Lecures on Statistical Field Theory Random matrices and statistical physics - Homework 1

Grégory Schehr
February 6, 2024

The Wigner semi-circular law via replicas

We consider an $N \times N$ random matrix \mathbf{J} drawn from the Gaussian Orthogonal Ensemble (GOE), i.e. \mathbf{J} is a real symmetric matrix such that, for $k \leq l$, the entries $J_{k l}$ are independent Gaussian entries of zero mean and variances $\mathbb{E}\left(J_{k k}^{2}\right)=2 / N$ and $\mathbb{E}\left(J_{k l}^{2}\right)=1 / N$ for $k<l$. We denote by $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$ the N real eigenvalues of \mathbf{J} and the goal is to compute the average density of eigenvalues

$$
\begin{equation*}
\rho(x)=\mathbb{E}\left[\frac{1}{N} \sum_{i=1}^{N} \delta\left(x-\lambda_{i}\right)\right], \tag{1}
\end{equation*}
$$

in the limit $N \rightarrow \infty$. In the following, ϵ denotes a strictly positive real number $\epsilon>0$. You will find, at the end, some results on Gaussian integrals, which may be useful in the following computations.

1 Preamble

1.) Using the identity, valid for any real x in the sense of distribution,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{x-i \epsilon}=\operatorname{PV} \frac{1}{x}+i \pi \delta(x) \tag{2}
\end{equation*}
$$

where PV denotes the Cauchy principal value, show that

$$
\begin{equation*}
\rho(x)=-\frac{1}{N \pi} \lim _{\epsilon \rightarrow 0^{+}} \operatorname{Im}\left(\mathbb{E}\left[\operatorname{Tr}\left(\mathbf{J}-x_{\epsilon} \mathbb{I}_{N}\right)^{-1}\right]\right), x_{\epsilon}=x-i \epsilon, \tag{3}
\end{equation*}
$$

where \mathbb{I}_{N} denotes the identity matrix of size N.
2.) Consider the N-fold Gaussian integral

$$
\begin{align*}
Z_{J}\left(x_{\epsilon}\right) & =\int_{-\infty}^{\infty} \mathrm{d} \phi_{1} \cdots \int_{-\infty}^{\infty} \mathrm{d} \phi_{N} \exp \left[-\frac{i}{2} x_{\epsilon} \sum_{k=1}^{N} \phi_{k}^{2}+\frac{i}{2} \sum_{k, l} J_{k l} \phi_{k} \phi_{l}\right] \tag{4}\\
& =\int_{\mathbb{R}^{N}} \mathrm{~d} \vec{\phi} \exp \left[-\frac{1}{2} \vec{\phi}^{T}\left(i x_{\epsilon} \mathbb{I}_{N}-i \mathbf{J}\right) \vec{\phi}\right] . \tag{5}
\end{align*}
$$

Justify that $Z_{J}\left(x_{\epsilon}\right)$ is well defined and show, using results for Gaussian integrals, that

$$
\begin{equation*}
\operatorname{Tr}\left(\mathbf{J}-x_{\epsilon} \mathbb{I}_{N}\right)^{-1}=2 \frac{\partial}{\partial x} \ln Z_{J}\left(x_{\epsilon}\right) \tag{6}
\end{equation*}
$$

2 Annealed computation

3.) To compute $\rho(x)$, we will first make the approximation $\mathbb{E}\left[\ln Z_{J}\left(x_{\epsilon}\right)\right] \approx \ln \left(\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]\right)$. When do you expect this approximation to be valid?
4.) Show that the averaged "partition function" $\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]$ can be written as

$$
\begin{equation*}
\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]=\int_{-\infty}^{\infty} \mathrm{d} \phi_{1} \cdots \int_{-\infty}^{\infty} \mathrm{d} \phi_{N} \exp \left[-\frac{i}{2} x_{\epsilon} \sum_{k=1}^{N} \phi_{k}^{2}-\frac{1}{4 N}\left(\sum_{k=1}^{N} \phi_{k}^{2}\right)^{2}\right] \tag{7}
\end{equation*}
$$

