Lectures on Statistical Field Theory Random matrices and statistical physics - Solution of Homework 1

Grégory Schehr

8 février 2024

The Wigner sumise

The two eigenvalues of M are the solutions of its characteristic equation

$$
\begin{equation*}
\lambda^{2}-\left(M_{11}+M_{22}\right) \lambda+\left(M_{11} M_{22}-M_{12}^{2}\right)=0 \tag{1}
\end{equation*}
$$

which read

$$
\begin{equation*}
\frac{M_{11}+M_{22}}{2} \pm \frac{1}{2} \sqrt{\left(M_{11}+M_{22}\right)^{2}-4\left(M_{11} M_{22}-M_{12}^{2}\right)}, \tag{2}
\end{equation*}
$$

hence

$$
\begin{equation*}
\Delta=\sqrt{\left(M_{11}-M_{22}\right)^{2}+4 M_{12}^{2}} \tag{3}
\end{equation*}
$$

Denoting $X=M_{11}-M_{22}$ and $Y=2 M_{12}$, we realize that X and Y are two independent Gaussian random variables, both of variance 2 , and that $\Delta=\sqrt{X^{2}+Y^{2}}$ can be seen as the distance from the origin of a point drawn in the plane with this distribution. Hence the density of Δ is

$$
\begin{equation*}
\widehat{P}(\Delta)=\int_{\mathbb{R}^{2}} d x d y \frac{1}{4 \pi} e^{-\frac{x^{2}+y^{2}}{4}} \delta\left(\Delta-\sqrt{x^{2}+y^{2}}\right)=\frac{1}{2} \int_{0}^{\infty} d r r e^{-\frac{r^{2}}{4}} \delta(\Delta-r)=\frac{1}{2} \Delta e^{-\frac{\Delta^{2}}{4}} \tag{4}
\end{equation*}
$$

after a change of variable towards polar coordinates. The average value of Δ is thus

$$
\begin{equation*}
\mathbb{E}[\Delta]=\int_{0}^{\infty} \mathrm{d} \Delta \frac{1}{2} \Delta e^{-\frac{\Delta^{2}}{4}} \Delta=\sqrt{\pi} \tag{5}
\end{equation*}
$$

Changing variables from Δ to $s=\Delta / \mathbb{E}[\Delta]$ yields the probability density

$$
P(s)=\widehat{P}(\Delta=s \sqrt{\pi}) \sqrt{\pi}=\frac{\pi}{2} s e^{-\frac{\pi}{4} s^{2}} .
$$

The Wigner semi-circular law via Coulomb gas

By taking $-a_{1}=a_{2}=a, g(t)=t$ and $C_{0}=1$ in Eq. (3) of the Homework sheet, we know the solution of Eq. (1) is given by

$$
\rho(\lambda)=\frac{1}{\pi \sqrt{a^{2}-\lambda^{2}}}\left[1-\int_{-a}^{a} \frac{d t}{\pi} \frac{t \sqrt{a^{2}-t^{2}}}{\lambda-t}\right]=\frac{1}{\pi \sqrt{a^{2}-\lambda^{2}}}[1-H f(\lambda)]
$$

where H is the Hilbert transform and $f(t)=t \sqrt{a^{2}-t^{2}} \mathbb{1}_{[-a, a]}$.
Now by Plemelj's formula we know for any $x \in \mathbb{R}$

$$
s(x)_{ \pm}=\pi i(\pm f(x)+i H f(x))
$$

where

$$
s(z)=\int_{-a}^{a} \frac{t \sqrt{a^{2}-t^{2}}}{t-z} d t
$$

is the Stieltjes transform of f for $z \in \mathbb{C} \backslash[-a, a]$. The stieltjes transform $s(z)$ can be computed as follows :
fix $z \in \mathbb{C} \backslash[-a, a]$, let C be any path in the complex plane \mathbb{C} containing the interval $[-a, a]$ and not containing z, with counterclockwise orientation. Then we have

$$
\int_{-a}^{a} \frac{t \sqrt{a^{2}-t^{2}}}{t-z} d t=-2 \oint_{C} \frac{w \sqrt{a-w^{2}}}{w-z} d w
$$

where $\sqrt{a^{2}-w^{2}}$ is chosen such that $\lim _{w \in \mathbb{C}_{+} \rightarrow x} \sqrt{a^{2}-w^{2}}=\sqrt{a^{2}-x^{2}}$ for $x \in[-a, a]$.
Now deform C to C^{\prime} which also contains z and by residue theorem we have

$$
\begin{aligned}
\oint_{C} \frac{w \sqrt{a^{2}-w^{2}}}{w-z} d w & =\oint_{C^{\prime}} \frac{w \sqrt{a^{2}-w^{2}}}{w-z} d w+2 \pi i \operatorname{Res}\left(\frac{w \sqrt{a^{2}-w^{2}}}{w-z}, z\right) \\
& =2 \pi i \operatorname{Res}\left(\frac{w \sqrt{a^{2}-w^{2}}}{w-z}, z\right)+2 \pi i \operatorname{Res}\left(\frac{w \sqrt{4-w^{2}}}{w-z}, \infty\right)
\end{aligned}
$$

Now it is clear that $\operatorname{Res}\left(\frac{w \sqrt{a^{2}-w^{2}}}{w-z}, z\right)=z \sqrt{a^{2}-z^{2}}$.
By the laurent series expansion of $\frac{w \sqrt{a^{2}-w^{2}}}{w-z}$ at ∞ :

$$
\frac{w \sqrt{a^{2}-w^{2}}}{w-z}=i\left[w+z+\left(z^{2}-\frac{a^{2}}{2}\right) \frac{1}{w}+\ldots\right)
$$

we know $\operatorname{Res}\left(\frac{w \sqrt{4-w^{2}}}{w-z}, \infty\right)=i\left(z^{2}-\frac{a^{2}}{2}\right)$.
Hence

$$
s(z)=-\pi i\left(z \sqrt{a^{2}-z^{2}}+i\left(z^{2}-\frac{a^{2}}{2}\right)\right)
$$

and for $x \in[-a, a]$

$$
H f(x)=-\frac{a^{2}}{2}+x^{2}
$$

Thus

$$
\rho(\lambda)=\frac{1}{\pi \sqrt{a^{2}-\lambda^{2}}}\left[1+\frac{a^{2}}{2}-\lambda^{2}\right] \mathbb{1}_{[-a, a]}(\lambda)
$$

Since ρ is a probability measure, we must have $\left(1+\frac{a^{2}}{2}-x^{2}\right) \geq 0$ for all $x \in[-a, a]$. This implies that $1-\frac{a^{2}}{2} \geq 0$. Moreover, if we assume that $\rho(\lambda)$ is continuous in \mathbb{R}, then we must have $\rho(a)=0$ which implies that $1-\frac{a^{2}}{2} \geq 0$. Hence we conclude that $a=\sqrt{2}$ and $\rho(\lambda)=\frac{1}{\pi} \sqrt{2-\lambda^{2}} \mathbb{1}_{[-\sqrt{2}, \sqrt{2}]}(\lambda)$ is the Wigner semi-circle.

