integrand has been performed. Those interested
in the details of this calculation should find it in [5] for the case of zero temper-
ature and [12] for the more general case. The main result at T' = 0 is

r= Aexp—% (116)

where
< (] n o [eS] qe ! —q. ol 2
BESeff[qc]:/Oo{EMq?-I-V(qC)}dT'-I-E/OodT'/oodT”{ ((T)’—T’g)z) } (117)

is the Euclidean action computed at a function of imaginary time g.(7). The
latter is the so-called bounce solution, a non-trivial extremum ( actually, a saddle
point) of the imaginary time or Euclidean action [5].

The pre-factor A represents the fluctuations about this extremum solution
and is proportional to the ratio of the determinants of two eigenvalue problems
generated by the second functional derivative of the Euclidean action; one com-
puted at a trivial solution and the other at the bounce. As stressed before this
is a very subtle problem and the interested reader is urged to follow its details
in [5] and [12].

Although both A and B increase with dissipation, the correction due to
the modification of the action is the most important one since its contribution
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comes through an exponential factor. This increase in the action is trivially seen
because the term that depends on 7 is a positive definite integral. For weakly
damped systems (wg > ) this correction reads

AB= 2 ((3)aBo = 15 (30 (113)
where o« = 11/2M and ((3) = > o~ , 1/n®. This result is obtained perturbatively
over the undamped bounce solution ¢o(7) which has ¢ as its maximum value.
This is the coordinate of the exit point of the tunnelling particle in a semiclas-
sical picture. In this case it basically coincides with the point where the cubic
oscillator potential vanishes away from the origin.

In the case of strongly damped systems (v > wp) the bounce solution can
also be found but it bears no resemblance to the undamped bounce. The total
Euclidean action again increases and its final form is now

2
B=—”nq"’+0<ﬂ> (119)
9 Y
where the new ¢ is much larger than the one for the undamped solution. One
could loosely say that as the particle tunnels and loses energy it will materialize

on the other side of the barrier at a point further away from the exit point of
the undamped case.

:',\
|
—
c
=

B ——

h/27B(0)

KTy KTy kT

Figure 10: Escape rate as a function of the temperature

Although we shall not address the question of finite temperatures here we
present the general behavior of I'(T") in fig.(10).
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Exercises -

1. Consider a system interacting with a reservoir, which is described by a Lagrangean
L=Ls+L;+ Ly
where

Ls = M@ — Vy(q)
Lr = -3 Craqr
Lp = Tk (3med? — smpwia?)
are respectively, the Lagrangean of the system (S), of interaction (I), and of the
reservoir (R), which is formed by an ensemble of harmonic oscillators with coordi-
nates g, mass my, and coupling constants C}.

(a) Derive the equations of motion for ¢ and g.
(b) Take the Laplace transform for the g; equation and show that

i) = Q) 50:0) | Guils

$?+w? s2+wd o me(s?+ wd)

Hint: Look, for instance, at the book of Arfken, Mathematical Methods for Physics,
and find that L{f™M(t)} = s"L{f(t)} — s"~1f(0) — "1 f'(0) — fF(*=1)(0).

2. Take now the inverse transform of §i(s) and substitute it into the equation of
motion for q. Using the identity

1 _ 10 s?
s?+w Wi s+ wi|’

derive Eq. (42) of the script.

3. Assuming an ohmic spectral function and using Eq. (49) of the script, show that
the last term in the LHS of Eq. (42) becomes n¢(t).

4. Use the equipartition theorem for an ohmic bath of harmonic oscillators to show
that < f(t) >=0and < f(t)f(t') >= 20k, T6(t — t').

5. Collect all the above results to show that the Caldeira-Leggett model reproduces
the Langevin equation in the classical limit.

6. Show that the spectral function J(w) defined in Eq. (45) of the script is noth-
ing but the imaginary part of the Fourier transform of the (retarded) dynamical
susceptibility of the oscillators bath in the classical limit,

J(w) = ImF {(i/m)0(t — t') ([ceqr(t), crar(t)]) }

7. The Caldeira-Leggett model describes the environment as a bath of harmonic
oscillators. How good is this approximation, and when is it valid?
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