5.) By using the standard Gaussian identity (18) for $m=1$ to disentangle the ϕ_{k} variables show that $\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]$ can be written as

$$
\begin{equation*}
\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]=\sqrt{\frac{N}{\pi}} \int_{-\infty}^{\infty} \mathrm{d} q \mathrm{e}^{-N \varphi_{x}(q)}, \varphi_{x}(q)=q^{2}-\frac{1}{2} \ln \left(\frac{2 \pi}{i\left(x_{\epsilon}-2 q\right)}\right) . \tag{8}
\end{equation*}
$$

6.) Explain why, to compute the density $\rho(x)$ in the large N limit, we only need to retain terms in (8) which are of order $\mathcal{O}\left(\mathrm{e}^{N}\right)$.
7.) At this order of accuracy, the integral over q in (8) can be evaluated, for large N, by the Laplace (or saddle-point) method. To find this saddle point, we need to solve $\partial_{q} \varphi_{x}(q)=0$. Show that this equation has actually two roots $q=q_{+}$or $q=q_{-}$given by

$$
\begin{equation*}
q_{ \pm}=\frac{1}{4}\left(x_{\epsilon} \pm \sqrt{x_{\epsilon}^{2}-4}\right) . \tag{9}
\end{equation*}
$$

8.) It can be shown that the correct saddle point is given by $q=q^{+}$. Deduce then that in the limit $N \rightarrow \infty$ one has

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \rho(x)=\frac{2}{\pi} \lim _{\epsilon \rightarrow 0^{+}} \operatorname{Im} \frac{\partial}{\partial x}\left[\varphi_{x}\left(q_{+}\right)\right] . \tag{10}
\end{equation*}
$$

9.) Obtain finally that, when $N \rightarrow \infty, \rho(x)=\sqrt{4-x^{2}} /(2 \pi)$ if $|x| \leq 2$ while $\rho(x)=0$ if $x>2$.

3 Quenched computation (More complicated)

To compute the average $\mathbb{E}\left[\ln Z_{J}\left(x_{\epsilon}\right)\right]$, going beyond the approximation $\mathbb{E}\left[\ln Z_{J}\left(x_{\epsilon}\right)\right] \approx \ln \left(\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)\right]\right)$, we will use the replica trick which we find convenient here to write as

$$
\begin{equation*}
\mathbb{E}\left[\ln Z_{J}\left(x_{\epsilon}\right)\right]=\lim _{n \rightarrow 0} \frac{1}{n} \ln \left(\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)^{n}\right]\right) . \tag{11}
\end{equation*}
$$

10.) Use this replica trick (11) to write $\rho(x)$ in terms of $\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)^{n}\right]$.
11.) By performing the averages over the random variables $J_{k l}$, show that

$$
\begin{equation*}
\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)^{n}\right]=\int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} \mathrm{~d} \phi_{k}^{a} \exp \left[-\frac{i}{2} x_{\epsilon} \sum_{k=1}^{N} \sum_{a=1}^{n}\left(\phi_{k}^{a}\right)^{2}-\frac{1}{4 N} \sum_{a, b=1}^{n}\left(\sum_{k=1}^{N} \phi_{k}^{a} \phi_{k}^{b}\right)^{2}\right] . \tag{12}
\end{equation*}
$$

12.) By using $n(n+1) / 2$ times the Gaussian identity (18) show that

$$
\begin{align*}
\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)^{n}\right] & =A_{N, n} \int_{-\infty}^{\infty} \prod_{k=1}^{N} \prod_{a=1}^{n} \mathrm{~d} \phi_{k}^{a} \prod_{1=a \leq b \leq n} \mathrm{~d} Q_{a b} \\
& \times \exp \left[-N \sum_{a, b=1}^{n}\left(Q_{a b}\right)^{2}-\frac{i}{2} x_{\epsilon} \sum_{k=1}^{N} \sum_{a=1}^{n}\left(\phi_{k}^{a}\right)^{2}+i \sum_{a, b=1}^{n} Q_{a b} \sum_{k=1}^{N} \phi_{k}^{a} \phi_{k}^{b}\right] \tag{13}
\end{align*}
$$

