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The Wigner semi-circular law via replicas

We recall here the definition of the average density of eigenvalues,

and the Gaussian identities :

1 Preamble

1.) Using the distributional identity recalled in the text we obtain
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where z. = x — ie. Therefore, using that

where Iy denotes the identity matrix of size N, together with the definition of p(z) in (1) one obtains
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2.) The N-dimensional Gaussian integral

- N ‘
d¢1~~-/ don exp [;zGZgbﬁJr;Zsz ¢k¢l]
k=1 k.l

ZJ(ZEE)

/.

RN

— 00

. 1-
d¢ exp {—2¢T(ixeﬂN —iJ)

¢

d

1
)\i_l'e

)



is convergent because the absolute value of the integrand is exp[—§ >, (b%], which is integrable for every € > 0.
Taking the derivative of In Z;(z.) with respect to 2 one obtains
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where, in the second line, we have used the Gaussian identities (2) and (4). This finally leads to
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2 Annealed computation

3.) The replacement E [In Z;(x.)] ~ In (E[Z;(x.)]) is the annealed approximation. In the more general context
of disordered systems, this approximation is valid in the large N limit if Z;(z.) does not fluctuate too much,
i.e. if it is self-averaging : Z;(z.) — E[Z;(z)] as N — oo. This is the case when the disorder is weak, or the
temperature high.

4.) The average “partition function” E[Z;(z.)] is given by
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Note that in the last factors, the argument of the exponential is indeed iJy; ¢ ¢; and not (i/2)Jx ¢r ¢y since the
product over k and [ is restricted to k < [, while there is no restriction on these indices in Eq. (8). Using the
Gaussian integration formulae (2,3) for m = 1, one finds
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and similarly
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Injecting these results (14) and (15) in Eq. (13) one finds
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which finally yields
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5.) We use the identity (3) with m =1 to write
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Hence E[Z;(z.)] can be written as
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The integral over ¢ can be evaluated using the relation (2) which, specified for m = 1, yields here
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Therefore, by substituting (20) in (19) one finds that E[Z;(x.)] can be written as
E[Z;(ze)] =1/ — / dge™Ne@zd) - p(g 1) =q¢* — ln ( ) . 21

6.) By substituting the identity found in (12) in the expression for the density p(z) in Eq. (7) one finds
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where the last relation holds in the annealed approximation considered here. We see that we need to evaluate
N=1In(E[Z,(z.)]) in the limit of large N and therefore, anticipating that p(z) is of order O(1), we only need
to retain the exponentially large terms in (21).

7.) The saddle point equation J,¢(q, zc) = 0 yields the quadratic equation
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8.) In the limit of large N the Laplace method applied to (21) yields
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Therefore, using this result (25) in Eq. (22) one finds
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9.) To compute %cp(zp., x.) we notice that ¢(q+,z.) depends on = through the dependence of g1 on x (24) as
well as through the z-dependence of the function ¢(q, z.) itself (21). Therefore differentiating using the chain
rule one finds
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The first term vanishes since ¢4 is a saddle point, solution of 9,4 = 0, and the second term yields
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where in the last two equalities we have used (23) and (24). Finally, injecting this result (28) in Eq. (26) one
finds
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which leads to the Wigner semi-circle law
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3 Quenched computation

10.) By using the replica trick
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together with the first equality in (22) one obtains
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11.) By replicating the system n times to write the n-th power Z;(z¢)"™

random variables Ji;, one has
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and performing the averages over the
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which can be written (by inverting the sum over k and the double sum over a,b in the argument of the last two

exponentials) as
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12.) We write the exponentials containing quartic terms in Eq. (36) as
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and we use n(n + 1)/2 times the Gaussian identity (3) to rewrite it as
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with the convention, in the argument of the exponential, that Q. = Qpq if @ > b. Therefore, substituting this
identity (39) in (36) one obtains
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13.) We observe that the n-dimensional vectors {¢1, @2, -+ ,¢%}, for different values of k = 1,--- , N, are now
independent in (40). Therefore one has
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The multiple integral over the ¢®’s can be explicitly evaluated using (2) with m = n, which yields
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where Q is the (symmetric) overlap matrix, of size n x n, with matrix elements Qup for a < b (and Qup = Qpa
for a > b), and
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where I,, denotes the identity matrix matrix of size n.

14.) Expliciting the independent parameters in Q we rewrite ¢ as
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Taking the derivative with respect to one diagonal element Q.. or one off-diagonal element Q.4 with ¢ < d
yields
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where we used the Gaussian integrals (2,4). Simplifying the factors i gives the saddle-point equation of the text,
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Alternatively one can use the identity 9,(detY) = (det’Y) Tr(Y~19,Y), hence 9, In(detY) = Tr(Y 19.Y)
applied to Y = zI,, — 2Q and z = Qg ; one finds
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which yields the same saddle-point equations (47) when applied to the expression (43) of ®.

15.) The replica symmetric ansatz Qqp = qdqp corresponds to Q = ¢, ; the saddle point equations (47) are
then equivalent to
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which is precisely the equation found in the annealed approximation in (23). It admits the two solutions ¢ = ¢4
as given in (24).

16.) Assuming that Q. = ¢+d4p is the correct saddle point solution, one finds, from Eq. (42) that
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where we have used the explicit expression of ®(Q,z.) in (43) together with the expression of the function
©(q, z¢) found before in the annealed approximation and given in (21). Substituting this result (50) in Eq. (32)
one obtains (assuming that the limit N — oo and n — 0 can be exchanged)
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which coincides with the result obtained above in the annealed approximation (26) and therefore this quenched
computation also yields the Wigner semi-circle (30) for the average density p(z) in the limit of large N.