where $A_{N, n}=2^{n(n-1) / 4}\left(\frac{N}{\pi}\right)^{n(n+1) / 4}$, with the convention, in (13), that $Q_{a b}=Q_{b a}$ when $a>b$.
13.) Observe that the n-dimensional vectors $\left\{\phi_{k}^{1}, \phi_{k}^{2}, \cdots, \phi_{k}^{n}\right\}$, for different values of $k=1, \cdots, N$, are now independent on this expression (13), and show that

$$
\begin{equation*}
\mathbb{E}\left[Z_{J}\left(x_{\epsilon}\right)^{n}\right]=A_{N, n} \prod_{1 \leq a \leq b \leq n} \int_{-\infty}^{\infty} \mathrm{d} Q_{a b} \exp \left[-N \Phi_{x}(\mathbf{Q})\right] \tag{14}
\end{equation*}
$$

where \mathbf{Q} is the (symmetric) overlap matrix, of size $n \times n$, with matrix elements $Q_{a b}$ for $a \leq b$ (and thus $Q_{a b}=Q_{b a}$ if $a>b$), while $\Phi_{x}(\mathbf{Q})$ is given by

$$
\begin{equation*}
\Phi_{x}(\mathbf{Q})=\operatorname{Tr}\left[\mathbf{Q}^{2}\right]-\frac{1}{2} \operatorname{Tr}\left[\ln \left(\frac{2 \pi}{i}\left(x_{\epsilon} \mathbb{I}_{n}-2 \mathbf{Q}\right)^{-1}\right)\right] \tag{15}
\end{equation*}
$$

where \mathbb{I}_{n} denotes the identity matrix of size n.
14.) In the large N limit, this multiple integral (14) can be evaluated by the Laplace (or saddle-point) method. Show that the saddle point equations read

$$
\begin{equation*}
2 Q_{a b}-\left(x_{\epsilon} \mathbb{I}_{n}-2 \mathbf{Q}\right)_{a b}^{-1}=0, \quad \forall a, b=1, \cdots, n . \tag{16}
\end{equation*}
$$

 $(\operatorname{det} \mathbf{Y}) \operatorname{Tr}\left(\mathbf{Y}^{-1} \partial_{z} \mathbf{Y}\right)$.
15.) Show that these equations (16) admit the (replica symmetric) solution $Q_{a b}=q \delta_{a b}$ with $q=q_{ \pm}$ as obtained before (9).
16.) Using the ansatz $Q_{a b}=q_{+} \delta_{a b}$, assuming that this is the correct saddle-point solution to (16), compute the density $\rho(\lambda)$ in the large N limit and show that it gives back the Wigner semi-circle.

Some Gaussian integrals

We will find useful the following Gaussian integrals which hold for an invertible symmetric squared matrix A of size $m \times m$ (not necessarily real, provided the corresponding integrals are well defined) and a complex vector $\vec{b} \in \mathbb{C}^{m}$:

$$
\begin{gather*}
\int_{\mathbb{R}^{m}} \mathrm{~d} \vec{x} \mathrm{e}^{-\frac{1}{2} \vec{x}^{T} \mathbf{A} \vec{x}}=\frac{(2 \pi)^{m / 2}}{\sqrt{\operatorname{det} \mathbf{A}}}, \tag{17}\\
\int_{\mathbb{R}^{m}} \mathrm{~d} \vec{x} \mathrm{e}^{-\frac{1}{2} \vec{x}^{T} \mathbf{A} \vec{x}+\vec{b}^{T} \vec{x}}=\frac{(2 \pi)^{m / 2}}{\sqrt{\operatorname{det} \mathbf{A}}} \mathrm{e}^{\frac{1}{2} \vec{b}^{T} \mathbf{A}^{-1} \vec{b}} \tag{18}\\
\int_{\mathbb{R}^{m}} \mathrm{~d} \vec{x} x_{k} x_{l} \mathrm{e}^{-\frac{1}{2} \vec{x}^{T} \mathbf{A} \vec{x}}=\frac{(2 \pi)^{m / 2}}{\sqrt{\operatorname{det} \mathbf{A}}}(\mathbf{A})_{k l}^{-1} . \tag{19}
\end{gather*}
$$

